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Abstract
Purpose: Postoperative assessment of surgical interventions for correcting
femoral rotational deformities necessitates a comparative analysis of
femoral rotation pre‐ and post‐surgery. While 2D assessment methods
are commonly employed, ongoing debate surrounds their accuracy and
reliability. To address the limitations associated with 2D analysis, we
introduced and validated a 3D model‐based analysis method for quantifying
the angular and rotational impact of corrective rotational osteotomy in the
growing femur.
Methods: The method is based on surface registration of the pre‐ and post‐
intervention 3D femoral models. To this end, 3D triangulated surface models
were generated using CT images for the right femurs of 11 skeletally
immature pigs, each scanned at two distinct time points with a 12‐week
interval between scans. In our validation procedures, femoral corrective
rotational osteotomy of the post‐12‐week femur was simulated at varying
angles of 5, 10, 15 and 20 degrees in three dimensions. Subsequently, a
surface 3D/3D registration‐based approach was applied to determine the
3D femoral angulation and rotation between the two models to assess the
method's detection accuracy of the predefined twist angles as ground truth
references.
Results: The results document the precision and accuracy of the
registration‐based method in evaluating rotation angles. Consistently high
accuracy was observed across all angles, with an accuracy rate of 92.97%
and a coefficient of variance of 8.14%.
Conclusion: This study has showcased the potential for improving post‐
operative assessments with significant implications for experimental studies
evaluating the effects of correcting rotational deformities in the growing
femur.

Level of Evidence: Not applicable.
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INTRODUCTION

Rotational deformity of the femur might result in pain
and altered gait, such as in‐toeing or out‐toeing.
Traditionally, femoral rotational deformity has been
treated surgically by corrective osteotomy, where the
femoral bone is de‐rotated along its long axis either
gradually or acutely [23]. Recently, correction of
femoral rotational deformity by use of guided growth
has been proposed as an option in growing
children [37]. However, the impact of such new
procedures must be thoroughly examined prior to
introduction into clinical use.

Evaluation of orthopaedic surgical outcomes typi-
cally relies on two‐dimensional (2D) slice‐based CT
scans taken at a minimum of two time points, serving
as the gold standard [10, 19, 22, 26, 33]. As shown in
Figure 1, femoral torsion at each time point is
measured using axial cuts, quantifying the relative
angle between the long axis of the femoral neck and
the posterior apex of the distal femoral condyles [19].
The comparative analysis between the time points
documents the extent of femoral rotation (FR) pre‐
versus post‐surgery (hereafter denoted ΔFR).

Despite its widespread use in orthopaedics, the 2D
analysis approaches possess inherent limitations when
it comes to precisely evaluating complex rotational
deformities in long bones. First, uncertainty arises
when selecting the appropriate 2D slices on axial CT
images to define the landmarks [38]. Furthermore, the
subjective choice of bone landmarks, specifically when
selecting the proximal femoral reference axis depend-
ing on the measurement technique, may lead to several
examples of contradictory findings [14, 20, 28, 31, 32].
This issue may be exacerbated in animal experimental

studies, such as those using porcine models, where the
short femoral neck adds to the difficulty of consistently
identifying the proximal landmark (Figure 1).

These limitations have led to a growing emphasis
on post‐operative orthopaedic assessments using 3D
analysis, with studies measuring femoral torsion
through three‐dimensional (3D) femur shape recon-
structions from various imaging modalities such as
CT [25], MRI [9] and EOS scans [21]. In these studies,
a landmark‐based method is commonly applied, which
involves measuring the femoral torsion as the angle
between the femoral neck axis and the retrocondylar
plane. Nevertheless, consistent reliability in identifying
these landmarks may remain a challenge [8], also
relying solely on a single set of landmark points may
not adequately account for rotational changes in both
the coronal and sagittal planes as side effects of the
intervention [7, 15, 18, 24].

There is a proposal to employ the surface registra-
tion of the two pre‐ and post‐operative 3D femur
models for evaluating the ΔFR [1]. In this approach, the
surfaces of the two models are superimposed to
identify discrepancies across all x, y and z coordinates,
representing changes between the pre‐ and post‐
treatment femur models. The benefit of surface
registration is its ability to assess deformities in all
anatomical planes, as highlighted previously [35].
However, surface registration has a finite and unknown
accuracy and may be prone to errors from mesh
irregularities and medical image distortion. Therefore,
in the current study, we perform a systematic verifica-
tion and validation of angle detection by a surface
registration‐based approach. The concept of surface
registration was applied to evaluate ΔFR by aligning
pre‐ and post‐intervention femur models. Specifically,
we reconstructed 3D femoral models using CT images
from skeletally immature growing porcinis without
pathological conditions, separated by a 12‐week
interval between scans. The surgical intervention was
simulated by artificially twisting the femur models at
known angles. The proposed algorithm was then
tasked with detecting these predetermined angles,
serving as a validation against the ground truth values.
The degree to which the algorithm can accurately
detect the rotational angles served as an indicator of its
accuracy.

MATERIALS AND METHODS

This study obtained CTscans of the right femur from 11
skeletally immature pigs without femoral pathology at
two distinct time points. The initial scans were
conducted when the pigs were approximately three
months old, denoted as Week 0 (W0) scans. A second
set of scans was performed 12 weeks later, referred to
as Week 12 (W12) scans. The full length of the femur

F IGURE 1 Femoral rotation for the right and left sides in one of
the pig models was measured as the difference between the femoral
neck axis (determined using the Lee method [19]) and the tangent
line drawn across the axis of the posterior femoral condyles.
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was available for all 11 pigs. The scans were conducted
using a CT Canon Aquilion Prime SP (Canon Medical
Systems). The CT scans had a resolution of 512 × 512
pixels, and the slice thickness was 0.8 mm in all scans.
The mean weight of the pigs was 42 kg (range
38–45 kg) and 84 kg (range 80–94 kg) in W0 and
W12, respectively. The study was approved by the
Danish Animal Experiments Inspectorate under the
application number 2020‐15‐0201‐00690.

The CT scans were segmented using the global
thresholding and region‐growing functions of standard
segmentation software (Mimics Medical, Materialise
NV). The segmentation resulted in the generation of 3D
triangulated mesh bone models [3], which were then
imported into Python for further analysis using the
Trimesh library [6].

To quantify the ΔFR, we utilized a 3D registration‐
based approach, as depicted in Figure 2a. The initial
step in this approach centres on the preliminary
alignment, incorporating scaling, rotation and transla-
tion operations to register the W0 on top of the W12
model while preserving its shape. This is necessary to
account for the variations in size and spatial position
between the W0 and W12 meshes occurring due to
femoral growth and placement uncertainty in the
scanner. This is achieved by the Iterative Closest Point
(ICP) algorithm [1, 2], which minimizes disparities
between the two models by optimizing scaling and
translation parameters, ensuring the best fit between
the W0 and W12 femurs. The result is referred to as
W0T. In the interest of the robustness of the ICP
registration, it was proceeded by preregistration of the
two bones by alignment of their principal inertial axes.

Next, the ΔFR over 12 weeks is determined as the
disparity in orientation between the proximal and distal
sections of the W0T before and after their sectioning
and respective registration to the W12, as illustrated in
Figure 2a. Specifically, the proximal section comprises
40% of the bone length, including the femoral head,
femoral neck, and both trochanters and a portion of the
shaft, and the distal section encompasses 15% from
the distal end, including the condyles. The ΔFR is
characterized as a 3D vector of Euler angles or a
rotation vector. A 3D ΔFR of (0, 0, 0) degrees signifies
no rotational differences between the models captured
at two different time points. While this approach
captures the total rotation between the two selected
sections between the two time points, studies suggest
that torsional differences may not be homogeneously
distributed over the entire femur in human models [11].
Therefore, different sectioning methods may be
required to assess torsional differences relative to the
pathological area.

The performance of the approach was verified and
validated against a contrived ground truth reference.
The ground truth was established by simulating distal
femoral rotation in all three planes. The applied twist

function operates by rotating the femur about the X,
Y and Z axes along defined twisting regions located
40% of the length from the distal end. This ensures a
smooth and gradual increment in the twist angle
extending towards the distal end (Figure 2b). We
specifically rotated the bone at angles of 5, 10,
15 and 20 degrees. The incorporation of four angles
aimed to comprehensively test the algorithm across
varying degrees of rotation, encompassing both small
and large ranges.

As shown in Figure 2c, to verify the algorithm, we
applied the method to determine the ΔFR between
each of the W12 femurs and their artificially twisted
counterparts (Figure 2c, left panel). In the next
validation procedure, the method was tested in each
of the eleven pigs by determining the rotation angles
between the W0 femur and the twisted W12 femur. To
account for potential femoral rotation naturally occur-
ring due to growth effects, the method was first applied
on the same investigating pairs without twisting the
W12 femurs. The ΔFR was then calculated by
accounting for rotation angles influenced by growth‐
related effects and subtracting them from the angles
obtained during the application of virtual twisting for
each corresponding pair. For validation, 484
(11 × 11 × 4) registration experiments were conducted,
applying the four twist angles (true values) across all
eleven femurs. In both verification and validation, a
closer alignment between the detected ΔFR and the
applied twisting angle indicates better performance.

Result visualization: To visualize the detected
angles by the algorithm with ground truth values, we
used Bland–Altman plots, which illustrate the accuracy
dependency on nominal true values. The detected
angles were also expressed as a percentage of the true
values. The average of normalized detected angles for
each of the three axes (X, Y, Z) and the four twist
angles (5, 10, 15 and 20 degrees) across all registra-
tion experiments for both validation and verification
were then computed. We refer to the absolute error
between the average normalized detected angles and
the true angles (i.e., 100%) as the detection error.
Additionally, the coefficient of variance of the measure-
ments indicating the degree of dispersion of detected
angles around the true angle (i.e., 100%) was
computed.

RESULTS

The outcome from verification indicated that the
detected angles approximated the true angles with
high accuracy across all cases. Figure 3a shows that
for the X dimension, the detected twist angles were
approximately 4.96° ± 0.12° for a true angle of 5°,
9.99° ± 0.25° for 10°, 15.12° ± 0.38° for 15° and
20.45° ± 0.52° for 20°. For the Y dimension, the
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F IGURE 2 Panel (a) illustrates the registration‐based method. 3D femurs were generated using computed tomography scan data obtained
from the right femur at two distinct time points. In the first step, the 3D reconstruction of the W0 scan was aligned with the W12 scan using
Iterative Closest Point (ICP) (initial alignment). The W0T was then sectioned into proximal and distal segments. Next, the ICP algorithm was
employed to align the proximal and distal segments of W0T with its counterpart in W12. The disparity in orientation between the proximal and
distal sections of the W0T before and after registration to the W12 reflects the femoral rotation difference between W0 and W12 femur models.
The virtual twist function (b) is employed to artificially rotate the femoral model (depicted in white) around the X, Y and Z axes. In this figure, the
twist is illustrated around the Z‐axis and the resulting rotated bone is shown in navy. Verification and validation processes (c) involve calculating
the ΔFR between W12 and artificially twisted W12 at known angles within the same bone (left panel) to verify the accuracy and functionality of
the computer algorithm. Validation (right panel) involves aligning W12 femur models from one pig with W0 models from the remaining pigs to
assess the method's performance in handling diverse bone structures.

corresponding detected angles were 5.03° ± 0.10°,
10.14° ± 0.21°, 15.39° ± 0.36° and 20.85° ± 0.59°. In
the Z dimension, the detected angles were 4.75° ±
0.07°, 9.54° ± 0.15°, 14.35° ± 0.20° and 19.26° ± 0.29°.

The Bland–Altman plot in Figure 3b shows a mean error
of zero between true and detected angles, with limits of
agreement from −1.09 to 1.05. The algorithm tends
to underestimate Z‐axis rotation and overestimate
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Y‐axis rotation, indicating minor interference between
dimensions.

The validation process involved bones from different
time points (W0 and W12) and different femur models. As
shown in Figure 4a for the corresponding true angle of 5°,
10°, 15° and 20°, the detected angles were 5.13° ± 0.34°,
10.69° ± 0.99°, 15.76° ± 1.12° and 21.26° ± 1.52° for the X
dimension, 5.21° ± 0.34°, 10.82° ± 0.95°, 16.19° ± 1.23°,
21.46° ± 1.51° for the Y dimension and 4.96° ± 0.80°,

9.83° ± 0.85°, 14.80° ± 0.75°, 19.60° ± 0.89° for the Z
dimension. Similar to verification, we observed an under-
estimation of the detected angle in the Z‐axis and an
overestimation in the X‐ and Y‐axis. As indicated by
Figure 4b, a mean error of 0.48° was found between the
detected and true angles. The limits of agreement (LoA)
were −1.77 and 2.75, indicating the spread of differences
across dimensions and true angles. Despite larger errors
with larger true angles, the consistent error percentage

F IGURE 3 Verification results: Box plots showcasing detected angles (a) across all 11 subjects displayed for each of the three dimensions,
with different true angles highlighted in each facet. In the Bland–Altman figure (b), the vertical axis represents the relative difference between
true and detected angles, and the horizontal axis represents the true angles. The figure incorporates all cases across all axes, with X depicted in
beige, Y in blue and Z in navy. The black line signifies the mean, while the dashed grey lines indicate the upper and lower limits of agreement.
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suggests steady relative accuracy across different true
angles.

Throughout all registration trials, the mean of the
normalized detected angles was determined to be
99.42 ± 3.72% for the verification process and
103.75 ± 8.45% for validation (Figure 5). Across all true
angles and dimensions, using the normalized detection
angles, the associated mean absolute error values
were calculated as 3.06 ± 2.17% for verification and
7.02 ± 6.01% for validation.

DISCUSSION

The aim of this study was to evaluate the accuracy of
the registration‐based approach in measuring ΔFR in
growing femurs by comparing it against ground truth
values. To accomplish this, controlled scenarios involv-
ing virtual bone twisting about the anatomical axis at
certain angle values were implemented and validated.
The mean absolute error was 3.06 ± 2.17% for verifica-
tion and 7.02 ± 6.01% for validation. These numbers

F IGURE 4 Validation results: Box plots showcasing detected angles (a) across all 11 subjects displayed for each of the three dimensions,
with different true angles highlighted in each facet. In the Bland–Altman (b), the vertical axis represents the difference between true and detected
angles, and the horizontal axis represents the true angle. The figure incorporates all cases across all axes, with X depicted in beige, Y in
blue and Z in navy. The black line signifies the mean, while the dashed grey lines indicate the upper and lower limits of agreement. Star points
indicate the outcome of the registration experiment when the W0 and W12 scans of the same pig were applied.
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indicate an acceptable accuracy and consistency in
detecting changes in rotational angles, regardless of
morphological changes in the shape of the femur
before and after surgery.

In the literature, the assessment of femoral torsion
using 3D femur models often relies on landmark
registration. In such approaches, proximal and distal
femoral 3D models are realigned to the mechanical
axis, and femoral torsion is evaluated as the intersec-
tion between the femoral neck axis and the retro-
condylar plane [4, 5, 8, 11]. However, it has been
demonstrated that 3D measurements can be sensitive
to how the femoral neck axis is defined [8]. In this
recent study, van Fraeyenhove et al. conducted a study
examining femoral torsion through five different 3D
analyses based on the selection of the femoral neck
axis. Their findings revealed significant variations in
results depending on how the femoral neck axis was
defined (p < 0.001). In contrast, the registration‐based
method gathers high‐dimensional landmark data and
automatically extracts 3D surface information, which
may reduce the impact of intra‐rater bias in
measurements.

The approach applied in this study offers an
advantage over other 3D femoral torsion assessors in
its capacity to evaluate femoral rotation in three
dimensions, these methods facilitate the three‐
dimensional (3D) evaluation of deviations from the
pre‐intervention model across all anatomical planes
and enable 3D post‐operative assessment. In many
proposed 3D assessment studies, the femoral rotation
is evaluated in the transverse plane only. This
approach may not be optimal for assessing derotational

corrections, including torsional osteotomies [30] and
growth modulation [37], as unforeseen effects on the
remaining planes and adjacent joints have been
observed clinically [13, 16, 18, 24]. For instance, it
has been shown that proximal and distal femoral
derotational osteotomies may impact frontal plane
alignment, resulting in varus and valgus effects,
respectively [24]. Therefore, 3D post‐operative evalua-
tion quantifying 3D ΔFR is relevant specifically when
introducing novel surgical approaches [17].

The validation process applied in the current study
also differs from similar research. Here, the accuracy of
3D model analysis for femoral torsion was directly
evaluated against ground truth measurements. In this
way, we used synthetic validation scenarios to estab-
lish an accurate and reliable validation method. This
approach differs from the evaluation strategies used in
studies advocating for 3D femoral analysis. In such
studies, the effectiveness of a novel 3D femoral rotation
assessor is juxtaposed with conventional 2D analysis
[4, 5, 8, 12, 25]. For example, in Iwasaka–Neder et al.
[12], the reliability of the assessment of femoral torsion
through a 3D femur model is compared to Murphy's 2D
axial technique [22]. Another study by Brooks et al. [4]
introduced a 3D analysis for measuring the femoral
version, and they compared their approach to the 2D
technique described by Reikerås et al. [26]. Contrasting
3D approaches with different 2D methods may pose a
controversy, given the substantial variations in reported
values for femoral torsion observed across different 2D
measurement methodologies in different studies
[28, 29]. For instance, in Schmaranzer et al. [28], the
femoral torsion values assessed by Reikerås et al.

F IGURE 5 Distribution of detected angles normalized to the respective true angle across all rotation axes and registration trials for the
verification (a) and validation (b) procedures. The red, vertical line indicates the mean of normalized detected angles in each distribution. And
the blue lines indicate the true angle (i.e., 100%).
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(15.2° ± 14.2°) significantly differ from those by Murphy
et al. (29.0° ± 14.5°) (p < 0.0001 [28]). While the
comparison of result variability between 2D and 3D
analyses may emphasize the consistency of 3D
analysis, it is crucial to note the challenges in
determining the accuracy of 3D analysis. This limitation
stems from the lack of a valid reference for thorough
validation.

Diverging from the conventional practices com-
monly observed in femoral rotation assessments
(either 2D or 3D analysis), which typically involve
measurements separately on individual pre‐ and post‐
intervention models, followed by calculating the differ-
ence between them, our approach involves directly
calculating the change in femoral rotation (ΔFR)
through the fusion of femoral models. This concept
has previously been applied in the preplanning phase
of surgeries, where a model of the pathological side is
superimposed onto the normal anatomy (ipsilateral vs.
contralateral or statistical template [16, 27, 34, 35])
through surface registration. In these studies, the
evaluation of the 3D rotational difference was aimed
at correcting the pathological femur. It is important to
highlight that, unlike those studies, the current study
compensates for a size difference between the two
models due to the element of substantial growth
occurring over the 12‐week period, which results in
varying sizes and shapes between the pre‐ and post‐
intervention models. This was done to investigate
whether the presence of a growth factor, indicating
changes in the size and shape of the femur, might
impact the algorithm's ability to detect the effects of
rotational corrective procedures.

The limitations of the study are primarily associated
with the manual segmentation process. First, in terms
of processing time, the manual segmentation of the
femur may require up to 2 h and may be further
complicated by the removal of metal artefacts, particu-
larly in cases involving implants. Automated algorithms
[36, 39, 40] promise to improve this situation. Another
significant limitation is the inherent interdependence
between registration‐based methods and the accuracy
of the segmentation process. The manual segmenta-
tion and resampling of images at various stages in the
pipeline have the potential to impact the reproducibility
of results. To address this concern, future studies
should consider investigating intra‐ and interobserver
bias associated with the manual approach.

In conclusion, the outcomes of this study under-
score the precision and accuracy of the 3D analysis
based on surface registration of the pre‐ and post‐
treatment femur models in evaluating the angular and
rotational impacts of the corrective rotational osteot-
omy. This approach may have significant implications
for studies assessing the effects of correcting rotational
deformities in the growing femur.
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