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G R A P H I C A L A B S T R A C T
� A thorough review on Internet-of-
Batteries technologies is presented,
analyzing the advancements, gaps, and
meaning.

� Cloud-based BMS, wireless systems, IoT
applications, and artificial intelligence
are analyzed comprehensively.

� IoB implementation challenges and po-
tential advantages for more efficient and
safe EVs are discussed.

� Future research are prospected for
advanced battery diagnostics and prog-
nosis within the IoB framework.
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The concept of the Internet-of-Batteries (IoB) has recently emerged and offers great potential for the control and
optimization of battery utilization in electric vehicles (EV). This concept, which combines aspects of the Internet-
of-Things (IoT) with the latest advancements in battery technology and cloud computing, can provide a wealth of
new information about battery health and performance. This information can be used to improve battery man-
agement in a number of ways, including continuous battery prognosis and improved battery and vehicle man-
agement. In this paper, we reviewed in detail the basic structure of IoB, based on many existing studies. We also
explored the potential benefits of this new approach, such as continuous battery prognosis and improved battery
and vehicle management. Implementing the IoB in EVs is not without challenges, as the IoB faces a number of
challenges, including the security of battery data, cross-platform functionality, and the technical complexities of
applying IoB on a large scale. However, the potential benefits of the IoB are significant and with continued
research and development, it has the ability to revolutionize the EV industry. The purpose of this review paper is
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to provide a comprehensive overview of the IoB, discussing its potential benefits and challenges. The paper also
provides a roadmap for the future development of IoB, highlighting the key areas that need to be addressed to
fully realize the potential of this technology.
1. Introduction

Electric vehicles (EVs) have surged in popularity in recent years,
attracting attention as an environmentally friendly mode of trans-
portation. These innovative vehicles promise to significantly reduce
emissions and lower the environmental impact compared to their tradi-
tional counterparts powered by internal combustion engines. However,
the large-scale adoption of EVs has encountered many problems, pri-
marily due to the limitations of current battery technology [1].

The present battery technology employed in EVs faces several critical
challenges. Firstly, the limited operation range of EVs remains a major
concern for potential users, as it affects their ability to travel long dis-
tances without the need for frequent recharging [2]. Additionally, long
charging times are inconvenient for users and can hinder the widespread
adoption of EVs. Alongside these limitations, the possibility of battery
faults such as thermal runaway, can lead to safety risks including fires or
explosions [3]. These factors, including technical concerns about battery
health and safety, the need for frequent recharging, and long charging
times, could discourage potential users from adopting EVs [4]. Further-
more, EV batteries experience degradation over time, resulting in
decreased performance and battery lifespan reduction [5]. It leads to an
increase in maintenance and accident risk for EV owners.

The Internet-of-Batteries (IoB), which emerges as a promising solu-
tion to these issues, is a networked system that utilizes the principles of
the Internet-of-Things (IoT) to gather data from EV batteries. This data is
subsequently transmitted to a cloud server, where it is utilized for battery
state estimation, predictive analytics, and fault diagnosis [6]. In contrast
to traditional battery management systems (BMS), IoB leverages
advanced technologies like IoT, cloud computing, and machine learning
to provide intelligent battery management. This pioneering approach
consisted of three main components: batteries, IoT technologies, and
cloud servers. The batteries, being the primary power source for EVs, are
integral to the IoB framework [7]. The integration of IoT technologies
enables continuous monitoring and management of battery performance
within this system. The cloud server provides a strong computing ca-
pacity to support more intelligent applications.

The integration of the IoB in EVs offers many benefits and potential
for the EV industry. Continuous battery health monitoring is among its
key advantages. This allows for the early detection of degradation pat-
terns and potential battery failures [8,9]. This proactive approach en-
hances safety, extends the battery lifespan, and improves overall vehicle
reliability. Furthermore, the IoB optimizes energy management by
ensuring efficient power allocation and utilization, thereby extending
vehicle operation range and improving charging efficiency [10]. The IoB
also supports advanced state estimation and fault diagnosis, which are
essential for designing optimized control strategies and enhancing EV
performance. Especially, battery information can be shared across mul-
tiple levels - national, regional, and even local ones, such as those
maintained by the manufacturers, providing the overall lifespan profile
of batteries [11]. This large-scale information sharing highlights the
potential of IoB to regularize data access and improve the efficiency and
reliability of EVs.

Despite the potential benefits offered by the IoB, the implementation
of this concept into EVs presents a unique set of challenges. One of the
primary concerns is the issue of data security, considering that the IoB
involves the exchange of sensitive battery information [12]. To protect
against unauthorized access or manipulation of this data, the imple-
mentation of robust encryption methods and secure communication
protocols become important [13]. Furthermore, ensuring compatibility
across the different systems and communication protocols employed by
2

various battery and vehicle manufacturers emerges as another challenge
[14]. To facilitate seamless integration and interoperability among
IoB-enabled EVs, coordinated efforts towards standardization are crucial.

The topic of BMS has attracted the attention of researchers in recent
years, with many surveys and reviews conducted to investigate different
aspects of BMS, particularly in the context of cloud-based and IoT-based
technologies. Samanta et al. [15] provided a thorough review of wireless
battery management systems (WBMS), highlighting their potential ben-
efits over traditional wired systems in scalability and reduced wiring
complexity. Despite the promise, it was noted that the technology is in its
early stages with significant research needed for industrial readiness. The
authors identify several challenges, such as high implementation cost,
management of wireless communication among nodes, and potential
interference from other wireless networks, underscoring the need for
future research to overcome these obstacles. In another study, Pourrah-
mani et al. [16] highlighted the transformative role of IoT in facilitating
remote monitoring and diagnostics in connected vehicles. However,
these advances come with inherent challenges such as high imple-
mentation costs, and wireless communication management difficulties.
Tran et al. [17] put forth the benefits and potential drawbacks of
cloud-based BMS, and proposed a novel approach that addresses the
limitations of traditional BMS by improving the reliability and accuracy
of battery algorithms through enhanced computational capabilities and
data storage. Shi et al. [18] discussed the increasing role of artificial
intelligence (AI) and machine learning (ML) in managing and deriving
valuable information from a large amount of battery data. They proposed
that incorporating cloud-based digital solutions into BMS could lead to
improved battery diagnosis and prognosis accuracy. Meanwhile,
Mohammadi et al. [19] stressed on the role of Battery Energy Storage
Systems (BESSs) in EVs, particularly in the context of smart cities and 5G
technology. They presented an overview of the technical challenges of
real-time monitoring and control of energy storage systems for EVs in
smart cities, and discussed the potential of IoT technology in enhancing
the efficiency of BMS.

Overall, these studies have made significant contributions to the
understanding of BMS, highlighting the benefits, challenges, and po-
tential future directions of different technologies such as wireless sys-
tems, IoT, cloud-based solutions, AI, ML, and BESSs in the context of
BMS. Despite these advancements, there exists a notable gap in the
existing literature regarding a comprehensive review that combines the
various advancements in BMS, particularly focusing on the integration of
cloud, wireless, and IoT technologies. Furthermore, the existing works
lack sufficient discussion on key issues such as security and privacy
concerns, latency, scalability, and cost-effectiveness associated with
these systems. Additionally, the potential and challenges associated with
the application of AI and ML in the context of BMS have not been thor-
oughly investigated.

The purpose of this review paper is to bridge these gaps by providing
an integrative analysis of the application of cloud, wireless, and IoT
technologies in BMS. It also provides a thorough analysis of the IoB
concept, its architecture, benefits, challenges, and potential future di-
rections. By critically analyzing existing research and exploring the
current state of the IoB in the context of EVs, this paper aims to shed light
on the advantages and limitations of this technology. Our main contri-
bution is to provide a comprehensive overview of the IoB concept and its
potential applications in EVs. We also identify areas of future research
and development required to fully utilize the potential of IoB in opti-
mizing battery use in EVs.

The remainder of this paper is organized as follows. In Section 2, the
architecture of IoB is presented. The machine learning approaches in IoB
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applications are reviewed in Section 3. In Section 4, the potential op-
portunities presented by IoB are discussed. The challenges associated
with IoB are discussed in Section 5. In Section 6, the future research
perspectives of IoB are discussed. The paper is concluded in Section 7.

2. The architecture of the internet-of-batteries (IoB)

The Internet-of-Batteries (IoB) can be defined as an integrated system
that uses the IoT and cloud computing technology to monitor and
manage batteries. IoB systems can collect data from batteries in real-time,
such as voltage, current, temperature, and other parameters [20]. This
data can be used to analyze battery health and performance, identify
potential faults, and optimize battery usage [21]. IoB systems can also be
used to remotely control batteries. This can help to improve battery ef-
ficiency and extend battery life.

The architecture of IoB is illustrated in Fig. 1. It comprises three main
components, battery systems, IoT gateway, and cloud platform, and two
additional components, i.e. BMS and wireless module, which are inte-
grated inside the battery systems. Each component is described as
follows.

2.1. Battery systems

Battery systems form the foundational layer of the IoB architecture,
particularly within the context of EVs. Their role is to store and distribute
energy, serving as the core of the entire IoB framework. Several key pa-
rameters and vital metrics are monitored at this level. These include the
voltage, which signifies the electric potential difference, and the current,
which represents the rate at which the battery is charged or discharged
[22]. The temperature, another crucial parameter, directly influences the
performance and life expectancy of the battery [23,24]. Moreover, the
state of charge (SoC) indicates the existing energy capacity as compared to
the maximum energy capacity [25]. Lastly, the state of health (SoH) offers
insights into the overall battery health by reflecting its degradation over
time [26,27]. The global EV battery market is projected to grow from
Battery system BMS Wireless module loT gateway

Fig. 1. The archit
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$37.91 billion in 2021 to $98.97 billion in 2029, at a CAGR of 10.5% [28].
The growth of the EV battery market is being driven by the increasing
demand for EVs, as governments around the world implement policies to
reduce greenhouse gas emissions. In EVs, three types of batteries domi-
nate the market i.e., Lithium-ion (Li-ion), Lead-Acid, and Nickel Metal
Hydride (NiMH). Li-ion batteries dominate themarket, holdingmore than
90% of the market share, primarily because of their high energy density,
which allows them to store a large amount of energy in a small space [29,
30]. This makes them ideal for EVs, which need to be lightweight and
have a long range. Li-ion batteries are also relatively efficient, meaning
that they lose less energy when they are used [31]. Lead-acid batteries are
the oldest type of rechargeable batteries. They have a relatively low en-
ergy density and short lifespan, but their low cost and high availability
make them suitable for some applications, such as auxiliary power units in
EVs [32]. However, their poor energy-to-weight ratio and shorter lifespan
make them less ideal as the main power source for EVs. Nickel Metal
Hydride (NiMH) batteries have a higher energy density than lead-acid
batteries, and they are more environmentally friendly, but they are
more expensive. They were commonly used in hybrid electric vehicles
(HEVs) before Li-ion batteries became dominant [33]. Their main draw-
back is the “memory effect”, where repeated partial discharge/charge
cycles can decrease their capacity. A summary comparing these types of
batteries used in EVs is presented in Table 1 [34].

The Li-ion batteries are further divided into different types based on
cathode chemistries. These chemistries affect the performance, lifespan,
and cost of the batteries. The most common cathode chemistries used in
EVs are.

� LFP (Lithium Iron Phosphate): LFP batteries are the most affordable
and safest type of lithium-ion battery. They have a lower energy
density than other chemistries, but they offer longer cycle life and
better thermal stability. LFP batteries are often used in EVs and en-
ergy storage applications [35];

� NCA (Lithium Nickel Cobalt Aluminum): NCA batteries have a higher
energy density than LFP batteries, but they are also more expensive
Cloud platform Analytical tools Data flow Visualization

ecture of IoB.



Table 1
A comparison between Lead-Acid, Nickel Metal Hydride, and lithium-ion batteries used for EVs.

Specifications Lead Acid Nickel Metal Hydride Lithium-ion

Cobalt Manganese Phosphate

Main components Metallic lead, lead dioxide,
lead sulfate, and sulfuric acid

Hydrogen, nickel hydroxide,
and potassium hydroxide

Lithium, iron,
aluminium,
copper, cobalt

Lithium, manganese,
graphite

Lithium, iron,
phosphate, aluminium,
copper, organic electrolyte,
graphite

Specific energy (Wh⋅kg-1) 30–50 60–120 150–190 100–135 90–120
Internal resistance (mΩ) <100 (12 V pack) 200–300 (6 V pack) 150–300 (7.2 V pack) 25–75 (per cell) 25–50 (per cell)
Life cycle (80% discharge) 200–300 300–500 500–1,000 500–1,000 1,000–2,000
Fast-charging time (h) 8–16 2–4 3–4 �1 �1
Overcharge tolerance High Low Low, cannot tolerate

trickle charge
Self-discharge/month
(25 �C) (%)

5 30 <10

Cell voltage (nominal) (V) 2 1.2 3.6 3.8 3.3
Charge cut-off voltage
(V⋅cell-1)

2.40 Full charge detection
by voltage signature

4.20 3.60

Charge cut-off voltage
(V⋅cell-1, 1 C)

1.75 1.00 2.50–3.00 2.80

Peak load current (C) 5 5 >3 >30 >30
Charge temperature (�C) �20 to 50 0–45 0–45
Discharge temperature (�C) �20 to 50 �20 to 65 �20 to 60
Maintenance requirements 3–6 months 60–90 days Not required
Safety requirements Thermally stable Thermally stable, fuse

protection common
Protection circuit
mandatory
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and less safe [36]. NCA batteries are often used in high-performance
EVs, such as Tesla Model S and Model X;

� NMC 111 (Lithium Nickel Manganese Cobalt Oxide, 1:1:1 ratio of nickel,
manganese, and cobalt): NMC 111 batteries were the first generation of
NMC batteries. They have a good balance of energy density, cost, and
safety [37]. NMC 111 batteries are still used in some EVs, but they
have been largely replaced by newer NMC chemistries;

� Lithium Nickel Manganese Cobalt Oxide, 5:3:2 ratio of nickel, manganese,
and cobalt: NMC 532 batteries are a newer generation of NMC bat-
teries that have a higher nickel content than NMC 111 batteries. This
gives NMC 532 batteries a higher energy density, but also makes them
more expensive [38]. NMC 532 batteries are a good option for ap-
plications that require a high energy density and fast charging speed.
However, they are more expensive than NMC 111 batteries and have
a higher risk of fire or explosion;

� NMC 622 (Lithium Nickel Manganese Cobalt Oxide, 6:2:2 ratio of nickel,
manganese, and cobalt): NMC 622 batteries have a higher energy
density than NMC 532 batteries, but they also contain more cobalt
0％ 20％
Share

NCA

NMC333

NMC532

NMC622

NMC811

LFP

Lithium Aluminium Nickel Manganese Cobal

0.60

Material co

Fig. 2. Global market share of differen
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[39]. Cobalt is a relatively expensive and scarce material, so NMC 622
batteries are more expensive than NMC 532 batteries. NMC 622
batteries are still used in some EVs, but they are being replaced by
newer NMC chemistries with lower cobalt content;

� NMC 811 (Lithium Nickel Manganese Cobalt Oxide, 8:1:1 ratio of nickel,
manganese, and cobalt): NMC 811 batteries have the highest energy
density of any Li-ion battery chemistry [40]. However, they also
contain the most cobalt, which makes them the most expensive;

� NMC 9.5.5 (Lithium Nickel Manganese Cobalt Oxide, 9:5:5 ratio of
nickel, manganese, and cobalt): NMC 9.5.5 batteries are a newer type of
NMC battery that has a lower cobalt content than NMC 811 batteries
[41]. This makes them less expensive and more sustainable. NMC
9.5.5 batteries are still in the early stages of development, but they
have the potential to become the standard for EV batteries in the
future.

Fig. 2 [42] illustrates the current market share and trends of various
cathode chemistries for EV batteries. As of 2022, the dominant cathode
40％
 in 2022(％)

60％ 80％

t Iron Phosphorous Oxygen Share in 2022

2.41.81.2

ntent(kg·kWh-1)

t types of EV cathode chemistries.
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chemistries were LFP with approximately 30% market share, NCA with
around 8% share, and NMC with a significant 60% market share. LFP
batteries have experienced a surge in popularity, primarily driven by
Chinese original equipment manufacturers (OEMs). Notably, 95% of LFP
batteries used in EVs were installed in vehicles produced in China, with
BYD accounting for half of the demand. Tesla, on the other hand, rep-
resented 15% of LFP battery demand, and its adoption of LFP batteries
increased from 20% in 2021 to 30% in 2022, with a large proportion of
those batteries used in cars manufactured in China. The adoption of LFP
batteries by Tesla in the United States also increased, but the overall
proportion of EVs with LFP batteries manufactured in the U.S. remained
low at 3%.

LFP batteries have distinct characteristics compared to other cathode
chemistries such as NCA and NMC. LFP utilizes iron and phosphorus
instead of nickel, manganese, and cobalt found in NCA and NMC batte-
ries. While LFP batteries have lower energy density than NMC batteries,
they face the challenge of containing phosphorus, a critical element used
in food production. As the EV industry continues to evolve, it is likely that
the market share of different cathode chemistries may fluctuate. NMC
chemistry is expected to remain a crucial player, given its high energy
density and established presence. However, LFP batteries may continue
to gain momentum, especially in specific markets or for certain types of
EV applications, owing to their safety features and cost-effectiveness.

2.2. Wireless module

The wireless module is a critical component of the IoB system for EVs.
It serves as an interface between the battery system and the IoT gateway,
and is responsible for collecting and transmitting data from the batteries
in real-time. The wireless module is typically integrated with the BMS
which is equipped with a variety of sensors that can monitor the per-
formance and status of the batteries [43]. The BMS communicates
directly with the wireless module, exchanging vital battery data and
control commands. These sensors can measure voltage, current, tem-
perature, and other parameters. The data collected by these sensors is
then transmitted to the IoT gateway via a wireless communication pro-
tocol, such as Wi-Fi, Bluetooth, or cellular [44]. The data that is trans-
mitted by the wireless module is essential for ensuring the availability of
real-time, accurate data for further analysis and action. The type of
wireless communication protocol used by the wireless module depends
on the specific application. For example, Wi-Fi is a good choice for ap-
plications that require a high data rate, while Bluetooth is a good choice
for applications that require low power consumption [45]. The range of
the wireless module also depends on the specific application. For
example, a wireless module that is used to monitor a fleet of vehicles
needs to have a longer range than a wireless module that is used to
BMS Wire

Sensor

+
Actuator

Microcontrolle

Secunity

hardware

Processing

Fig. 3. Block diagram of a wirele
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monitor a single vehicle [46]. The security of the wireless module is also
an important consideration. This is because the module is responsible for
transmitting sensitive data from the batteries to the IoT gateway. If this
data is compromised, it could lead to a variety of security incidents, such
as unauthorized access to the batteries, data theft, or even physical
damage to the batteries. The wireless module should be encrypted to
protect the data that is transmitted from the batteries [47].

The wireless module is not just a communication medium between
the battery system and the cloud platform. It serves many other purposes,
including.

� Integration with other components of the IoB system: The wireless module
can be integrated with other components of the IoB system, such as
the battery management system or the cloud-based analytics platform
[48]. This would allow for more comprehensive and sophisticated
data analysis;

� Collection of data from a variety of other sources: The wireless module
can be used to collect data from a variety of other sources, such as
environmental sensors or vehicle telematics systems [49]. This would
provide a more holistic view of the performance and status of battery;

� Implementation of battery management strategies: The wireless module
can be used to implement a variety of battery management strategies,
such as load balancing, thermal management, and battery health
monitoring [50]. This would help to ensure that the batteries are used
in a safe and efficient manner;

� Remote battery management: The wireless module can be used to
remotely manage the battery, such as adjusting the battery settings or
performing firmware updates. This would allow for greater flexibility
and control over the battery operation [51].

Fig. 3 presents a comprehensive overview of a wireless module used
within an IoB system for EVs. At its core, the wireless module operates as
the connecting bridge between the battery systems and the IoT gateway,
ensuring seamless real-time data transmission.

Starting from the battery systems, arrays of sensors and actuators are
installed in BMS to continuously monitor crucial battery and vehicle
parameters. The BMS communicates directly with the wireless module,
exchanging vital battery data and control commands. The wireless
module acts as a bridge between the BMS and the IoT gateway. It con-
tains a microcontroller unit (MCU) that processes the data from the BMS
sensors and prepares it for transmission to the IoT gateway. The wireless
module also communicates with the IoT gateway to receive and execute
control commands for the battery system.

Once the data is ready, it is passed to the wireless transceiver, which
can support multiple wireless communication protocols like Wi-Fi,
Bluetooth, or cellular. This adaptive functionality allows the module to
less module loT gateway

Wireless

transceiver

r unit

Power

management

Transmission

ss module in an IoB system.
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communicate effectively with the IoT gateway in diverse operational
scenarios.

Essential to the integrity of the data being transmitted is the security
hardware. The security hardware provides necessary encryption and
other protective measures, ensuring that sensitive battery data remains
secure during transmission.

A Power Management Unit is incorporated within the wireless mod-
ule to ensure efficient power consumption during all these operations.
The module needs to be power efficient so it does not drain the batteries
it is designed to monitor.

Finally, the IoT gateway receives the transmitted data, where it can be
analyzed, stored, and leveraged for various applications, completing the
communication loop within the IoB system. Through this complex yet
efficient coordination of components, the wireless module significantly
contributes to the operational efficiency of the IoB system in EVs.

2.3. IoT gateway

The IoT gateway serves as a bridge between the wireless module and
the cloud platform, ensuring safe and efficient transmission of data. The
IoT gateway typically performs the following functions.

2.3.1. Data collection
The primary function of an IoT gateway is to collect voltage, current,

and temperature, among other battery parameters from the wireless
module [52].

In addition to the wireless module, the IoT gateway collects data from
other sources to gain a better understanding of the state of the battery
system [53]. For example, additional sensors installed in the vehicle or
attached to the battery system provide a more detailed, real-time view of
various system parameters. Actuators, on the other hand, respond to the
commands of the gateway based on the interpreted sensor data,
providing a feedback loop that helps to manage the battery efficiently
[54]. Environmental monitors provide crucial data about external con-
ditions, such as temperature and humidity, which can affect battery
performance and lifespan. Collectively, the data gathered is invaluable
for monitoring the health of the battery system, predictive maintenance,
and optimal utilization of the battery resources.

However, data collection is not a straightforward task. IoT gateway
receives data from IoT devices in a variety of formats, including text,
binary, and JSON. The gateway must parse this data and convert it into a
format that can be processed by the cloud platform [55]. This is a critical
role of the gateway, as it ensures that the data is properly formatted and
can be used by the cloud platform to generate insights and take action.
For example, the IoT gateway in an EV BMS might gather data from
various vehicle sensors, including those monitoring battery health,
vehicle performance, and external environmental conditions [56].
Additional data from smart devices integrated into the vehicle, such as
the infotainment system, navigation system, or advanced
driver-assistance systems (ADAS), can also feed into the data pool [57].
By collecting and analyzing data from a variety of sources, the IoT
gateway can build a comprehensive understanding of the vehicle. This
understanding allows the system to make intelligent decisions about how
to optimize battery performance and extend its lifespan [58]. For
example, the system can use data about the speed, location, and tem-
perature of the vehicle to determine when to enter a low-power mode or
when to charge the battery.

2.3.2. Data processing
The IoT gateway performs preliminary data processing before the

data is transmitted to the cloud platform, which helps to improve the
efficiency and accuracy of data analysis [59].

The IoT gateway aggregates the data from various sources, which
reduces the load on the cloud platform and improves the overall per-
formance of data analysis [60]. The gateway collects and organizes all
relevant data about the battery system, providing a holistic view of its
6

current state and performance. This information can be used to identify
potential problems early on, prevent failures, and optimize battery life.

The IoT gateway also filters the gathered data to remove noise and
outliers. Noise can often lead to inaccurate analysis and predictions, so by
filtering out this noise, the gateway enhances the precision of data
analysis [61].

The IoT gateway then normalizes the collected data, which stan-
dardizes the data by adjusting the values measured on different scales to
a common scale. This process is crucial in cases where data is collected
from diverse sources, each possibly operating on different units or scales
[62]. Normalization makes the data easier to analyze and compare,
thereby facilitating a more straightforward and meaningful analysis.

In addition to these preliminary data processing steps, the IoT
gateway may perform some initial analytics on the data, such as identi-
fying trends and patterns [63]. This capability can provide valuable in-
sights into the battery system, helping to identify potential issues or
opportunities that may not be evident from the raw data. For example,
trends in battery temperature or discharge rates could indicate emerging
problems that need attention, which could help with preemptive actions
to maintain the health and efficiency of the EV battery system [64].

2.3.3. Data transmission
The IoT gateway is responsible for transmitting data to the cloud

platform in the IoB system. The data can be transmitted using a variety of
protocols, including.

� Long range (LoRa): LoRa is a low-power, long-range protocol that is
well-suited for applications that require communication over long
distances [65];

� Bluetooth: Bluetooth is a short-range, low-power protocol that is well-
suited for applications that require communication between devices
that are in close proximity [66];

� Low-Rate Wireless Personal Area Networks (LR-WPAN): LR-WPAN is a
low-power, low-bandwidth protocol that is well-suited for applica-
tions that require communication between devices that are in close
proximity [67];

� Mobile communication: Mobile communication protocols, such as 4G
LTE and 5G, can be used to transmit data over long distances [68];

� Worldwide Interoperability for Microwave Access (WiMAX): WiMAX is a
high-speed, long-range protocol that is well-suited for applications
that require high-bandwidth communication over long distances [69];

� Wi-Fi: Wi-Fi is a high-speed, short-range protocol that is well-suited
for applications that require high-bandwidth communication be-
tween devices that are in close proximity [70].

In the design of the IoB system for EVs, the selection of suitable
communication protocols is critical for ensuring seamless internal and
external communication. The following factors should be considered
when making an informed decision.

1. Internal communication (within the vehicle)
� Energy efficiency: Internal communication within the BMS of EV
requires low-power communication to conserve energy and extend
the range of the vehicle [71]. For this reason, Bluetooth Low Energy
(BLE) stands out as a strong candidate. The low power consumption
of BLE makes it ideal for connecting sensors and actuators within
the BMS, enabling efficient data exchange without draining the
battery;

� Short range requirement: Internal communication typically involves
short-range connections within the vehicle [72]. The short-range
capabilities of BLE make it ideal for internal communication
within the BMS of EV. BLE can be used to connect temperature
sensors, voltage monitors, and current sensors, allowing for seam-
less communication between these components;

� Interoperability: Bluetooth technology is widely supported by mod-
ern devices, making BLE-enabled sensors and actuators readily
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available for integration within the BMS [73]. This interoperability
simplifies the development and deployment of the IoB system
within the EV;

� Safety and reliability: The utilization of BLE within IoB adheres to
strict security protocols. The data exchanged between battery
components is secured through encryption mechanisms, safe-
guarding it from unauthorized access and potential breaches.
Authentication protocols add an extra layer of protection by
verifying the identities of communicating devices, preventing
unauthorized entry into the system. The BLE in the IoB is used
solely for internal communication, specifically for the secure and
reliable exchange of battery-related information. This isolation
from external networks greatly reduces the risk of cyber threats
and unauthorized interference. By assuring the safety and reli-
ability of battery data, this approach aligns with the essential goal
of safeguarding the integrity and safety of the overall IoB
framework.

Based on these factors, BLE emerges as the most suitable communi-
cation protocol for internal communication within the vehicle. It enables
low-power, short-range connections, and is widely compatible with
various sensors and actuators commonly used in EVs.

2. External communication (vehicle-to-cloud)

External communication in the IoB system involves transmitting data
from the vehicle to a cloud-based analytics platform. This communica-
tion must support real-time data transmission, handle significant
amounts of charging and diagnostic data, and provide broad coverage for
fleet management scenarios. Moreover, robust security measures are
necessary to protect sensitive battery information during transmission.

� Data rate and real-time communication: LoRaWAN, with its improved
data rate capabilities compared to traditional LoRa, enables efficient
real-time data transmission from the EV to the cloud platform [74]. It
efficiently handles the data demands of real-time monitoring,
ensuring timely updates and responses;

� Charging and diagnostic data: During charging sessions and remote
diagnostics, the improved data rate of LoRaWAN allows for the effi-
cient transmission of large amounts of charging and diagnostic data
[75]. This ensures that crucial information about the state and per-
formance of the battery is seamlessly relayed to the cloud platform;

� Connectivity and coverage: Long-range communication capabilities of
LoRaWAN make it ideal for fleet management scenarios where ve-
hicles may be spread across large geographic areas [76]. Its broad
coverage ensures continuous connectivity to the cloud platform, even
in remote locations;

� Security: LoRaWAN is equipped with strong security features,
including encryption and authentication, to protect data during
transmission [77]. This ensures the integrity and confidentiality of
Table 2
A comparison of transmission protocols in IoT gateway.

Parameters LoRa Bluetooth LR-WPAN

Standard LoRaWAN R1.0 IEEE 802.15.1 IEEE 802.15.4
(ZigBee)

Energy consumption Very low Bluetooth: Medium;
BLE: Very low

Low

Frequency band 868/900 MHz 2.4 GHz 868/915 MHz,
2.4 GHz

Data rate 0.3–50 kb/s 1–24 Mb/s 40–250 kb/s

Transmission range <30 km 8–10 m 10–20 m
Cost High Low Low
Suitability High Very low Very low
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sensitive battery-related information, safeguarding against unautho-
rized access and data breaches.

Based on these factors, LoRaWAN presents itself as a highly suitable
communication protocol for external communication in the IoB system
for electric vehicles. By leveraging LoRaWAN for external communica-
tion, EV manufacturers and fleet operators can establish a robust and
efficient IoB system that enhances EV performance, optimizes battery
management, and facilitates seamless integration with cloud-based an-
alytics platforms for centralized monitoring and control.

Table 2 [78] summarizes the comparison of transmission protocols in
IoT gateway based on notable attributes, such as standard, energy con-
sumption, frequency band, data rate, transmission range, cost, and
suitability.

The data transmission function is more than just relaying data to the
cloud platform. It also plays an integral role in ensuring that the data is
transmitted reliably and efficiently. To do this, the IoT gateway uses a
variety of techniques, such as.

� Optimizing the data packet size to minimize the bandwidth
requirements;

� Scheduling the data transmission to avoid peak traffic times;
� Using error-correcting codes to ensure that the data is received
without errors.

By using these techniques, the IoT gateway can ensure that the data is
transmitted to the cloud platform reliably and efficiently, even in chal-
lenging conditions.

2.3.4. Data security
The IoT gateway plays a critical role in securing data during its

transmission between the wireless module and the cloud platform [79].
As cyber threats become more common and sophisticated, IoT gateways
are increasingly attractive targets for cybercriminals. Therefore, robust
security measures are essential to protect data from unauthorized access,
modification, or destruction. The IoT gateway employs a
multi-dimensional approach to data security. First, it uses encryption to
encrypt data into an unreadable format during transmission, making it
useless to potential hackers [80]. Second, authentication mechanisms
verify the identities of the sender and recipient, ensuring that data only
reaches its intended destination.

In addition to encryption and authentication, the IoT gateway also
incorporates firewalls and intrusion detection systems. Firewalls control
incoming and outgoing network traffic based on predetermined security
rules, acting as a barrier between a trusted and an untrusted network
[81]. Intrusion detection systems monitor network traffic for suspicious
activity and alert the system or administrator when potential security
threats are detected.

The sensitive nature of data collected and processed by the IoT
gateway in the context of EV makes data security even more critical. The
Mobile communication WiMAX WiFi

2G-GSM, CDMA 3G-UMTS,
CDMA2000 4G-LTE-A

IEEE 802.16 IEEE
802.11 a/c/b/d/g/n

Medium Medium High

865 MHz–2. GHz 2–66 GHz 5–60 GHz

200 kb/s – 1 Gb/s 1 Mb/s – 1 Gb/s (fixed)
50–100 Mb/s (mobile)

1 Mb/s – 6.75 Gb/s

Entire cellular area <50 km 20–100 m
Medium High High
High High Medium
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data collected from EV batteries can include sensitive information such as
battery health, charge cycles, temperature readings, and usage patterns.
If this data were to be accessed by unauthorized individuals, it could be
used to disrupt operations, control the vehicle remotely, or even cause
physical damage [82]. Therefore, it is essential to implement strong data
security measures to protect the confidentiality, integrity, and avail-
ability of this information.

2.4. Cloud platform

The cloud platform is a critical component of the IoB architecture for
EVs. It provides a centralized hub for storing, processing, and analyzing
battery data collected from various EVs [83]. This data is essential for
managing and optimizing EVs. The conceptual overview of the cloud
platform is illustrated in Fig. 4. It typically performs the following key
functions.

� Scalability and robustness for IoB: The dynamic and expanding nature
of IoB systems demands a scalable and robust storage solution. As the
number of connected devices and data points increases, the cloud
platform ensures seamless accommodation of the growing data vol-
umes [84]. Moreover, its robustness guarantees data availability even
during hardware outages or network disruptions [85]. For IoB in EVs,
where numerous vehicles continuously generate battery-related data,
the cloud platform's ability to scale and handle data efficiently is
essential for smooth operations;

� Data security and privacy: IoB systems deal with sensitive battery-
related information, such as battery health data, charging sched-
ules, and driving patterns. This information is valuable to hackers,
who could use it to steal personal information, track vehicles, or even
disable batteries. The cloud platform implements robust security
measures, including encryption techniques to protect data from un-
authorized access [86]. Additionally, data redundancy methods
safeguard against data loss, while access control policies control data
access and usage [87]. By addressing these security concerns, the
cloud platform ensures the confidentiality and integrity of battery
data, enabling user trust in IoB systems;

� Real-time data processing and analytics: The cloud platform's data pro-
cessing capabilities play a crucial role in extracting valuable insights
from battery data [88]. Real-time processing helps identify patterns
and anomalies, enabling timely detection of potential battery issues.
Predictive analytics, based on historical and real-time data, aids in
forecasting battery behavior and predicting maintenance needs [89].
These analyses are instrumental in optimizing battery management,
enhancing performance, and extending battery lifespan [90];

� Parallel computing for efficiency: With the massive amounts of data
generated by IoB systems, the cloud platform employs parallel
computing to handle complex computations efficiently [91]. Parallel
loT gateway

Cloud storage

Battery parameters

Vehicle parameters Vehicle controls

Battery controls

Proces

Cloud pla

Fig. 4. Conceptual overview
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computing divides tasks into smaller sub-problems, which are then
processed simultaneously by multiple computing resources [92]. In
the context of IoB in EVs, where the volume of battery data can be
substantial, parallel computing ensures quick and accurate analyses,
enabling effective decision-making and maintaining system respon-
siveness [93];

� Intuitive visualization interface: The cloud platform offers a user-
friendly visualization interface that presents battery data in easily
understandable formats, such as graphs, charts, and tables [94]. This
visualization simplifies complex data, making it easier for users to
identify trends and anomalies. For IoB in EVs, the visualization
interface empowers fleet managers and operators to gain quick in-
sights into battery performance. This information can be used to
detect potential issues, such as battery degradation, and optimize
fleet operations. For example, fleet managers can use the visualization
interface to identify EVs that are not performing as well as others and
take corrective action The visualization interface is a valuable tool for
fleet managers and operators. It helps them to make informed de-
cisions about the management and operation of their EV fleets [95].

In conclusion, the cloud platform is a critical component of the IoB
architecture for EVs. It is not a generic solution, but a tailored and
indispensable component. The cloud platform's scalability, robustness,
security measures, real-time data processing, parallel computing capa-
bilities, and intuitive visualization interface all converge to create an IoB
system that optimizes battery management, enhances EV performance,
and facilitates informed decision-making for EV fleet operators.

3. Machine learning in IoB

Machine learning is a powerful tool that can be used to improve the
efficiency and effectiveness of Internet-of-Batteries (IoB) systems. By
analyzing data and learning from patterns, machine learning can help IoB
systems make more informed decisions about battery management,
charging, usage, and vehicle management. This can lead to improved
battery performance, increased range, and reduced costs for EV owners.
Machine learning approaches can be broadly classified into three main
categories: supervised learning, unsupervised learning, and reinforce-
ment learning. Fig. 5 demonstrates the functioning of machine learning
within the IoB system.
3.1. Supervised learning

Supervised learning approaches use labeled historical data to predict
specific battery parameters, such as state of charge (SoC), state of health
(SoH), and remaining useful life (RUL). For example, a supervised
learning model could be trained on data that includes the battery's
sing

tform Visualization

Analytical tools

State estimation

SoC

SoH

RUL

SoP

SoE

SoF

Fault diagnosis/prognosis

Capacity fade

Internal short circuit

Internal resistance

Overheating

Over/Under voltage

Self-discharge rate

of the cloud platform.



Data processing

Modelling

Model output

Real-time
data
(I,V,T )

Historical
data
(I,V,T )

Data

generation

Data collection

Data cleaning

Data processing

Feature

engineering

Domain

knowledge

Machine

learning

Classification

Regression
Supervised

Machine

learning Unsupervised

Reinforcement

Model

selection

Model
training

Validation

Fine-tuning

No

Yes

Battery states

Diagnosis information

Thermal management

Energy management

Optimization information

⋯

Fig. 5. Illustration of machine learning in an IoB system.

H. Li et al. Green Energy and Intelligent Transportation 2 (2023) 100128
voltage, current, temperature, and other parameters to predict the bat-
tery's SoC. This information could then be used to optimize the battery's
charging and discharging cycles, leading to improved battery perfor-
mance and longevity.

Various supervised learning algorithms, such as support vector ma-
chines (SVMs) and neural networks, have been utilized to accurately
predict the SoC of batteries. For instance, Song et al. [96] employed an
SVM-based approach to estimate the SoC of lithium-ion (Li-ion) batteries
in electric vehicles, achieving high prediction accuracy with low
computational overhead. The estimation of battery SoH is crucial for
predicting battery degradation and remaining useful life. Researchers
have explored different supervised learning models, including decision
trees and random forests, to accurately estimate battery SoH. Yang et al.
[97] utilized a convolutional neural network (CNN) and random
forest-based approach to predict the SoH of lithium-ion batteries,
demonstrating excellent performance in accurately assessing battery
health. Predicting the RUL of batteries is essential for proactive mainte-
nance and ensuring optimal battery performance. Supervised learning
algorithms like recurrent neural networks (RNNs) and long short-term
memory (LSTM) networks have been employed for RUL prediction.
Zhang et al. [98] presented an LSTM-based model to forecast the RUL of
Li-ion batteries, resulting in precise predictions and effective battery
management.

Supervised learning approaches have also been applied for battery
fault detection. Through labeled data, algorithms like logistic regression,
SVMs, and neural networks can identify anomalous behavior in batteries,
indicating potential faults or failures. Zou et al. [99] proposed a logistic
regression-based model for the diagnosis of accelerating aging faults in
Li-ion batteries, enabling timely maintenance actions. Yao et al. [100]
proposed a novel method of fault detection of Li-ion batteries based on a
wavelet-neural network for guaranteeing the safety and reliability of EVs.
Hong et al. [101] proposed a deep learning method using LSTM to
perform accurate multi-forward-step voltage prediction for battery sys-
tems and assess battery safety by predicting voltage to determine the
occurrence of battery faults.

3.2. Unsupervised learning

Unsupervised learning techniques are used to identify patterns and
anomalies in battery data without labeled training data. This can be used
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to group batteries together based on their behavior and characteristics.
For example, an unsupervised learning algorithm could be used to
identify batteries that are experiencing similar degradation patterns. This
information could then be used to target these batteries for preventive
maintenance, leading to increased battery life. Some of the most common
unsupervised learning algorithms used for BMS applications include
clustering, principal component analysis (PCA), and anomaly detection.

Clustering algorithms are extensively used in BMS applications to
group batteries based on their behavior and characteristics. For instance,
Li et al. [102] conducted a study focusing on enhancing the electro-
chemical performance of lithium-ion battery modules utilized in new
energy vehicles. The research addressed the issue of manufacturing de-
fects leading to performance variations among battery cells used in series
or parallel configuration. To tackle this problem, the authors utilized
experimental and numerical methods to cluster battery cells with similar
performance characteristics, aiming to create battery modules with
improved performance. They employed two clustering algorithms,
namely k-means and support vector clustering (SVC) to group battery
cells into modules, each composed of 12 cells. Subsequently, experi-
mental verification was carried out to compare the performance of
different battery modules. The findings of this study demonstrate the
potential benefits of clustering battery cells with similar performance
characteristics, which can lead to improved electrochemical performance
in energy-storage systems for new energy vehicles.

PCA is another commonly employed unsupervised learning technique
in battery analysis. It reduces the dimensionality of the battery dataset
while retaining essential features. Schmid et al. [103] proposed a new
method for fault diagnosis in BMS of EVs. Their method, called Cross-Cell
Monitoring (CCM), compares the voltages of individual cells in the bat-
tery pack to identify any abnormalities. If a cell voltage is significantly
different from the others, it is likely to be faulty. CCM uses Principal
Component Analysis (PCA) to identify the most important features in the
data, which helps to improve the accuracy of the fault detection process.
The CCM method was applied to a large battery pack with 432 cells, and
it was able to successfully detect and localize faults. Cross-validation
showed that CCM was able to learn from the data and generalize to
new data. Guo et al. [104] proposed a method for predicting the degra-
dation and cycle to failure of Li-ion batteries using functional PCA. Their
approach involves breaking down the observed degradation data into
mean and variance-covariance functions. By analyzing these functions,
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they were able to accurately predict battery capacity and estimate the
cycle to failure distribution. This method contributes to a better under-
standing of battery degradation and can help improve the reliability and
performance of Li-ion batteries.

Anomaly detection algorithms have proven valuable in identifying
abnormal battery behavior and potential faults. Jiang et al. [105] pro-
posed a fault diagnosis method for Li-ion batteries using the isolated
forest algorithm. Their approach involves signal processing and decom-
position of voltage data into static and dynamic components. These
components are used to extract characteristic parameters for anomaly
detection, enabling the identification of anomalous cells. The method
was tested with voltage data from four faulty vehicles, showing good
advance detection ability for both progressive and sudden failures. This
confirms its effectiveness in Li-ion battery fault diagnosis and its poten-
tial for real-time application in real vehicles.

Incorporating deep learning in unsupervised techniques has also
garnered attention. Xu et al. [106] developed a novel physics-informed
machine learning prognostic model called PIDDA for accurate SoH pre-
diction in Li-ion batteries. The model comprises an autoencoder,
physics-informed model training, and physics-based prediction adjust-
ment. They benchmarked PIDDA against alternative data-driven SOH
prediction models using the NASA battery prognostic dataset. The results
demonstrated that PIDDA outperforms other models in terms of predic-
tion accuracy, requires less prior data, and produces more informative
and interpretable predictions. The ablation study revealed that the
physics equations in the model training contributed significantly to ac-
curacy improvement.

Furthermore, researchers have focused on integrating unsupervised
learning with real-time data streams from IoT-enabled batteries. Sun
et al. [107] introduced a novel iterative clustering method for classifying
time series of EV charging rates based on their “tail features.” Their
approach involves extracting charging tails from diverse time series with
varying lengths, missing data, and distortions caused by scheduling al-
gorithms and measurement noise. These charging tails are then clustered
into a small number of types, and their representatives are used to
improve tail extraction. The iterative process continues until conver-
gence is achieved. The method was applied to ACN-Data, a fine-grained
EV charging dataset, showcasing its effectiveness and potential applica-
tions in EV charging rate classification.

3.3. Reinforcement learning

Reinforcement learning approaches develop adaptive and dynamic
battery management strategies. The models learn from feedback pro-
vided by the environment to optimize charging and discharging decisions
over time. For example, a reinforcement learning model could be used to
learn how to charge a battery in a way that maximizes its range while
minimizing the risk of damage.

Reinforcement learning models are trained on a trial-and-error basis.
They are given a reward signal for making decisions that lead to desired
outcomes, and they are penalized for making decisions that lead to un-
desired outcomes. Over time, the models learn to make decisions that
maximize the reward signal. Some of the most common unsupervised
learning algorithms used for BMS applications include Q-Learning, Deep
Q-Networks (DQN), Proximal Policy Optimization (PPO). Deep Deter-
ministic Policy Gradient (DDPG), Soft Actor-Critic (SAC).

Q-Learning is a widely used reinforcement learning algorithm that
involves estimating the value of an action in a given state. The algorithm
updates its Q-value based on the rewards received for taking actions and
uses this updated Q-value to make decisions about which action to take in
the future [108]. Ahmadian et al. [109] conducted a study on energy
management strategies for series-parallel hybrid vehicles. They proposed
a novel approach using a Q-Learning algorithm, to optimize fuel con-
sumption and battery life cycle. The method did not require prior
knowledge of the cycle or detailed vehicle modeling. The simulations
showed promising results, with a 1.25% reduction in fuel consumption
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and a 65% increase in battery life compared to the rule-based method.
The approach also demonstrated good adaptability to different driving
cycles, maintaining its performance and outperforming the rule-based
controller in various scenarios.

DQN is an extension of Q-Learning. DQN uses a deep neural network
to approximate the Q-values, which are the expected rewards for taking
an action in a given state [110]. This allows DQN to learn more complex
policies than Q-Learning, and is, therefore, suitable for battery manage-
ment in real-world environments. Li et al. [111] presented an energy
management strategy based on deep reinforcement learning for a hybrid
battery system in EVs. Their strategy focused on minimizing energy loss
and enhancing the electrical and thermal safety of the entire system by
leveraging the electrical and thermal characteristics of the battery cells.
The researchers introduced a novel reward term to optimize the
high-power pack's operating range without imposing strict SoC con-
straints. To prevent overfitting, they trained the deep Q-learning model
using various randomly combined load profiles. The results of training
and validation demonstrated the effectiveness and reliability of their
proposed strategy in reducing losses and enhancing safety. Comparing
their energy management strategy to other reinforcement learning-based
methods, the proposed method demonstrated superiority in terms of
computation time and energy loss reduction, thus showcasing its po-
tential for future energy management systems.

PPO is a policy gradient method that updates the policy parameters to
maximize the expected cumulative reward. It is known for its stability
and efficient use of samples, making it suitable for battery management
tasks with continuous action spaces [112]. Zhang et al. [113] introduced
a PPO-based multi-objective energy management strategy (EMS) for
plug-in hybrid electric buses considering battery thermal characteristics.
The goal was to enhance vehicle energy-saving performance while
maintaining rational battery SoC and temperature levels. By intelligently
adjusting weights during training, the proposed strategy achieved an
optimal tradeoff between the conflicting objectives. Simulation results
highlighted the effectiveness of the proposed strategies in battery ther-
mal management, achieving minimum energy consumption, faster
computing speed, and lower battery temperature compared to other
reinforcement learning-based EMSs. In comparison to dynamic pro-
gramming (DP) as the benchmark, the PPO-based EMSs demonstrated
similar fuel economy and exceptional computation efficiency. The
adaptability and robustness of the proposed methods were confirmed in
various driving cycles including real driving conditions.

DDPG is an actor-critic algorithm that combines policy gradient and Q-
learning methods. It uses deep neural networks to approximate both the
policy and Q-values, making it suitable for battery management tasks with
continuous action spaces [114]. Li et al. [115] proposed a cloud-based
multi-objective energy management strategy for a hybrid battery system
in battery electric vehicles, comprising a high-energy and a high-power
battery pack. The strategy utilized DDPG to enhance electrical and ther-
mal safety while minimizing energy loss and aging costs. Electro-thermal
dynamics and aging behavior of batteries were simulated using models
developed based on characterization and aging tests for both high-energy
and high-power cells. Real-world vehicle data collected from diverse road
conditions were employed for cloud-based training. Results demonstrated
improved electrical and thermal safety, along with reduced energy loss and
aging cost for the entire system with the proposed strategy based on
real-world driving data. Processor-in-the-loop tests further validated the
higher convergence rate of the proposed strategy and superior perfor-
mance in minimizing both energy loss and aging cost compared to
state-of-the-art learning-based strategies.

SAC is an off-policy reinforcement learning algorithm that combines
maximum entropy reinforcement learning with soft value functions. SAC
maximizes the expected cumulative reward while encouraging explora-
tion and maintaining a distributional representation of the policy [116].
In a recent study, Wu et al. [117] proposed a novel knowledge-based,
multiphysics-constrained energy management strategy for hybrid elec-
tric buses. The strategy focuses on the thermal safety and degradation of



H. Li et al. Green Energy and Intelligent Transportation 2 (2023) 100128
onboard Li-ion battery systems. The strategy introduces a multicon-
strained least costly formulation that incorporates overtemperature
penalty and multistress-driven degradation cost of Li-ion batteries,
enhancing existing indicators. To achieve an intelligent balance between
conflicting objectives and optimize power allocation, a soft actor-critic
deep reinforcement learning strategy is utilized, resulting in acceler-
ated iterative convergence. The proposed strategy was tested under
various road missions, demonstrating its superiority over existing
methods in terms of convergence effort, LIB thermal safety, and overall
driving cost reduction.

The studies reviewed in this section provide substantial evidence for
the effectiveness and benefits of machine learning approaches in the
domain of IoB. These approaches have proven instrumental in enhancing
various aspects of battery performance, such as the accurate prediction of
critical battery parameters like SoC, SoH, and RUL. Through supervised
learning techniques, BMSs can make informed decisions based on his-
torical data, leading to optimized charging and discharging cycles that
promote improved battery longevity. Additionally, the implementation of
unsupervised learning algorithms has facilitated the identification of
meaningful patterns and anomalies within battery datasets, enabling the
grouping of batteries based on their behavior and characteristics. This
clustering of batteries with similar degradation patterns has opened up
possibilities for targeted preventive maintenance, effectively extending
the battery life and reducing operating costs. Moreover, reinforcement
learning models have demonstrated their ability to dynamically adapt
battery management strategies based on real-time feedback from the
environment, ultimately maximizing energy efficiency and performance.
These machine learning-driven advancements have significantly contrib-
uted to improving battery performance, extending battery life, and overall
enhancing the efficiency and effectiveness of IoB systems in various
transportation applications, including EVs and hybrid electric buses.

4. Opportunities presented by IoB

The Internet-of-Batteries (IoB) present numerous promising oppor-
tunities, particularly for the electric vehicles (EV) industry. This digital
technology promise benefits such as ongoing battery health checks,
improved energy management, state estimation, prediction, and fault
diagnosis, significantly transforming the landscape of EV technology
[118,119].

The potential benefits of IoB begin with the possibility of continuous
health checks of the battery. Traditionally, battery health checks have
been conducted at specific intervals, often leading to gaps in under-
standing the real-time health of the battery [120]. However, the advent
of IoB and cloud-based BMS allows real-time health monitoring [121].
This development can extend the life of EV batteries, improve their
performance, and prevent unexpected failures [122]. In addition to direct
benefits to battery health, it can also contribute to improved energy
management in EVs. The analysis and prediction capabilities of these
digital systems allow for better power allocation, charging strategies, and
energy recovery [123,124].

Additionally, IoB provides opportunities for advanced state estima-
tion and prediction. As seen in the work by Li et al. [125], these tech-
nologies improve the ability to monitor the current battery state and
prediction of future states. This information can be used to optimize
charging and discharging cycles, which can extend battery life [126]. The
capability to promptly diagnose faults is another key advantage of IoB.
Real-time monitoring and advanced analytics enable fault detection in a
timely manner, leading to quick corrective measures that reduce down-
time and repair costs [127,128].

The transformative potential of IoB is substantial and is not just
limited to the battery of EVs, but to the vehicle itself. It can significantly
enhance the management of EVs, leading to improved vehicle range,
control, and management [129]. For example, IoB can be used to esti-
mate the state of the EV, such as its range, and driving conditions. This
information can be used to optimize and improve the performance of
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EVs. Additionally, IoB can be used to detect faults in the EV, such as a
failing brake or low tire pressure [130]. This information can be used to
alert the driver to potential problems and prevent accidents. IoB can also
be used to control and manage the EV [131]. This includes tasks such as
setting the cruise control, adjusting the climate control, and scheduling
maintenance. By collecting and analyzing data from the EV, IoB can be
used to improve the performance and reliability of EV.

To fully understand the potential opportunities presented by IoB, it is
helpful to consider them at two distinct yet interrelated levels: battery-
level and vehicle-level opportunities.

4.1. Battery level opportunities

EV battery management has witnessed a significant transformation
over recent years. This transformation has been driven by the integration
of various technologies, such as wireless communication, IoT, and cloud
computing [132]. The integration of these cutting-edge technologies into
EV BMS has opened up a wide range of opportunities in several key areas.
Firstly, battery state estimation is now more precise than ever, allowing
us to accurately measure the state of charge (SoC) and state of health
(SoH) of batteries [133,134]. This is essential for ensuring optimal bat-
tery operation, as it allows us to track the performance of the battery and
take steps to prevent battery degradation. Secondly, these advancements
have also led to new prospects in the area of battery health prognosis and
prediction. By using sophisticated algorithms and real-time data analysis,
the remaining useful life (RUL) or the end of life (EOL) of a battery can be
accurately predicted [135]. This information can be used to improve
planning andmaintenance strategies, ensuring that batteries are replaced
or repaired at the optimal time. Thirdly, fault diagnosis and prognosis
have also benefited from these advancements. By detecting potential
faults early and accurately, catastrophic battery failures can be pre-
vented, increasing the reliability and safety of EVs [136]. Finally, these
technologies have also led to innovations in advanced battery manage-
ment. Reconfigurable smart BMS can adapt to varying operating condi-
tions, improving both battery performance and lifespan [137]. In
summary, the convergence of wireless, IoT, and cloud technologies in
BMS has enabled new opportunities for ensuring the efficient and
effective operation of EV batteries.

An extensive body of literature supports these promising opportu-
nities. Wang et al. [138] provided a comprehensive overview of battery
modeling and state estimation methods for BMS. They discussed a variety
of battery models, including physics-based electrochemical models, in-
tegral and fractional-order equivalent circuit models, and data-driven
models. They also described several state estimation approaches that
consider multiple factors such as remaining capacity, energy estimation,
and power capability prediction. The review highlighted the emerging
trend of cloud-based, data-driven BMS that use big data for advanced
battery state estimation. This approach has the potential to significantly
improve the accuracy of SoC and SoH estimation. Zhao et al. [139]
explored the complexities and limitations of estimating the SoC, SoH, and
RUL of Li-ion batteries. They highlighted challenges such as computa-
tional intensity, poor generalizability, and difficulties with parameter
setting that can lead to model overfitting. Additionally, current methods
are largely designed for single batteries, not battery packs, further
limiting their practical applicability. In this context, the advent of
cloud-based BMS presents significant opportunities. The computational
power of cloud technology could help address the complexities of state
estimation and RUL prediction, particularly for large-scale battery sys-
tems. Cloud-based systems could facilitate the development of more so-
phisticated models that perform at pack-level, cluster-level, and
system-level, improving computational efficiency and enhancing pre-
diction accuracy. In conclusion, their work underlines the potential for
cloud-based BMS to revolutionize Li-ion battery state estimation and RUL
prediction, particularly in renewable energy storage and EV sectors.

Ren et al. [140] explored the use of ML in estimating the SOC and
SOH for lithium-ion batteries in electric vehicles. They reviewed four ML
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algorithms: shallow neural network, deep learning, support vector ma-
chine, and Gaussian process regression, examining their application in
SOC and SOH estimation. With regards to cloud-based BMS, their find-
ings indicate a potential for improved efficiency and accuracy. Cloud
computing can manage the computational needs of these ML algorithms
and address challenges related to data quality and model selection.
Moreover, the authors suggested the potential for online retraining and
full life cycle prediction in a cloud environment. In conclusion, they
highlighted the emerging role of cloud-based BMS in enhancing SOC and
SOH estimation through machine learning, promising better perfor-
mance and safety of EV batteries. Yao et al. [141] investigated the SoH
estimation and prediction for Li-ion batteries. They highlighted the safety
risks resulting from inaccurate SOH estimation and advocated for better
estimation methods. They classified these methods into three categories:
model-based, data-driven, and fusion technology methods, each with its
own strengths and weaknesses. In the context of cloud-based BMS, the
paper presents promising prospects. By leveraging cloud computing ca-
pabilities, data-driven methods can overcome the challenges of heavy
computation and local extreme values. Additionally, the use of
multi-algorithm coupling can improve estimation accuracy and system
robustness, which is consistent with the inherent scalability and versa-
tility of cloud computing. Zhou et al. [142] conducted a study on Li-ion
battery state estimation. They reviewed the state-of-the-art, challenges,
and future prospects of battery state estimation, providing a thorough
analysis of its technical difficulties. The paper discusses four key battery
states (SoC, SoH, SoE, and SoP) and their joint estimation methods,
proposing feasible frameworks for each. The authors also predicted a
future in which intelligent sensing, cloud computing, big data, and
intelligent algorithms will be combined to improve state estimation. This
supports the idea that cloud-based BMS can significantly contribute to
the development of a smarter and more efficient BMS.

Che et al. [143] provided a comprehensive analysis of Li-ion battery
aging mechanisms and health prognostics. They discussed the complex
relationships between aging mechanisms, modes, factors, and types.
They also reviewed state-of-the-art health prognostic methods, including
short-term SoH estimation, long-term end-of-life prediction, and degra-
dation trajectory prediction. The paper highlighted the unique advan-
tages and challenges of each method, and explored the specific
characteristics of each prognostic task. The authors emphasized the use
of advanced data-driven methods and coupled physics models in
cloud-based BMS. Cloud platforms can provide the substantial compu-
tational power needed to run complex prognostic algorithms, which can
lead to more reliable battery health predictions. The authors also
acknowledged that the robustness and generalization of these methods
are critical metrics and that cloud-based systems are well-positioned to
improve these aspects by leveraging large datasets frommultiple sources.
The discussion of future trends and research prospects highlighted the
potential for novel methodologies in battery health prognostics. Xiong
et al. [144] discussed the complex aging mechanisms of Li-ion batteries
in their paper. They take into account factors such as battery type,
electrochemical reactions, and operating conditions. They reviewed
three commonly used diagnostic methods for battery aging:
disassembly-based post-mortem analysis, curve-based analysis, and
model-based analysis. This paper has important implications for
cloud-based BMS. It acknowledged the potential of online diagnostics
enabled by cloud computing, machine learning, and digital twins.
However, the authors also highlighted challenges, such as handling
multi-source, fragmented, and asynchronous sparse data, and accom-
modating batteries with different application scenarios and sizes. The
research pointed to a future where intelligent BMS, underpinned by
advanced diagnostic methods and technologies, can offer real-time
health prognosis and predictions for batteries. This could potentially
extend battery lifespan and performance. Yang et al. [145] investigated
fault diagnosis in battery storage systems, specifically Li-ion batteries.
They reviewed various modeling approaches used for battery fault
diagnosis, from microscopic to macroscopic scales. The authors
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acknowledged several challenges in model-based battery fault diagnosis,
such as the estimation of internal parameters during battery aging, data
management, and the development of hybrid models that integrate
physics and data-driven methods. However, they proposed that these
challenges could be addressed with the advent of cloud control and
intelligent battery networking. This study emphasized the future role of
cloud-based BMS in enhancing diagnostic performance. The authors
suggested that merging physical models with machine learning ap-
proaches can provide fast and accurate simulations. The cloud BMS is
presented as a key opportunity in the large-scale application of Li-ion
batteries. It has the potential to improve safety and full life cycle man-
agement through data analysis, artificial intelligence, and synchronized
data transfer.

A study by Zhang et al. [146] provided a comprehensive overview of
Li-ion battery fault diagnosis methods. They categorized the methods
into four categories: statistical, model-based, signal processing-based,
and knowledge and data-driven methods. Each approach has its own
strengths and weaknesses, and there are still many practical challenges to
overcome, such as the high computational power required for parameter
extraction and the lack of understanding of the different fault causes and
their interrelationships. The paper highlighted the potential of cloud and
integrated end-edge-cloud technology to address these challenges. These
technologies can enable efficient real-time monitoring and condition
assessment of batteries by leveraging the IoT for computation and cloud
servers for data mining and complex modeling. Despite some challenges,
the paper underscored the significant potential of cloud-based BMS for
advancing battery fault diagnosis and prognosis. Hu et al. [147] studied
the evolution of BMS in automotive applications, focusing on the chal-
lenges and opportunities presented by cloud-based BMS. They identified
three main challenges in current BMS: limited knowledge of battery in-
ternal states and parameters, poor adaptability to extreme conditions,
and lack of efficient predictive maintenance. The authors discussed po-
tential solutions for these challenges, introducing the concept of
multi-physics coupled battery modeling to improve BMS algorithms.
They also highlighted how electrothermal modeling, advanced optimi-
zation routines, and predictive control with vehicular autonomy and
connectivity can lead to innovative designs and improved thermal
management. They suggested integrating battery models, machine
learning, and cloud computing to improve battery life prediction and
fault diagnosis. They concluded by emphasizing the crucial role of
cloud-based systems in handling the computation and information re-
quirements of the proposed solutions. They suggested that with the
integration of such advanced BMS technologies, future EVs are expected
to operate safer and with more accurate and reliable modeling, diagnosis,
and control of battery systems. Panwar et al. [148] performed a detailed
review of BMS with a specific focus on advancements from 2006 to 2020.
The authors discussed critical BMS functions such as cell balancing,
thermal management, and protection against overvoltage and over-
current, as well as estimating battery SoC and SoH. They identified sig-
nificant gaps in current methodologies that suggested areas for future
research. A key aspect of the review is the potential of emerging intelli-
gent technologies for enhancing BMS. Among these, the authors high-
lighted the importance of cloud-based, self-reconfigurable batteries.
These batteries can alter their configuration in response to changing
conditions, enhancing efficiency, longevity, and overall performance.

Wei et al. [149] discussed the advancement of smart battery systems,
which are transforming traditional Li-ion batteries into more intelligent
and flexible BMS. The authors explored the role of embedded sensing
techniques and internal temperature measurements, which are essential
for the smart operation of batteries. The paper identifies potential chal-
lenges with system-level integration, such as changes in pack configura-
tions, sensor layouts, and data transmission needs. However, these
challenges also present opportunities for leveraging cloud-based BMS so-
lutions to manage the computational and data-intensive requirements of
these advanced, reconfigurable battery systems. Komsiyska et al. [150]
presented an extensive review on intelligent battery systems, emphasizing
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their transformative potential for the performance and longevity of electric
vehicles. The key highlight of the review is the concept of reconfigurable
battery systems, which can control the current of each cell individually,
thereby optimizing battery operations. Despite current limitations, the
paper stresses on the opportunities provided by cloud-based BMS in
tackling the complexities of reconfigurable battery systems. Implementing
such a concept requires advanced BMS and a sophisticated communication
architecture, wherein cloud-based solutions could prove immensely
beneficial. Therefore, the paper sets an optimistic stage for cloud-based
BMS in managing the future demands of advanced battery management.
Dai et al. [151] explored a multi-layered architecture for advanced BMS in
Li-ion batteries. They highlighted the future role of data and artificial in-
telligence in battery management, particularly for EVs and renewable
energy systems. The cloud-based and IoT-centric aspects of BMS can be
inferred as key enablers for next-generation battery management tech-
nologies. Their insights into reconfigurable battery systems underscore the
potential of IoT and cloud technologies in enhancing safety, longevity, and
efficiency through data-driven decision-making and remote reconfigura-
tion capabilities. He et al. [152] presented the three core components of a
proposed technology system architecture for EVs, namely, the battery EV
platform, charging/swapping station, and real-time operation monitoring
platform. They highlighted the importance of cloud-based BMS for
Table 3
Summary of literature on battery-level opportunities presented by cloud, IoT, and wi

Paper Year Main discussion

Wang et al. [138] 2020 Comprehensive overview of battery models and
methods for BMS, discussing the emerging trend
data-driven BMS.

Zhao et al. [139] 2023 Examination of complexities and limitations in e
SoH, and RUL of Li-ion batteries, suggesting the
cloud-based BMS to address these complexities.

Ren et al. [140] 2023 Investigation of the use of machine learning in e
and SoH for Li-ion batteries in EVs with potentia
efficiency and accuracy with cloud-based BMS.

Yao et al. [141] 2021 Classification of SoH estimation methods and ex
potential advantages of cloud-based BMS in imp
estimation accuracy and system robustness.

Zhou et al. [142] 2023 Analysis of challenges and future prospects of ba
estimation. Proposes frameworks for estimation
battery states and envisions a future with intellig
cloud computing, and data-driven BMS.

Che et al. [143] 2023 Review of Li-ion battery aging mechanisms and h
methods with an emphasis on data-driven metho
physics models in cloud-based BMS.

Xiong et al. [144] 2020 Review of the complex aging mechanisms of Li-i
exploring the potential of online diagnostics ena
computing.

Yang et al. [145] 2022 Overview of fault diagnosis in Li-ion batteries, n
potential of cloud-based BMS to address challeng
based battery fault diagnosis.

Zhang et al. [146] 2023 Review of Li-ion battery fault diagnosis methods
potential of cloud-based BMS in managing comp
data needs.

Hu et al. [147] 2022 Examination of the current state of research on b
management systems, and the potential impact o
BMS on improving the efficiency and lifespan of

Panwar et al. [148] 2022 Review of recent advancements in the methods fo
internal temperature of batteries, discussing the
cloud-based BMS in improving accuracy and effi

Wei et al. [149] 2023 Overview of the emerging trend of intelligent BM
the potential of cloud-based BMS in addressing th
traditional BMS.

Komsiyska et al. [150] 2021 Comprehensive review of methods for estimatin
remaining useful life (RUL) of Li-ion batteries, id
potential for cloud-based BMS in addressing the
traditional methods.

Dai et al. [151] 2023 Review of the application of data analytics in ba
estimation, exploring the potential of cloud-base
overcoming limitations of traditional methods.

He et al. [152] 2022 Examination of the potential impact of artificial
battery management systems, specifically explor
opportunities provided by cloud-based BMS.
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operational safety and the integration of intelligent and internet technol-
ogies. The authors emphasized the need for improved safety monitoring
through a terminal-network-cloud architecture. They argued that cloud
technologies could play a crucial role in collecting and managing real-time
data to enhance safety. The study also highlighted the evolution of EVs
towards software-defined vehicles and vehicle-cloud collaborative control.
This suggests that cloud-based BMS will be essential for managing future
battery systems and enhancing their operational performance.

As summarized in Table 3, the existing body of literature underscores
the potential of utilizing IoT and cloud-based BMS for Li-ion batteries. It
can elevate computational efficiency, enhance the accuracy of state
estimation and health prognostics, and offer more robust solutions by
utilizing big data analytics and machine learning algorithms.

4.2. Vehicle level opportunities

The integration of wireless communication, IoT, and cloud computing
in EV management systems has also brought significant opportunities at
the vehicle level [153]. These technologies can be used to improve state
estimation, fault detection and diagnostics, vehicle control and man-
agement, and fleet management. By collecting real-time data from sen-
sors throughout the vehicle, vehicles can more accurately estimate their
reless technologies.
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range and remaining battery life [154]. This can help drivers avoid range
anxiety and plan their trips more effectively. Sensors can detect problems
with the powertrain, thermal management system, and other compo-
nents of vehicles. This data can be sent to the cloud for analysis, which
can help to identify and fix problems before they cause a breakdown
[155]. Advanced driver-assistance systems (ADAS) systems can provide
real-time guidance on how to drive more efficiently, which can help to
improve performance and reduce maintenance costs [156]. Cloud-based
management systems can also be used to update software and firmware
over-the-air for vehicles. Cloud-based systems can track and manage EV
fleets in real time [157]. This can help fleet operators to improve effi-
ciency, reduce costs, and make better decisions about fleet deployment.

Zhang et al. [158] explored the potential of cloud computing in
self-driving vehicles. They discussed the progress that had been made in
achieving Level-4 automation, as well as the challenges that still needed
to be addressed in order to reach Level-5 full automation. The authors
highlighted the role of vehicle teleoperation in handling complex situ-
ations that went beyond the programmed abilities of self-driving cars.
They proposed a future where automated driving intelligence could
have been offloaded from vehicles to the cloud. This shift, which would
have been facilitated by 5G and AI, could have led to cost reductions and
simplified on-vehicle systems. Zhang et al. [159] conducted a study on
the potential of the Internet of Vehicles (IoV) to support a range of new
applications. They argued that the increasing sophistication of vehicles
and the massive amount of data they generate would require new ap-
proaches to data processing and management. One potential solution is
the edge information system (EIS), which deploys storage and
computing resources at the wireless network edge. This can provide
low-latency services and localized data acquisition, aggregation, and
processing. The authors argued that EIS could play a key role in vehicle
management by providing real-time insights and reducing response
times. They discussed key design issues, methodologies, hardware
platforms, and use cases for intelligent vehicles, including edge-assisted
perception, mapping, and localization. Chu et al. [160] investigated the
potential of the cloud control system (CCS) for intelligent and connected
vehicles (ICV). They proposed the CCS as a promising solution to
overcome the data acquisition limitations of autonomous vehicles and
improve operational efficiency, safety, and traffic flow optimization.
They argued that a multi-stage cloud system, consisting of center and
edge clouds and individual vehicles, could form the foundation of this
structure. They also suggested that the CCS could be instrumental in
managing vehicular traffic effectively and highlighted the use of
cyber-physical system design methodology in its development. How-
ever, they acknowledged that there are challenges to the widespread
adoption of CCS, such as data ownership issues, the need for
national-level planning, and standardization. They suggested that
research should focus on top-layer design development, establishing
base platforms for CCS, and enhancing cooperation between vehicle,
road, and cloud systems for holistic vehicle management. Ji et al. [161]
reviewed the IoV and its potential in the automotive industry. They
discussed the evolution of Vehicular Ad-hoc Networks (VANETs) and
their role in the 5G era, as well as their impact on intelligent trans-
portation systems. The paper emphasized cloud-based vehicle man-
agement and vehicle fault detection through service applications. They
highlighted cloud-based maintenance systems that used IoV to diagnose
vehicle problems and propose solutions, which could enhance driver
and passenger experiences. The study also introduced safety applica-
tions that utilized vehicle-to-vehicle and vehicle-to-infrastructure
communications to increase traffic safety and prevent accidents. The
research provided insights into the potential of integrating IoV with
cloud-based vehicle management for improved vehicle fault detection.

Abbas et al. [162] explored the use of IoT and cloud-based applications
to reduce traffic accidents caused by driver fatigue. They focused on the
development of low-cost, computerized driver fatigue detection systems
(DFDs) that used multi-sensors and mobile and cloud-based computing
architectures. The authors compared three IoT-based architectures for
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DFDs: multi-sensor, smartphone-based, and cloud-based. They evaluated
the challenges of using machine learning techniques, especially deep
learning (DL) models, to predict driver hypervigilance across these ar-
chitectures. The authors found that multi-access edge computing (MEC)
and 5G networks could improve the response time of DFD systems, which
is essential for real-time fatigue detection. They identified a research gap
in implementing DFD systems on MEC and 5G technologies using multi-
modal features and DL architecture. This paper is significant for
cloud-based vehicle management, vehicle fault detection, and driving
assistance. It explored how these architectures can be used to provide
advanced solutions for safer driving environments. The paper also
demonstrated the potential of using cutting-edge technologies to aid in
predictive, real-time fatigue detection, which can improve vehicle man-
agement and driver safety. In addition to the insights provided by Abbas
et al., the IoB can play a significant role in improving DFDs. IoB can
optimize power management within these systems by providing reliable
and continuous power supply to the various components of the DFD sys-
tem, ensuring uninterrupted operation. This ensures that the fatigue
detection sensors and algorithms have sufficient power to function
effectively. Furthermore, IoB can facilitate the integration of data from
fatigue detection sensors into broader connected ecosystems. By
leveraging IoB, the collected data can be transmitted, stored, and analyzed
within a networked framework. This integration allows for comprehen-
sive insights into driver fatigue patterns, contributing to the development
of more effective fatigue detection algorithms and safety enhancements.
IoB can also enhance the connectivity and communication capabilities of
DFDs. By leveraging wireless or cellular networks, DFDs can transmit
real-time data to centralized servers or cloud-based platforms. This en-
ables remote monitoring and analysis, facilitating prompt interventions or
alerts when driver fatigue is detected. Moreover, IoB enables communi-
cation between DFDs and other vehicle systems, such as ADAS, enabling
coordinated responses to mitigate fatigue-related risks. Lastly, data secu-
rity and privacy are essential considerations within DFDs, and IoB can
address these concerns. With increased connectivity and data exchange,
robust security measures are necessary to protect the collected data from
unauthorized access or tampering. By integrating encryption protocols,
access controls, and authentication mechanisms into the IoB framework,
the security and privacy of the driver fatigue-related data can be ensured.

Mei et al. [163] studied the importance of accurate remaining driving
range (RDR) prediction in EVs to mitigate range anxiety. They identified
four key challenges to RDR prediction: battery state estimation, driving
behavior classification, driving condition prediction, and RDR calcula-
tion method. To address these challenges, they proposed a novel RDR
prediction method based on vehicle-cloud collaboration. They presented
a novel driving range prediction method based on vehicle-cloud collab-
oration, leveraging cloud computing and machine learning to address the
identified challenges and highlighting the critical role of Li-ion batteries
in EVs. The study contributed valuable insights into cloud-based vehicle
management, fault detection, driving assistance, and vehicle range pre-
diction. It proposed vehicle-cloud collaboration as a promising area for
future research. Devi et al. [164] studied the challenges and opportu-
nities in the field of intelligent transportation systems (ITS). They found
that the integration of IoT, connected vehicles, and cloud technologies
can help to improve vehicle management, fault detection, and driving
assistance. Cloud technology can process vast amounts of data in real
time to provide drivers with optimized routes, traffic updates, and other
advisories. This can lead to improved fuel efficiency, a more pleasant
driving experience, and reduced traffic congestion. The paper also dis-
cussed the challenges of connected vehicles, such as network topology
changes due to vehicle mobility and data synchronization issues. The
authors suggested that dynamic spectrum access (DSA) can be used to
address spectrum scarcity in urban areas. In their paper, Yang et al. [165]
acknowledged the rising issues in urban areas related to traffic conges-
tion, air pollution, fuel wastage, and car accidents. They investigated the
potential of vehicular communications to alleviate these issues and drive
the development of intelligent transportation systems. The authors
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recognized the promising opportunities that vehicular communications
can offer to both manual-driven and automated vehicles in terms of
enhanced traffic security and augmented entertainment services. The
discussion extended to various vehicular cloud topologies, detailing their
associated security, architectural, and reliability issues. Furthermore, the
authors considered the taxonomy of vehicular networks in relation to the
service link between vehicular networks and cloud computing. The paper
concluded that there is an urgent need to develop secure, efficient, and
reliable 5G vehicular communication networks. The authors also advo-
cated for better resource management infrastructures in vehicular clouds,
recommending the use of clustering. The authors also highlighted the
need for comprehensive security systems to protect from various security
risks.

Iqbal et al. [166] explored the potential of using IoT devices in ve-
hicles to create a Smart Vehicle Monitoring System (SVMS) that can
monitor the health conditions of drivers and prevent accidents. By
leveraging IoT and cloud computing, SVMS offered a novel way to in-
crease road safety. The authors acknowledged that the implementation of
an IoT-based health detection system presents several challenges. These
challenges include managing real-time data retrieved from IoT devices,
maintaining connectivity in remote areas, and the significant costs of
maintaining the servers necessary for information exchange. Other con-
siderations include ensuring the reliability of IoT data from accurate
sources, selecting communication devices and protocols that are safe for
human use, and the challenge of maintaining connections between nodes
and allocating resources for real-time data exchange in fast-moving ve-
hicles. The authors concluded that the challenges of implementing an
IoT-based health detection system are significant, but the potential
benefits are also great. They suggested that further research is needed to
address the challenges and to develop a more comprehensive SVMS. In a
study conducted by Qureshi et al. [167], the evolution of vehicular net-
works with the advent of the IoT was investigated. The authors high-
lighted the emerging importance of IoV, which aims to provide safe and
secure networks for vehicle users, benefiting from services that range
Table 4
Summary of literature on vehicle-level opportunities presented by cloud, IoT, and wi
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traffic accidents caused by driver fatigue.
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security systems. The paper proposed various mo
including a cloud-based model.
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from network maintenance to security systems. The paper proposed
various models for IoV, including a cloud-based model that takes
advantage of the opportunities offered by cloud-based vehicle manage-
ment systems. These include enhanced vehicle management, fault
detection, and driving assistance. The authors presented a comprehen-
sive, layered architecture for IoV, detailing the elements required to
operate it. They also explored a network model that integrates cloud
services, a big data analytical model for data acquisition and analytics,
and a security model aimed at detecting and preventing systems faults
The paper concluded by discussing the challenges and future directions
of designing new integrated models in the IoV landscape.

As summarized in Table 4, the existing body of research emphasizes
the potential of incorporating IoT, cloud technologies, and vehicle-cloud
collaborations. These technological advancements can improve opera-
tional efficiency, optimize traffic flow, improve fault detection mecha-
nisms, and enable comprehensive health monitoring systems.
Additionally, the use of machine learning and edge computing in these
systems shows promise for addressing challenges such as latency and the
efficient handling of diverse driving scenarios. However, there are still
several areas that have not been explored, which provides a rich op-
portunity for further research.

5. Challenges of implementing IoB in electric vehicles

Implementing the Internet-of-Batteries (IoB) in electric vehicles (EVs)
presents a number of challenges alongside potential opportunities. The
innovative integration of Internet-of-Things (IoT) technologies within
the battery management systems (BMS) of EVs presents a wide range of
challenging issues that need to be thoroughly addressed for the tech-
nology to achieve a reliable state and widespread use. Fig. 6 illustrates
the various challenges associated with the implementation of IoB in EVs.

One of the most prominent concerns in the IoB domain is the security
of battery data. As the IoB system becomes increasingly interconnected,
data about battery health, state of charge, and usage patterns becomes
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vulnerable to cybersecurity threats. Faika et al. [168] discussed the se-
curity risks of wireless battery management systems (WBMS). They point
out that lightweight IoT protocols, such as MQTT, are efficient but have
weak encryption, access control, authorization, authentication, and
identification mechanisms. This weak security configuration leaves the
system vulnerable to attacks, such as man-in-the-middle attacks, where
hackers can secretly relay and potentially alter communication between
two entities. The research also shows that data privacy, confidentiality,
and integrity can be easily compromised in this scenario. The paper
concludes by recommending the investigation of blockchain-based IoT
networks as a potential solution to these issues. Kumbhar et al. [169]
identified six types of cybersecurity threats that can arise from vulnera-
bilities in IoT devices: unauthorized software updates or source code
modifications, unauthorized access to data storage, man-in-the-middle
attacks, insecure network protocols, unauthorized cloud access from
unauthorized IoT devices, and SQL Injection attacks on cloud databases.
Particularly concerning is their observation about IoT networks often
using lightweight IoT protocols that might be insecure, giving rise to
multiple forms of attacks. Kim et al. [170], investigated the cybersecurity
vulnerabilities of BMS in cyber-physical environments. They found that
cyber and physical attacks on these systems could cause explosive battery
failure, damage to physical systems, threats to human safety, and eco-
nomic loss. They categorized the attack vectors into three layers:
communication and supervisory, control, and hardware. Each layer has
unique vulnerabilities, including network, software/firmware, data
storage, on–board interface, and hardware component security vulnera-
bilities. The authors emphasized the need for a thorough investigation of
these vulnerabilities and the development of robust security standards
and regulations. They proposed blockchain technology as a promising
solution to mitigate these cyber-physical security vulnerabilities and
recommended further research into developing a blockchain-based se-
curity framework for BMS. Fraiji et al. [171], discussed the need for se-
curity in EVs, which communicate with the internet using different
modes, such as Wi-Fi, Bluetooth, and cellular networks. While this
communication provides beneficial services, it also exposes the system to
potential threats like DoS attacks, eavesdropping, and false data injec-
tion. They proposed developing an adaptive security strategy that con-
siders factors like the type of sensor, available energy, available charging
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stations, type of available network, and energy level of the battery. This
adaptive strategy would relax or tighten security measures depending on
the situation to mitigate these threats. A study by Li et al. [172] argued
that the integration of EVs and IoT requires real-time data analytics,
which raises privacy and security concerns. The authors suggested that a
balance must be found between the utility of data sharing and privacy
protection. They identify three key privacy and security concerns in the
context of IoB: data collection and sharing, data security, and data
integrity. The authors argued that these concerns can be addressed
through a combination of technical and policy solutions. They concluded
that the successful implementation of IoB will require a concerted effort
to address privacy and security concerns.

In comparison to the traditional BMS communication network, IoB
technologies face additional cybersecurity challenges due to their
increased connectivity and data exchange capabilities. The integration of
battery systems into an interconnected network exposes them to a wider
range of potential threats. One significant concern is the vulnerabilities
inherent in lightweight IoT protocols commonly used in IoB systems.
These protocols, such as MQTT, while efficient for data transmission,
often lack robust encryption, access controls, authentication mecha-
nisms, and identification protocols [173]. This weak security configu-
ration leaves IoB technologies susceptible to unauthorized access and
compromises of data integrity and confidentiality. Furthermore, the
integration of IoB technologies with EVs and other IoT devices introduces
additional attack vectors and potential security threats. The use of
various communication modes like Wi-Fi, Bluetooth, and cellular net-
works in EVs exposes the IoB system to potential risks such as DoS at-
tacks, eavesdropping, and false data injection [174]. These
interconnected networks require comprehensive security measures to
protect against unauthorized access, data manipulation, and potential
disruptions to the system's functionality.

To address these cybersecurity challenges, robust security measures
must be developed and implemented in IoB technologies. This includes
enhancing encryption protocols to ensure secure data transmission and
storage. Access controls and authentication mechanisms should be
strengthened to prevent unauthorized access to the IoB system. Addi-
tionally, the implementation of comprehensive identity management
systems and authentication protocols can help verify the integrity and
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authenticity of data sources and ensure the trustworthiness of the system.
Blockchain technology emerges as a promising solution for addressing
the security concerns of IoB technologies. Its decentralized and immu-
table nature offers enhanced data privacy, integrity, and security [175].
By utilizing blockchain technology, IoB systems can establish secure and
tamper-proof data exchange mechanisms, protecting against unautho-
rized modifications and ensuring the authenticity of battery-related in-
formation. Furthermore, an adaptive security strategy is crucial in
mitigating the unique risks associated with IoB technologies. This strat-
egy should consider contextual factors such as sensor types, available
energy, charging stations, network types, and battery energy levels to
dynamically adjust security measures based on the situation [176]. By
applying adaptive security measures, IoB systems can respond to
changing threat landscapes and ensure a proactive defense against po-
tential attacks. Comprehensive vulnerability assessments and ongoing
security audits are also essential to identify and mitigate potential risks
[177]. By conducting regular investigations into the system's vulnera-
bilities, potential security weaknesses can be identified and addressed
promptly. This includes evaluating network security, software/firmware
vulnerabilities, data storage practices, on–board interfaces, and hard-
ware component security vulnerabilities. A thorough understanding of
these vulnerabilities will inform the development and implementation of
effective security measures.

Another significant challenge lies in the compatibility between
different systems. The diversity of EV models, battery technologies, and
BMS makes it difficult to establish an IoB network that seamlessly in-
tegrates these distinct elements. There are a wide variety of EVmodels on
the market, each with its own unique battery technology and battery
management system. This diversity makes it difficult to develop a single
IoB network that can support all EVs. There are also a variety of battery
technologies available. BMS plays a critical role in ensuring the safety
and reliability of EV batteries. However, there is no single standard for
BMS, and different manufacturers use different BMS [178]. This lack of
standardization makes it difficult to develop an IoB network that can
communicate with different BMS. The lack of standardized protocols and
interfaces further complicates the challenge of compatibility [179].
Protocols are sets of rules that govern how data is exchanged between
different systems. Interfaces are the physical connections between
different systems. Without standardized protocols and interfaces, it is
difficult for different systems to communicate with each other. Habib
et al. [180], discussed the need for standards and regulations to ensure
the safe and efficient operation of EVs. The authors argue that current
standards are not sufficient to address the unique challenges posed by the
incompatibility of EV systems and that new standards are needed to
ensure the safety and reliability of EV systems. The authors identified a
number of key areas where new standards are needed, including battery
management, charging infrastructure, and grid integration. It requires
the establishment of universal protocols and standards to ensure smooth
interoperability. For example, the battery data from an EV manufactured
by one company should be interpretable and useable by the charging
infrastructure of another company. Effective solutions should allow for
seamless data exchange, interoperability, and future scalability to
accommodate advancements in EV and battery technologies.

Lastly, the large-scale application of IoB in EVs comes with its own set
of technical complexities. Designing and deploying an IoB system that
can handle vast amounts of data frommillions of EVs worldwide requires
sophisticated data management and processing capabilities. Further-
more, managing the real-time data transmission from and to moving EVs
can pose significant challenges in terms of bandwidth and latency.
Network congestion could result in delayed data transmission, affecting
the performance of the IoB system. Kaleem et al. [181], highlighted some
of the key challenges including latency and scalability issues in the case
of cloud-based BMS. The real-time processing of large amounts of data, as
required by sophisticated machine learning algorithms, introduces po-
tential latency issues. This could impact the timely assessment and
communication of battery states, which is crucial for the efficient
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operation and management of EVs in an IoB setup. In terms of scalability,
as more electric vehicles come online and are integrated into the IoB, the
volume of data that needs to be managed increases exponentially [182].
Managing and processing this data efficiently presents a significant
scalability challenge. This is further complicated by the need to share and
update data and models across multiple vehicles, which requires robust
and scalable communication and data management protocols [183].
Overall, these challenges present key areas of focus in the ongoing
development and optimization of IoB. Similarly, the system must be
capable of handling different network conditions, as the quality of
internet connectivity can vary significantly across different regions.
Therefore, to achieve reliable and efficient large-scale application of IoB
in EVs, it is necessary to overcome these technical challenges.

6. Discussions and future perspectives

The Internet-of-Batteries (IoB) is an emerging technology that has the
potential to revolutionize the electric vehicle (EV) industry by offering
opportunities for greater efficiency, optimization, and intelligent man-
agement of EV batteries. Through the integration of Internet-of-Things
(IoT) and cloud technologies, IoB enables continuous battery prognosis,
real-time data monitoring, and improved batterymanagement, leading to
enhanced vehicle performance, extended battery lifespan, and optimized
energy utilization.

The necessity of IoB in the electric vehicle industry is driven by
several key factors.

� Enhanced battery management: IoB enables continuous battery moni-
toring, real-time data analysis, and predictive maintenance. This
capability allows for precise monitoring of battery health, state of
charge (SoC), state of health (SoH), and remaining useful life (RUL).
With this information, EV owners and fleet operators can optimize
battery usage, schedule maintenance proactively, and extend battery
lifespan. IoB's advanced battery management contributes to increased
reliability, safety, and cost-effectiveness of EVs;

� Optimized energy utilization: IoB facilitates intelligent energy man-
agement, optimizing the utilization of stored energy in EV batteries.
Through sophisticated algorithms and real-time data analysis, IoB can
determine the most efficient charging and discharging patterns,
considering factors like energy demand, grid conditions, and user
preferences. This optimized energy utilization not only enhances the
driving range of EVs but also ensures efficient use of electricity and
reduces energy costs;

� Integration of renewable energy: As the world shifts towards renewable
energy sources, IoB can play a crucial role in integrating EV batteries
with renewable energy systems. IoB-enabled EVs can act as energy
storage devices, absorbing excess renewable energy during peak
generation periods and discharging it when needed. This capability
contributes to grid stabilization, load balancing, and reduces de-
pendency on fossil fuels, making the EV ecosystem more sustainable
and environmentally friendly;

� Advancements in battery technology: IoB's continuous monitoring and
data analysis provide valuable insights into battery performance and
behavior. This feedback loop enables researchers and battery manu-
facturers to identify areas for improvement and drive advancements
in battery technology. By identifying limitations and optimizing
battery designs, IoB accelerates the development of more efficient,
safer, and higher-performing batteries, benefitting the entire EV
industry.

However, as the IoB framework expands and EV fleets become
increasingly interconnected, new vulnerabilities and threats emerge,
necessitating robust security measures and protocols to protect battery
data. With batteries becoming interconnected nodes in a network, they
are susceptible to cyber attacks that can compromise not only individual
vehicles but also potentially impact the entire fleet or grid. Ensuring the
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security and integrity of battery data is of great importance to maintain
user trust and safeguard critical infrastructure. The development of
encryption algorithms, authentication mechanisms, secure communica-
tion protocols, and intrusion detection systems becomes imperative to
mitigate these risks and protect against unauthorized access or manipu-
lation of battery information.

Another critical challenge associated with IoB is interoperability and
cross-platform functionality. The EV industry covers a wide range of
battery technologies, models, and manufacturers, making it challenging
to develop a universally applicable IoB architecture. Seamless commu-
nication and interaction within the IoB framework require standardized
protocols, common data formats, and interoperable systems. Collabora-
tive efforts between automakers, battery manufacturers, and technology
companies are crucial to developing aligned standards, facilitating data
exchange, and establishing a unified ecosystem for IoB implementation.
These collaborations will encourage interoperability and ensure that IoB
can effectively integrate with diverse EV systems and infrastructure.

Looking ahead, as the world increasingly focuses on renewable energy
and smart technologies, the potential of IoB to improve energy manage-
ment and battery optimization positions it as a technology with wide-
spread adoption prospects. IoB is likely to become an integral part of the
EV infrastructure in the near future, contributing to the development of a
smarter, more responsive, and energy-efficient transportation system.

The implementation of IoB will have a profound impact on the
existing battery technology system in several ways.

� Data-driven design: IoB's real-time data collection and analysis will
drive a shift towards data-driven battery designs. Battery manufac-
turers will utilize IoB-derived insights to create batteries tailored to
specific applications, optimizing performance and longevity based on
real-world usage patterns;

� Predictive maintenance: IoB's predictive maintenance capabilities will
replace reactive maintenance practices. Battery health monitoring
and early fault detection will lead to targeted and timely maintenance
actions, minimizing downtime and reducing maintenance costs;

� Smart grid integration: With IoB-enabled V2G technology, EV batteries
will become an integral part of the smart grid ecosystem. They will
actively participate in demand-response programs and grid stabili-
zation, promoting grid flexibility and resilience;

� Informed battery lifecycle management: IoB will provide a comprehen-
sive understanding of battery aging and degradation processes. This
knowledge will enable more informed battery lifecycle management,
ensuring optimal usage and recycling practices;

� User-centric experience: IoB will empower EV owners with detailed
insights into the battery health, driving patterns, and energy con-
sumption of the vehicles. This user-centric experience will enhance
user satisfaction and confidence in EV technology.

The successful development and deployment of IoB will require close
collaboration between automakers, battery manufacturers, and technol-
ogy companies. By working together, these stakeholders can address
technical challenges, share expertise, develop common standards, and
establish interoperability guidelines. This collaborative effort will drive
the adoption of IoB, encourage innovation, and pave the way for a more
connected and sustainable EV ecosystem.

Advancements in battery technology will further enhance the po-
tential of IoB. Research and development in areas such as solid-state
batteries, advanced energy storage materials, and new electrode chem-
istries are expected to significantly improve battery performance. These
advancements can lead to increased energy density, faster charging ca-
pabilities, and improved battery longevity, making IoB an even more
valuable tool for optimizing battery performance and extending EV
range. The integration of IoB with these advanced battery technologies
will enable intelligent battery management, precise energy allocation,
and efficient utilization of enhanced battery capabilities. With further
research, development, and collaboration, IoB has the capacity to shape
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the future of EVs, enabling a smarter, more efficient, and sustainable
transportation ecosystem.

7. Conclusion

The Internet-of-Batteries (IoB) is a novel concept that brings together
batteries, IoT technologies, and cloud server infrastructure to create a
networked system for efficient battery and vehicle management. IoB can
significantly contribute to enhancing the overall performance and reli-
ability of electric vehicles (EV) by providing continuous monitoring of
battery performance, optimizing energy management, and supporting
advanced state estimation and fault diagnosis.

Despite these potential benefits, it faces challenges such as data se-
curity and system compatibility. Data security is a concern because IoB
involves the exchange of sensitive battery data. System compatibility is a
challenge because different manufacturers use different systems and
communication protocols for their EVs. Addressing these challenges re-
quires the development and application of robust encryption methods,
secure communication protocols, and coordinated efforts towards stan-
dardization of IoB systems.

Although there have been several studies on battery management
systems (BMS), there is a lack of a comprehensive review that brings
together the latest advancements in the field, particularly with regard to
the integration of cloud, wireless, and IoT technologies. This paper aims
to fill this gap by providing an integrated analysis of the IoB concept, its
architecture, benefits, challenges, and potential future directions. By
comprehensively exploring the current state of IoB in the context of EVs,
this paper has highlighted both the advantages and limitations of this
technology.

In the future, more research and development will be needed to fully
realize the potential of the IoB and optimize battery use in EVs. Future
efforts should focus on addressing the challenges identified in this re-
view, such as data security and system compatibility. Additionally,
research should explore the potential role of artificial intelligence and
machine learning in enhancing the efficiency and effectiveness of IoB
systems. The IoB has the potential to transform the EV industry, but
realizing this potential will depend on addressing these challenges and
seizing the opportunities it offers.
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