Aalborg Universitet AALBORG

UNIVERSITY

Advancements in point cloud-based 3D defect classification and segmentation for
industrial systems

A comprehensive survey

Rani, Anju; Ortiz-Arroyo, Daniel; Durdevic, Petar

Published in:
Information Fusion

DOl (link to publication from Publisher):
10.1016/}.inffus.2024.102575

Creative Commons License
CCBY 4.0

Publication date:
2024

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Rani, A., Ortiz-Arroyo, D., & Durdevic, P. (2024). Advancements in point cloud-based 3D defect classification
and segmentation for industrial systems: A comprehensive survey. Information Fusion, 112, Article 102575.
https://doi.org/10.1016/j.inffus.2024.102575

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.


https://doi.org/10.1016/j.inffus.2024.102575
https://vbn.aau.dk/en/publications/df2b7f28-3d92-4198-93ca-910518af5b6e
https://doi.org/10.1016/j.inffus.2024.102575

Downloaded from vbn.aau.dk on: July 04, 2025



Information Fusion 112 (2024) 102575

Contents lists available at ScienceDirect

Information Fusion
journal homepage: www.elsevier.com/locate/inffus //
Full length article ' R
Advancements in point cloud-based 3D defect classification and |t

segmentation for industrial systems: A comprehensive survey

Anju Rani *, Daniel Ortiz-Arroyo, Petar Durdevic
Department of Energy, Aalborg University, Niels Bohrs Vej 8, Esbjerg, 6700, Denmark

ARTICLE INFO ABSTRACT

Keywords:

Deep learning
Condition monitoring
Defect detection
Point cloud
Classification
Segmentation

In recent years, 3D point clouds (PCs) have gained significant attention due to their diverse applications across
various fields, such as computer vision (CV), condition monitoring (CM), virtual reality, robotics, autonomous
driving, etc. Deep learning (DL) has proven effective in leveraging 3D PCs to address various challenges
encountered in 2D vision. However, applying deep neural networks (DNNs) to process 3D PCs presents
unique challenges. This paper provides an in-depth review of recent advancements in DL-based industrial
CM using 3D PCs, with a specific focus on defect shape classification and segmentation within industrial
applications. Recognizing the crucial role of these aspects in industrial maintenance, the paper offers insightful
observations on the strengths and limitations of the reviewed DL-based PC processing methods. This knowledge
synthesis aims to contribute to understanding and enhancing CM processes, particularly within the framework

of remaining useful life (RUL), in industrial systems.

1. Introduction

Condition monitoring (CM) is vital in ensuring the longevity and
proper maintenance of structures, such as bridges, buildings, industrial
facilities, and infrastructure. Traditional visual inspection has been the
predominant approach for CM applications. However, two-dimensional
images face limitations in providing depth information and relative
object positions, which is crucial for tasks involving spatial details, such
as autonomous driving, virtual reality, and robotics. The emergence of
3D acquisition technologies, including depth sensors and 3D scanners,
has effectively addressed this limitation by facilitating the extraction
of detailed 3D information. The utilization of 3D data offers a signifi-
cantly improved understanding of objects compared to traditional 2D
images, making them a valuable tool for industrial CM applications. In
recent years, there has been a growing emphasis among researchers on
harnessing 3D scanned objects for defect detection and segmentation
in industrial applications [1-4]. The representation of 3D data can be
in various forms, including depth images, PCs, meshes, and volumetric
grids. PC representation stands out for preserving the original geo-
metric features in 3D space without any discretization, making it the
preferred choice in many applications. The PC consists of unstructured
3D vectors, where each point represents a vector indicating its 3D
coordinates (XYZ) with additional feature channels such as color (RGB
values), intensity, and surface normals. Also, the PC exhibits properties
like unstructured points, interaction among points, and invariance
under transformation. These characteristics contribute to the flexibility
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and adaptability of PC representation in capturing complex geometric
structures, which is crucial for identifying and characterizing defects in
industrial systems.

In the last decade, DL has emerged as the most influential technique
in the field of 2D-CV such as image recognition, object detection, and
segmentation. However, the application of DL to 3D PC data presents
unique challenges due to the unstructured, high-dimensional, and dis-
ordered nature of PCs. Traditional convolutional networks designed for
regular grids may not be directly applicable to PCs. Therefore, raw PC
data is pre-processed to make it compatible with DL algorithms. This
involves steps such as noise removal, data cleaning, down-sampling,
and normalization to enhance and ensure data consistency. Later,
various network architectures, including convolutional neural networks
(CNNs) [5-71, graph neural networks (GNNs) [8-10], or hybrid net-
works [11-13], can be used for specific tasks such as 3D classification
and segmentation. The DL model is then trained using annotated PC
data. This involves feeding the PC into the network, computing the loss
between ground truth labels and predicted labels, and then updating
model parameters through back-propagation. The training stage often
requires a large input dataset, prompting the use of data augmentation
techniques to improve generalization. After training and evaluation, the
model can be used for inference on new, unseen PC data, followed by
post-processing steps to refine the model output. A taxonomy of existing
DL methods for processing 3D PCs is shown in Fig. 1.

E-mail addresses: aran@et.aau.dk (A. Rani), doa@et.aau.dk (D. Ortiz-Arroyo), pdl@et.aau.dk (P. Durdevic).

https://doi.org/10.1016/j.inffus.2024.102575

Received 22 February 2024; Received in revised form 5 July 2024; Accepted 6 July 2024

Available online 11 July 2024

1566-2535/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/inffus
https://www.elsevier.com/locate/inffus
mailto:aran@et.aau.dk
mailto:doa@et.aau.dk
mailto:pdl@et.aau.dk
https://doi.org/10.1016/j.inffus.2024.102575
https://doi.org/10.1016/j.inffus.2024.102575
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2024.102575&domain=pdf
http://creativecommons.org/licenses/by/4.0/

A. Rani et al.

Information Fusion 112 (2024) 102575

[ Deep Learning on 3D Point Cloud for Condition Monitoring ]

‘ 3D Shape Classification]

[30 Point Cloud Segmentation]

[

[ ]

[ Projection Based Methods ]« ‘30 Semantic Segmentation

(Section 3.1) (Section 4.1)

3D Part Segmentation 3D Instance Segmentation
(Section 4.3) (Section 4.2)

:[ Multi-view Based Methods ]:

Projection Based Methods Proposal-Based Methods
> -
(Section 4.1.1)

(Section 4.2.1)

:[ Volumetric Based Methods ]:

——————————— e T ee————T
|[ . ] |[ Trasformer-Based Methods ]
Representation | I
Direct Point Based Methods }« ! [ Spherical ] | =
(Section 3.2) : Representation I ‘ Proposal-Free Methods
} I[ Volumetric ] | (Section 4.2.2)
7 \_—Representation __ J, T

-

Point Based Methods
(Section 4.1.2)

] |[ Grouping Based Methods ]'
|

| )
:[ Convolution Based Methods ]l —)[
[ )

Pointwise Based Methods ] I

{

|

I [ Convolution Based Methods ]'
|

'[ Graph Based Methods ]'
|

Fig. 1. A taxonomy of DL methods for processing 3D PC data.

The paper provides a comprehensive review of DL methods ap-
plied to 3D PC data, with a specific emphasis on their applications in
industrial CM settings. While previous reviews have explored DL tech-
niques using standard datasets, this paper goes beyond by dissecting
fundamental methodologies and recent advancements in 3D shape clas-
sification and segmentation, specifically catering to CM requirements
in industrial CM applications. The reviewed methods are explicitly
applicable to addressing the challenges encountered in industrial CM
tasks, such as identifying and locating defects in equipment, infras-
tructure, and manufacturing processes. The review covers traditional
and innovative approaches, shedding light on the inherent challenges
and potential solutions in processing 3D PC data for CM applications
in industrial settings. Additionally, it provides a detailed summary of
existing DL methodologies for feature learning in 3D PCs, outlining
their respective strengths and weaknesses. Including publicly available
datasets relevant to 3D shape classification and object segmentation
enhances the practical value of the discussion. Overall, the synthesis of
existing knowledge in this review aims to identify gaps in the current
understanding and pave the way for further innovations in the dynamic
field of 3D PC data processing, offering valuable insights for researchers
and practitioners working on advancing industrial CM capabilities. The
key contributions of this review paper encompass the following aspects:

1. The paper thoroughly surveys the most recent advancements in
DL-based 3D PCs applied to both traditional and CM applica-
tions. The discussion is categorized into two main domains—
shape classification and 3D object segmentation.

2. The review systematically compares and summarizes recent
methods for CM, with a specific focus on damage detection
in industrial applications. This comparative analysis not only
highlights the diverse approaches but also provides an insightful
assessment of the strengths and limitations of each method,
offering valuable guidance for researchers and practitioners.

3. The paper goes beyond the current state of the field by offering
valuable insights into potential future research directions and
applications in the realm of DL-based CM using 3D PCs. This
forward-looking perspective aims to inspire and guide future
research endeavors in the dynamic and evolving field.

The structure of this review paper is organized as follows: Section 2
discusses the existing datasets and evaluation metrics utilized for 3D
PC classification and segmentation tasks. Section 3 focuses on DL
methods used for 3D shape classification, unraveling the evolution and
applications of these methodologies. In Section 4, an extensive survey
is conducted on existing methods for 3D PC segmentation, including
semantic segmentation, instance segmentation, and part segmentation.
The review concludes in Section 5, synthesizing insights and outlining
future research directions.

2. Background
2.1. 3D datasets

The availability of publicly accessible datasets plays a pivotal role
in facilitating the analysis and comparison of various models in the do-
main of 3D PC applications. Researchers have curated diverse datasets
specifically designed for tasks such as 3D shape classification, 3D
object detection, and 3D PC segmentation. Table 1 provides a concise
summary of these benchmark datasets and their descriptions. These
datasets can be broadly categorized into two main types: real-world
and synthetic datasets. In real-world datasets [18,29], the objects are
occluded at varying levels, while some objects may contain background
noise. On the other hand, objects in synthetic datasets [26,27] are
without any occlusion and background noise, offering a controlled
environment for experimentation.
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Fig. 2. Chronological overview of the most relevant DL-based 3D shape classification methods.
Table 1
Available benchmark PC dataset for classification and segmentation.
Ref. Dataset Description Year Classes Object/Point count Classification Segmentation
[14] Oakland Urban environment 2009 44 1.6 M 4
[15] ISPRS Buildings, trees, and 3D building reconstruction 2012 9 1.2 M v
[16] Paris-rue-Madame Street in Paris 2014 17 20 M v v
[17] IQmulus Dense urban environments 2015 22 300 M 4 v
[18] ScanNet Indoor scenes 2017 20 25 M v v
[19] S3DIS Structural elements 2017 13 273 M v
[20] Semantic3D Robotics, augmented reality and urban planning 2017 9 4000 M v
[21] Paris-Lille-3D Objects in urban environment 2018 50 143 M 4
[22] SematicKITTI Autonomous driving 2019 28 4549 M v
[23] Toronto Urban roadways 2020 9 78.3 M v
[24] DALES Aerial geographical scan 2020 9 505 M 4 v
[25] nuScenes Autonomous driving 2020 7 5B v v
[26] ModelNet CAD-generated objects 2015 662 1.3 M v
[27] ShapeNet CAD-generated objects 2015 3135 300 M v
[28] ModelNet40-C Corruption robustness 2022 40 1.85 M v
[29] ScanObjectNN Scanned indoor scenes 2019 15 15,000 v
[30] STPLS3D Synthetic and real aerial photogrammetry 2022 20 15,888 v
[31] SUN RGB-D 3D room layout and scenes 2015 700 10,335 v
[32] Hypersim Synthetic indoor images 2021 461 77,400 4
[33] MVTec 3D-AD 3D random objects 2022 10 4000 v
[34] Real3D-AD 3D random objects 2023 12 1.3 M v

2.2. Evaluation metrics

Different evaluation metrics are employed in the literature to assess
the performance of DL-based 3D PC processing tasks. For 3D shape
classification, the most common performance criteria include overall
accuracy (OA) and mean class accuracy (mAcc), respectively. OA repre-
sents the mean accuracy for all test instances, while mAcc is the mean
accuracy for all shape classes. In the case of 3D PC segmentation, OA,
mAcc, mean intersection over union (mloU) and mean average precision
(mAP) are the most frequently used performance criteria. OA in this
case represents the mean accuracy for PC segmentation, mAcc depicts
the mean accuracy for different classes in segmentation, and mloU
Measures the overlap between predicted and ground truth segments.
Particularly, mAP is used in instance segmentation of 3D PCs. These
metrics provide a quantitative assessment of the performance of DL
models across various 3D PC processing tasks. However, the appropri-
ate metric is chosen based on the specific task and the desired aspects
of performance to be evaluated.

3. Deep learning for 3D shape classification

The existing 3D shape classification methods can be broadly cat-
egorized into two major groups: projection-based methods and direct
point-based methods. Fig. 2 depicts various milestone methods within
these categories, showcasing the diversity of approaches discussed in
the literature.

3.1. Projection-based methods

These methods typically involve projecting a 3D PC into 2D images,
facilitating the application of well-established 2D image processing
techniques for classification tasks. This category encompasses tech-
niques leveraging multi-view or volumetric images to represent and
analyze 3D shapes.

3.1.1. Multi-view based methods

This method captures 3D shape projections from multiple view-
points and extracts features independently from each view. Traditional
methods, such as CNNs, can be applied to each view to extract dis-
tinctive features, which are subsequently fused to classify the shape
accurately. However, the effectiveness of these methods largely de-
pends on the number of views selected for the classification. Multi-view
CNN (MVCNN) [35] captures 3D shapes from various viewpoints,
processing each view independently through CNNs (CNN1) to extract
features. These features are then aggregated using a view-pooling layer,
which collects information from all viewpoints. The pooled information
is passed through three fully connected CNNs (CNN2) to produce a
compact 3D shape descriptor. MVCNN’s primary contribution is the
synthesis of information from multiple viewpoints, which is particularly
useful for industrial CM applications where the ability to accurately
classify and locate defects in complex industrial systems is paramount.
Here, the most important regions or saliency maps for each 3D shape
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Fig. 3. Architecture of MVCNN.

Source: Adapted from Su et al. [35].

S are computed by back-propagation gradients of the class score. If
I,,I,,..., 1, are the set of n 2D views, then the viewpoints in 2D views
are ranked based on their output score F, for its ground truth class g.
The saliency maps are defined as derivative of F, with 2D viewpoints
and ranked as given in Eq. (1):
[Ul,uz,...,v,,] = [% :] (€8}

However, the view-pooling layer retains only the largest elements
from each viewpoint, leading to some loss of information. A typical
MVCNN architecture is illustrated in Fig. 3. [36] implemented MVCNN
for classifying ten defects in road infrastructure. The author compared
the classification performance between MVCNN and PointNet [37]. The
results demonstrated the superior performance of MVCNN for CM of
road infrastructure with mAcc of 98% compared to 83% in the case
of PointNet. [38] proposed a CNN model to extract global features
from regularly structured depth images. This approach contrasts with
existing methods like MVCNN and PointNet, which utilize unstructured
PC data. The depth images utilized in this study do not introduce
any geometry loss, enabling fine-grid shape classification of defects in
solder joints, which is crucial for CM of industrial systems. Group-View
CNN (GVCNN) [5] introduces a hierarchical shape descriptor by incor-
porating grouping and individual viewpoints information in the pooling
process. While GVCNN exhibits a significant improvement in accuracy
compared to MVCNN, it faces challenges, particularly with smaller
views, which can be a limitation for CM tasks. Multi-view harmonized
bi-linear network (MHBN) [39] combines local convolutional features
from multiple views using bi-linear pooling to generate a global shape
descriptor. Later, the sequential behavior of the captured views was
explored to recognize the 3D shapes. [40] combined CNNs and long
short-term memory (LSTM) to aggregate multi-view features into shape
descriptors. This approach leverages the temporal dependencies among
views, enhancing the understanding of 3D shapes by fusing spatial and
sequential information. SeqViews2SeqLabels [41] takes into account
the spatial relationship among viewpoints by introducing an encoder
to aggregate the information from sequential views and a decoder for
predicting global features or sequence labels. Subsequently, the author
extends this approach with 3D2SeqViews [42], efficiently aggregating
information from both views and sequential spatial views in a hierar-
chical attention (view-level and class-level) mechanism. However, these
methods are limited to aggregating ordered views and do not handle
aggregating unordered views.

Another hierarchical network based on view graph representation
was introduced in view-based graph convolutional network (view-
GCN) [44]. Using this approach, the author constructed a view graph,

JF,
N ’ ol

A
o

where multiple views are treated as graph nodes. The view-GCN learns
discriminative shape descriptors based on the relationship between
multiple views. Based upon this concept, multi-view GCN (MVGCN)
[43] was proposed for classifying defects (scratch, dent, protrusion) in
synthetically generated 3D PC datasets on an aircraft fuselage. Here,
a two-step analysis was performed: (a) an adaptive threshold method
based on variation in local surface and (b) defect classification by
the applicability of graph-based representations for capturing complex
relationships among multiple views in the context of defect classifica-
tion. Fig. 4 depicts the MVGCN method for identifying surface defects
in automotive components. The threshold-based approach clusters all
points into two groups, as defined in Eq. (2), which helps to identify
potential defect regions. The graph-based representation is then utilized
to classify the detected defects based on the relationships between
multiple views.

fw=1"
"o

where o represent local surface variation, 6 is threshold, and f(x) refers
to center point x in the point set X representing defective regions
(f(x) = 1) or normal region f(x) = 0. The second stage utilizes MVGCN
to extract features and classify defects. It consists of a graph convolu-
tional layer (GCL), multi-view GCL (MVGCL), and fully-connected (FC)
layer.

To address the limitations of traditional pooling techniques in multi-
view-based methods, recent approaches have explored more sophisti-
cated fusion and attention mechanisms. Multi-view-based fusion pool-
ing (MHFP) [45] adopts a hierarchical approach to fuse multi-view
features into a compact descriptor, leveraging correlations between
several views. This method effectively removes redundant information
while retaining maximum relevant information using a 3D attention
module to construct a graph. Similarly, multi-view softpool attention
networks (MVMSAN) [46] refine view feature information using a
soft-pool attention convolution framework. The attention mechanism
plays a crucial role in addressing challenges related to down-sampling,
feature information loss, and insufficient detail feature extraction, ulti-
mately contributing to improved model performance. With the recent
success in vision transformer (ViT) [11,12] proposed multi-view con-
volutional ViT (MVCVT), which combines CNN on each view to extract
multi-scale local information and utilizes transformers to capture the
relevance of multi-scale information across different views. This inte-
gration showcases the adaptability and effectiveness of transformer-
based architectures in the context of multi-view feature extraction for
3D shape classification in CM applications.

if o(x) > 6

. ®))
ifo(x) <6
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Fig. 4. Multi-view GCN for predicting surface defects in automotive parts.
Source: Adapted from Wang et al. [43].

In summary, view-based methods learn from view features to obtain
global feature descriptors, leveraging established CNN frameworks.
However, traditional pooled downsampling techniques can result in
insufficient extraction of view refinement feature information, leading
to a substantial loss of valuable insights from the view features. The
more recent approaches, such as MHFP, MVMSAN, and MVCVT, have
demonstrated the potential of advanced fusion and attention mecha-
nisms to address these limitations and further enhance the performance
of multi-view based methods for industrial CM applications.

3.1.2. Volumetric-based methods

This method represents 3D shapes in the form of a 3D voxel grid us-
ing 3D volumetric convolutions such that each voxel signifies whether
a point in 3D space is occupied by an object or not. VoxNet [47]
addresses large PC data by integrating a volumetric occupancy grid
with 3D CNN. [26] proposed a convolutional deep belief network, 3D
ShapeNets to represent a 3D shape based on the probability distribution
(PD) of binary variables on voxel grids. However, these methods do not
perform well in processing dense 3D data due to high computation and
memory requirements for higher resolution (computational complexity
is a cubic function of voxel grid resolution) [48]. To overcome this
limitation, a hierarchical compact structure needs to be introduced.
OctNet [49] achieves this by partitioning 3D PC data hierarchically
using a set of unbalanced octrees, where each leaf node stores a
pooled summary of the features of the voxels. This approach focuses
memory allocations on the relevant regions, enabling the use of deeper
networks with high resolution. Subsequently, Octree-based CNN (O-
CNN) [6] was proposed for 3D shape classification. O-CNN averages
the normal vectors of a 3D model into fine-leaf octants as network
input and performs 3D CNN over the octants occupied by the 3D shape
surface. Another network based on the non-uniform indexing named
Kd-Net [50] was introduced to mimic the convolutional-based network.
Kd-Net requires small memory and computation in comparison to uni-
form grids. [51] used 3D grids to represent PC data, further expressed
using 3D modified Fisher vector method. This vector acts as an input
to the 3D CNN to produce global features. To address the challenges
of low-resolution voxels and high computation requirements, Point-
Grid [52] introduced a hybrid network that integrates both the grid
and point representation for efficient processing of the PC data. In [53],
a multi-orientation volumetric DNN (MV-DNN) was proposed to limit
the octree partition to a certain depth for reserving leaf octants with
sparse features. This method improves classification for both low and
high-resolution grids.

In summary, volumetric-based methods represent 3D PCs using
voxel grids to address the data’s unordered structure. However, this
approach requires input voxels to be in a regular form for convolutional
operations, leading to information loss with low-resolution voxels and
subsequently lower classification accuracy. Additionally, these methods
face challenges related to high computation requirements, especially
for high-resolution data.

3.2. Direct point based methods

Direct point-based methods directly process the input PC data to
produce a sparse representation. These methods extract a feature vector
for each point by aggregating the features of neighboring points. In this
way, models designed for raw PC data typically begin by extracting
low-dimensional features from individual points and later aggregate
them to obtain high-dimensional features. Direct point-based meth-
ods can be further categorized into point-wise multi-layer perceptron
(MLP), convolution-based, and graph-based methods.

3.2.1. Pointwise MLP methods

These methods independently process each point in the 3D points
through shared MLPs to extract local features. PointNet [37] model
represents unordered PCs as a set of 3D points P,-)i: 1,2,...,n¢.
Here, P, is the vector consisting of x, y, z coordinates along with feature
channels such as color, normal vectors, etc. These local features are
extracted independently for each point through multiple MLP layers
and aggregated to obtain global features using a symmetric aggregation
function on the transformed elements in the set, as given by Eq. (3).

x,) & g(h(xy), h(xp), ..., h(x,)) 3

such that

f(x, %0,

FiRY SR
h:RN o RK

4
g RfFx..xRF 5 R
[

n

is symmetric function. Here, 4 and g can be approximated using the
MLP network and the composition of the single-variable and max
pooling functions, respectively. This collection of 4 function captures
various properties of the N 3D point set (R") by learning the function
f7s. The output from Eq. (3) forms a vector [f}, f3. ..., fk|, which acts
as a global feature of the input set. Later, the classifier is trained on the
shape global features for classification. This approach allows PointNet
to directly process unordered PC data without the need for converting it
into a regular grid or multi-view representations, making it a versatile
and efficient method for industrial CM tasks.

Following the success of PointNet, several extensions and improve-
ments have been proposed to enhance the performance of pointwise
MLP methods for 3D shape analysis and defect detection in industrial
systems. For example, PointNet++ [54] introduced a hierarchical fea-
ture extraction process to capture local structures at multiple scales,
addressing the limitations of the original PointNet in handling complex
geometric structures often encountered in industrial applications. Fig. 5
provides a visual comparison of the architectures of the PointNet [37]
and PointNet++ [54] models, respectively. Pointwise MLP methods,
exemplified by PointNet, have shown great promise for industrial CM
applications due to their ability to directly process unordered 3D PC
data. For instance, [55] investigated the use of PointNet to detect
defects (scaling, delaminations, and spalls) on the bridge surfaces. This
work collected 55 parts of the scanned bridges containing 13.5 M points
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Fig. 5. Architecture comparison of state-of-the-art methods; (a) PointNet [37] and (b) PointNet++ [54] respectively.

Source: Adapted from Qi et al. [37,54].

with 847 defects to obtain an mAP of 85.7% with 11.6% loss for the
testing dataset. Building upon the success of PointNet, various models
have been proposed in the literature for the direct processing of 3D PC
data in industrial CM applications. [56] introduced a dual-level-defect
detection PointNet (D*PointNet) for inspecting defects in solder paste
patterns in printers, using segmentation and multi-label classification.
This approach was designed to address the challenges of sparseness and
varying sizes of the solder patterns, where conventional CNNs may not
be suitable. Therefore, defect detection is performed at two semantic
levels: micro and macro, providing robustness to changes in sparsity
and input data size. The author defined two hand-crafted features,
edge and prior features, to prevent the loss of spatial information in
the PC during processing. The work achieved a mAP of 97.87% and
mPrec of 97.28%. Another example is the Self-organizing networks (SO-
Net) [57], which achieves permutation invariance for unordered PCs by
building a self-organizing map based on the spatial distribution of PCs.
The hierarchical feature extraction of SO-Net results in a single feature

vector that represents the entire PC. To enhance the performance of
PointNet++, [58] proposed PointNeXt, introducing an inverted residual
bottleneck design with separable MLPs into the PointNet++ architec-
ture. This modification results in an effective and efficient model with
a 10x faster inference, which is crucial for real-time CM applications.
In addition to the pointwise MLP methods, several networks in the
literature have leveraged geometrical features for 3D PC processing
in industrial CM applications. Based on PointNet [37], Motion-based
network (MO-Net) [59] incorporates the context of 3D geometry in
the form of a finite set of moments as network input. This approach
uses an attention mechanism to learn fine-grained local features of the
PC, which can be beneficial for capturing subtle defects in industrial
systems. Similarly, Point attention transformers (PATs) [60] represent
each point in the PC using its absolute and relative positions concerning
its neighbors. Then, group shuffle attention (GSA) captures the relations
between these points, and a differentiable, permutation invariant, and
trainable end-to-end gumbel subset sampling (GSS) layer is developed
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Fig. 6. Architecture of PCT [67]. The encoder layer consists of an input embedding module with a stacked attention module, while the decoder contains multiple Linear layers.

Source: Adapted from Guo et al. [67].

to learn hierarchical features that can be important for effective defect
classification and localization. PointNet++ [54] based networks, such
as PointWeb [61], explore the interaction between points using an
adaptive feature adjustment module. This module interconnects all
point pairs in a local region, forming a fully linked web to describe
local regions for 3D recognition in industrial applications. However,
these methods require large sample sizes that might not be available
in real manufacturing environments. To address this limitation, [62]
introduced a tensor voting-based method is introduced for classify-
ing surface anomalies such as debris patches, depression marks, slag,
pinholes, and oscillation marks on steel surfaces. Tensor voting is
employed to infer geometric characteristics such as curvature, surface,
and junction by voting over the neighborhood to identify points that
may contain potential anomalies. Aggregated descriptive features are
extracted for each selected PC sample and fed into a sparse multi-
class SVM classifier for anomaly classification and feature selection. The
approach achieved an average accuracy of 86.27%. Another example is
the Strictly rotation-invariant network (SRI-Net) [63], which projects
the PC data into a rotationally invariant representation, utilizing a
PointNet backbone to extract global features and a graph aggregation
method to extract local features. This can be particularly useful for
industrial applications where the orientation of the object may vary.
In addition, PointASNL [64] adaptively adjusts the coordinates of the
initially sampled points using the furthest point sampling (FPS) algo-
rithm and introduces a local-on-local (L-NL) module to capture local
and long-range dependencies of these sampled points. PointGMM [65]
is a coarse-to-fine feature learning method subdividing the input point
data into distinct groups using a hierarchical Gaussian mixture model
(hGMM). This approach focuses on learning features of small and
large regions, respectively. Here, the bottom GMM focuses on learning
features of small regions, while the top GMM learns features of larger
regions. More recently, [66] proposed a novel improved PointNet++ for
classifying and segmenting the sewer pipes’ defects of different shapes
and sizes. The author improved the network structure by incorporat-
ing residual connection and cross-entropy loss with label smoothing
in the network. Later, the training process is optimized by AdamW
and the cosine learning rate decays. These geometrical feature-based
methods demonstrate the versatility of 3D PC processing techniques for
addressing the unique challenges of industrial CM applications, where
the ability to effectively capture and leverage the underlying geometric
properties of the data can be crucial for accurate defect detection and
classification.

Unlike the above methods, PC transformer (PCT) [67] is a promi-
nent example, which is based on a permutation-invariant transformer
rather than a self-attention mechanism for handling unstructured and
disordered point data with irregular domains. The overall architecture
of PCT is presented in Fig. 6. PCT transforms (encodes) the raw PC

into a new feature space to characterize the semantic affinities be-
tween points. These features are then fed into the attention module
to learn the discriminative representation for each point, followed by
a linear layer to generate the final output feature [72]. Meanwhile,
3DMedPT [13] proposed a transformer-based network for analyzing
3D medical (healthy and abnormal blood vessels) PC data. This paper
compares 3DMedPT with PCT, DGCNN, and SO-Net to achieve a high
mAP of 94.06% and F1-score of 93.6, respectively. Expanding on this,
a Transformer-based network (TR-Net) [73] utilizes a neighborhood
embedding strategy and residual backbone with skip connections to
enhance context-aware and spatial-aware features. The author uses
an offset attention operator on PC spatial information to sharpen the
attention weights to improve the extraction of global features for CM
tasks. Inspired by the bi-directional encoder in transformers (BERT),
Point-BERT [74] adopts a strategy of dividing the PC into distinct local
blocks, generating discrete point labels that represent local information
using a PC marker. This approach allows the model to capture specific
details and features within localized regions of the PC. Similar to BERT,
Point-BERT introduces a masking mechanism where some input PCs are
randomly masked and then fed to the backbone transformer network.
This facilitates bidirectional learning and enhances the model’s ability
to capture contextual relationships in 3D PC data.

However, the uneven distribution of information in the PC may
lead to a loss of information during the reconstruction task. To address
this challenge, masked autoencoder (MAE) methods, such as Point-
MAE [75], have been proposed. Point-MAE is a self-supervised learning
(SSL) method designed to mitigate issues related to uneven information
density and information leakage of PC locations. In a study by [70],
a deep autoencoder network was proposed for processing 3D PC data
of concrete bridges, which are critical industrial infrastructure. The
network takes encoded shape and neighborhood features as inputs
and uses a one-class support vector machine (OC-SVM) to classify
spall defects on the concrete bridge’s PC data. The author tested the
network on a diverse set of quasi-real PCs covering a variety of (low,
medium, and high) noise and defect conditions, achieving a mAcc of
98% and an F1 score of 69% for CM tasks. Expanding on transformer-
based approaches, PointConT [76] presents a novel approach to 3D
PC processing by leveraging transformer-based clustering and self-
attention mechanisms. The method focuses on clustering points based
on their content and applying self-attention within each cluster. This
design aims to capture long-range dependencies within the PC while
managing computational efficiency. Additionally, the authors introduce
an inception feature aggregation module featuring a parallel struc-
ture to aggregate high and low-frequency information separately. [77]
integrates clustering and multi-class classification within in-site PC
processing for surface defect detection in additive manufacturing (AM)
industries. Eight classifiers — Support Vector Machine (SVM), K-Nearest
Neighbors (K-NN), Gaussian process (GP), Decision Tree (DT), Naive



A. Rani et al. Information Fusion 112 (2024) 102575
Table 2
Performance evaluation for classification methods on industrial applications.
Ref. Application Classes Method Results Points/Objects
[68] Defect classification in sewer 4 classes: normal, displacement, brick, and DGCNN OA =479 17,027
rubber ring
mloU = 46.1
PointNet OA =184
mloU = 18.5
[36] Classification of infrastructure elements 10 classes: column, 3 types of culverts, 5 PointNet Mean F1 score = 89.3 1496
types of walls, and sump
PointNet OA = 83
F1 score = 87
[62] Classification of anomalies on steel 5 classes: debris, oscillation, slag, depressions, Tensor voting Mean Acc = 86.27 96,266
surfaces and pinholes marks
[43] Defect classification in precast concrete 2 classes: defective, and normal MVGCN Fuclidean = 97.9 2000
specimen
Geodesic = 93.8
DGCNN Euclidean = 70.8
Geodesic = 81.3
[66] Defect classification in concrete sewer 5 classes: 3 circular defects of varying Improved Mean F1 score = 68.15 1.4 M
pipes diameter, square and triangular defect PointNet++
Accuracy = 73.01
PointNet++ Mean F1 score = 61.36
Accuracy = 67.55
[69] Defect classification in polyvinyl 4 classes: normal, and defective (brick, TransPCNet F1 score = 60.58 17,027
chloride-sewer pipes rubber ring, displacement)
Precision = 61.47
DGCNN F1 score = 16.66
Precision = 34.55
PointNet F1 score = 30.23
Precision = 28.61
[55] Classification of surface defects on 4 classes: cracks, spalling, scaling, and PointNet mAcc = 85.7 21 M
bridges delaminations
[70] Spall Classification on bridges 2 classes: normal and defective Point-wise mAcc = 98 21 M
Precision = 68
PointNet mAcc = 97
Precision = 61
[56] Classification of printer defects 2 classes: normal and defective solder D3PointNet mAcc = 97.17 4.2 M
patterns
Precision = 97.28
[38] Classification of solder joints shapes 2 classes: normal and defective SDCNN mAcc = 98.1 800
Precision = 83.9
MVCNN mAcc = 93.6
Precision = 76.9
[71] Classification of concrete sewer pipes 2 classes: potholes, and background Improved mAcc = 73.01 17,027
PointNet++
PointNet ++ mAcc = 67.55

Bayes (NB), Artificial Neural Networks (ANN), Random Forest (RF), and
AdaBoost (AB) — were examined and fine-tuned. The KNN model exhib-
ited superior performance, achieving a remarkable accuracy of 93.15%
for this industrial application. Similarly, [78] leverages macro-level
data on neighboring points within the PC through a patch-based strat-
egy for detecting defects in the AM sector. Five machine learning (ML)
techniques — Bagging of Trees (BoT), Gradient Boosting (GB), RF, K-NN,
and SVM - were evaluated under diverse operational settings. Bagging
and RF emerged as the top-performing models for defect identification,
achieving accuracies of 99.99% and 99.59%, respectively, with a patch
size of 20. Most recently, [69] proposed a transformer-based PC classi-
fication network (TransPCNet) for CM of sewer pipelines. TransPCNet
comprises a feature embedding module for extracting features from
local neighbors, an attention module designed to learn and enhance
feature extraction, and a classification module. Additionally, the au-
thors introduced a weighted smoothing cross-entropy loss to aid the
network in feature learning while addressing PC imbalances. These
advanced techniques, ranging from masked autoencoders and deep
autoencoders to transformer-based methods and hybrid ML approaches,
demonstrate the continued evolution of 3D PC processing for industrial
CM applications.

In summary, pointwise MLP methods demonstrate efficiency and
effectiveness in processing raw 3D PC data, leveraging simplicity to
capture local features independently for each point, allowing for fine

geometric structure understanding. This makes them well-suited for
industrial CM applications, where the input data may be irregularly
distributed and difficult to represent using regular structures. Despite
their advantages, challenges arise when handling large-scale and com-
plex PCs due to limitations in capturing long-range dependencies and
holistic context. Additionally, these methods face difficulties in accom-
modating variations in point density, leading to potential impacts on
the robustness of feature extraction. The introduction of point-based
transformers and related models addresses some of these challenges
by leveraging permutation-invariant transformers. These transformer-
based approaches excel in managing unstructured and disordered point
data, presenting a promising avenue for advancing the processing of 3D
PC data.

3.2.2. Convolution-based methods

Following the remarkable success of CNNs in CV tasks [79,80]
such as image classification, object detection, and segmentation, there
has been a significant effort to extend these methodologies to an-
alyze geometric and spatial data. Unlike the regular grid structure
in 2D images, geometric data (PCs, 3D models, etc.) lacks underly-
ing grid information, necessitating the development of new methods.
Several convolution-based methods, including continuous and discrete
convolution-based methods, have been developed for analyzing 3D PC
data in industrial CM applications [81-83]. 3D continuous convolution
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methods are defined in a continuous space where weights for neigh-
boring points are spatially related to their center point. Conversely,
3D discrete convolutions involve a fixed-size kernel sliding over a
structured point grid, with weights assigned to neighboring points
determined by their offsets relative to the center point of the kernel.

Among continuous convolution methods, PointConv [84] stands
out by representing convolution kernels as non-linear functions of
the local coordinates of 3D points. These functions comprise weight
(learned with MLP layers) and density (learned by kernel density
estimation) functions as represented in Egs. (5) and (6), respectively.
PointConv efficiently computes the weight function, providing transla-
tion and permutation-invariant convolution in 3D space. It is known
that continuous 3D convolution can be expressed as:

Conv(W, F),,. = /// W (8,6, 8,)F(x+6,, y+6,,2+8,)d5,5,8.
(6,,6,,6.)eG

)

where F(x+56,, y+6,, z+5,) represents the point feature and W (5,, 8,,6,)
is the weight function approximated by MLPs in local region G with
center point p = (x, y, z) for any random position (6y,8,,6,)- Based on
this, PointConv (PConv) can be defined as:

PConv(S.W.F),,,= Y S(6.6,6)W(5,.6,.5,)

(y.8,:5,)¢G
X F(x+6,,y+68,,2+6;) (6)

where 5(6y,6,,6,) is inverse density scale at any position (8, 6,,62)
calculated using kernel density estimation (KDE) followed by 1D non-
linear transform fed with MLPs. This S needs to be estimated due to
the non-uniform PC input data.

Another notable method, KPConv [85], introduces a deformable
convolution operator that learns local shifts at each convolution loca-
tion, enabling adaptation of the kernel shape based on the input PC’s
geometry. This adaptive capability is particularly valuable for handling
the complex and irregular structures often encountered in industrial PC
data. Another approach, ConvPoint [86] takes a different approach by
introducing a dense weighing function to define detailed and adaptive
convolutional kernels. In this method, the derived kernel is explicitly
represented by a set of points, each associated with specific weights,
allowing for a more flexible and customized convolution operation for
industrial CM tasks.

In the realm of discrete convolution-based methods, PointCNN [87]
is a pioneering work that tackles the unordered and irregular structure
of 3D PC data. PointCNN learns y-transformation from input PC data
to project or aggregate information into few representative points (9 —
5 — 4) while preserving rich feature information, effectively addressing
the challenges posed by the inherent structure of PC data obtained
from industrial sensors and scanners. This transformation permutates
the weight of input point features into canonical order. A CNN is then
applied to these transformed features, addressing the unordered and
irregular structure of the 3D PC data. Additionally, Pointwise CNN [88]
applies the convolution operator on each point in the PC to learn
pointwise features. Here, varying neighboring points lying within each
kernel contribute to the center point in each convolution layer, given
by:

1
Pl=YW, —— P! @
! ; |(pl(k)| x,a;,(k) J

where W, is kernel weight while ¢;(k) is kth sub-domain of the kernel
centered at point i. x; is the coordinate of point i while P, and P,
value of point i and j, and [-1 and [ are index of input and out-
put layer respectively. The obtained outputs are then concatenated
before being fed to the final convolution layers for segmentation or
fully connected layers for object recognition. This approach can be
particularly useful for extracting localized features in industrial CM
applications, where the spatial relationships and interactions between
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individual points in the PC may hold valuable insights. Unlike the
traditional methods, Pointwise CNN does not require up-sampling or
down-sampling of the PCs. Based on PointCNN, spherical harmonics
network (SPH-Net) [89] proposed a rotation invariance CNN on PCs
by using spherical harmonics-based kernels at different network layers.
SC-CNN [90] implements a spatial coverage convolution by construct-
ing an anisotropic spatial geometry in the local PC and replacing
the depthwise convolution with the spatial coverage operator (SCOP).
This method excels in learning high-order relations between points,
providing shape information, and enhancing network robustness.

In summary, continuous convolution methods, such as PointConv,
KPConv, and ConvPoint, offer adaptability to diverse PC geometries and
effective pattern capture. However, they overlook PC distribution con-
siderations. In the discrete domain, PointCNN efficiently handles un-
ordered structures, Pointwise CNN excels in pointwise feature learning,
SPH-Net introduces rotation invariance, and SC-CNN learns high-order
relations. While these methods enhance 3D PC analysis, challenges
persist in distribution awareness and computational efficiency.

3.2.3. Graph based methods

Graph-based methods provide an alternative to CNNs for handling
unstructured and unordered 3D PC data. Unlike CNNs, which oper-
ate on regular grid data, graph-based methods transform the PC into
a comprehensive graph, avoiding the need for voxelization. A typi-
cal architecture of a graph-based PC network is illustrated in Fig. 7.
This approach allows for flexibility in capturing intricate relationships
among points, representing each point in the PC as a vertex in the
graph, with edges established between nearby points [91]. These edges
analyze spatial relationships, creating a graph that encapsulates the
geometric features of the original PC. Graph-CNN [92], also known as
PointGCN, classifies 3D PCs by combining localized graph convolution
layers with two types of data-specific pooling layers (down-sampling).
This method effectively incorporates the geometric information en-
coded in the graph, enhancing the robustness of the model. In contrast,
Dynamic graph CNN (DGCNN) [8], inspired by PointNet, addresses
the limitation of processing each point independently, as in PointNet,
leading to the neglect of local features between points. To solve this,
Dynamic CNN uses the EdgeConv layer to capture edge features from
each point and its neighbors. EdgeConv explicitly constructs a local
graph while learning the embeddings for the edges, enabling the group-
ing of the points in Euclidean and semantic space. [68] investigated the
application of DGCNN and PointNet for classifying defects on synthetic
and real sewer PC data. The author observed that the DGCNN network
consistently outperforms the PointNet network for synthetic and real
datasets. Dynamic points agglomeration module (DPAM) [93] is based
on graph convolution to agglomerate (sampling, grouping, and pooling)
points by multiplying the agglomeration matrix and points feature
matrix. Based on PointNet and PointNet++, a hierarchical network is
constructed by stacking multiple DPAMs by dynamically exploiting the
relation between points and agglomerated points in a semantic space.
Additionally, a variation of DGCNN, linked-DGCNN [94] simplifies the
model by removing the transformation layer in DGCNN. This is im-
plemented by connecting the hierarchical features of various dynamic
graphs to address the issue of gradient vanishing. PointView-GCN [95]
introduces a multi-level GCN to hierarchically aggregate shape features
of single-view PCs. This method allows encoding both object geometric
cues and their multiview relationships, improving the extraction of
global features. Gaussian super vector network (GSV-NET) [96] is a
recent approach that captures and aggregates both local and global
features of the 3D PC to enhance the information of the PC features.
GSV-NET combines the GSV network and a 3D-wide inception CNN
architecture to extract global features. The method then converts 3D
PC regions into color representations and employs a 2D-wide inception
network to obtain local features. Also, [97] integrated the distance
and direction information in GCN (DDGCN) by constructing a dynamic
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Fig. 7. An illustration of a graph-based 3D PC network.

neighborhood graph. This dynamic graph utilizes MLPs and the sim-
ilarity matrix to capture the local features of the PC. Additionally,
the author modifies the loss function by incorporating the center loss,
enhancing the discriminative power of the model.

Overall, point-based methods operate directly on raw PC data,
rendering them well-suited for irregularly sampled and unstructured
datasets with lower computational demands. Pointwise methods lever-
age MLP networks as fundamental building blocks for learning point-
wise features, showcasing versatility in various network architectures.
While literature indicates the superior performance of convolution-
based networks for irregular PC data, limited research exists on con-
tinuous and discrete convolution networks in this context. Graph-based
approaches provide another avenue for handling irregular PC data, but
extending these methods, particularly those based on spectral domain
graph structures, to various graph configurations remains a challenging
task. Future research directions may explore advancing convolutional
and graph-based methodologies to enhance point-based methods un-
derstanding and processing capabilities for diverse and complex 3D
industrial datasets. Investigating methods that can effectively account
for the underlying distribution of the PC data may be crucial for
developing robust and reliable feature extraction and defect detection
techniques in industrial CM applications. Table 2 present the outcomes
of defect shape classification for industrial systems.

4. Deep learning for 3D PC segmentation

The effective segmentation of 3D PC data is crucial for a wide range
of industrial CM applications. By accurately identifying and classifying
the various elements within the PCs, industrial systems can benefit from
enhanced defect detection, component-level analysis, and improved
predictive maintenance capabilities. The task of 3D PC segmentation
demands a comprehensive understanding of each point’s geometric
structure and intricate details in the 3D PC data. The segmentation task
can be broadly categorized into three major types:

1. Semantic segmentation (Scene level): This method classifies each
point within a 3D PC into predefined categories by assign-
ing semantic labels based on their characteristics, enabling a
high-level understanding of the overall industrial scene or en-
vironment.

2. Instance segmentation (Object level): This method identifies and
distinguishes each object in the 3D PC by assigning each point
with a specific instance or object. Unlike semantic segmentation,
which groups points into predefined categories, object level
segmentation enables the recognition of separate instances of
objects, even if they belong to the same semantic class. This can
be particularly valuable for industrial asset tracking, monitoring,
and maintenance.
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3. Part segmentation (Part level): This method segments each com-
ponent of the object in the 3D PC providing a more detailed
object-level segmentation. Unlike semantic segmentation, which
categorizes points into high-level classes, and instance segmenta-
tion, which identifies and distinguishes individual objects, part
segmentation provides a more detailed breakdown of each ob-
ject by segmenting its constituent parts. This can be beneficial
for component-level analysis, defect detection, and predictive
maintenance of industrial equipment and systems.

These segmentation categories address different levels of abstraction,
ranging from scene-level context to object-level identification and even
detailed part-level segmentation. The ability to accurately perform
these types of segmentation tasks on industrial 3D PC data can greatly
enhance the understanding and analysis of complex industrial systems,
leading to improved CM, reliability, and overall performance. The
annotated examples for semantic, instance, and part segmentation on
benchmark datasets are shown in Fig. 8.

4.1. 3D semantic segmentation

3D semantic segmentation, a key aspect of scene understanding,
involves categorizing points in a 3D PC into predefined classes or labels.
Similar to 3D shape classification, semantic segmentation methods can
be divided into the following categories: projection-based methods
(multi-view representation, spherical representation, and volumetric
representation), direct point-based methods (pointwise MLP methods,
convolution-based methods, and graph-based methods) [2,98-100].
Fig. 9 illustrates the most recent methods in 3D semantic segmentation.

4.1.1. Projection-based methods

Projection-based methods in 3D semantic segmentation transform
3D PC data into 2D images. This transformation is achieved through
various techniques, including multiview, volumetric, and spherical pro-
jections.

Multi-View Representations: Multi-view representation leverages
the projection of 3D PCs into 2D images from multiple viewpoints for
semantic segmentation. Researchers have explored various multi-view
representation methods for industrial PC processing. [101] projected
PCs into 2D images using multiple camera views and then processed
by fully convolutional networks (FCNs) for semantic segmentation. The
resulting pixel-wise segmentation was re-projected into the original
input PC. The final semantic label for each point is obtained by fusing
the re-projected scores over the different views. However, there is
a loss of information during the projection process. To address this
limitation, [102] pre-process the input images by generating a mesh
and then decimates the PC to get a lighter cloud by voxelizing the scene.
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(a) S3DIS

(d) ScanNet (e) ShapeNet

Fig. 8. Annotated examples for (a) S3DIS, adapted from Armeni et al. [19], (b) Semantic3D, adapted from Hackel et al. [20], (c) SemanticKITTI, adapted from Geiger et al. [22]
for 3D semantic segmentation, (d) ScanNet, adapted from Dai et al. [18] for 3D-instance segmentation, and (e) ShapeNet, adapted from Chang et al. [27] for 3D-part segmentation.
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Fig. 9. Chronological overview of the most relevant DL-based 3D semantic segmentation methods.
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Fig. 10. Estimation of tensors on rail surfaces (a) Normals of defected region, (b) Curvature region.

Source: Adapted from Wang et al. [109].

Later, both color and volumetric information were used for semantic
labeling. Multiple RGB and depth (RGB-D) images were generated to
extract two generic features (normal deviation to vertical and noise
estimation) using various camera positions to achieve this. The normal
deviation to vertical at any point p is given by:

®

where n, and v are normal and vertical vector. The noise feature at

any point p is estimated based on the point spread in its neighborhood
given by:

NDev, = arccos(‘n[,.vl)
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Noise, = é

0
where 4, and 4, are the highest and lowest singular values in PCA.
Pixel-wise labeling is then performed on these captured snapshots
and fed to two symmetrical encoder-decoder networks, such as Seg-
Net [103] and U-Net [104], with a final fusion step using residual
correction [105] on the obtained predicted scores. In a similar work,
SnapNet [106] selected specific snapshots of the PC to generate pairs
of RGB-D images. Then, pixel-wise labeling is performed on these 2D
snapshots using FCNs. Extending this concept, [107] proposed a novel
tangent convolution to design U-Net for segmenting dense PCs. This
method involves projecting local surface geometry onto a virtual tan-
gent plane, serving as input for subsequent tangent convolutions. Here,
each tangent image can be treated as a regular 2D grid that supports
planar convolution. Generic flow network (GF-Net) [108] proposes a
novel approach for learning geometric features by fusing information
from multi-view representations. The author used KNN post-processing
over KPConv to make it end-to-end trainable. In a recent work by [109],
a fusion of image and tensor-based PC, referred to as T-PCIF, was
introduced for detecting defects on rail track surfaces. The approach
employed YOLOV8 for swift defect localization and PC for precise
damage detection. Moreover, image fusion was conducted through a
combination of Kd-tree and superpixel segmentation algorithms. The
rail surface was represented as 3D tensors, encapsulating rail points,
neighboring points, and their associated features. Normal and curvature
features were estimated to generate a feature tensor for identifying rail
damages as illustrated in Fig. 10. The method utilized a total of 618
images, achieving a mAcc of 86.27% and mlIoU of 70.18%.

Overall, multi-view representation methods project 3D PCs into
2D images from various viewpoints for semantic segmentation. While
providing diverse perspectives, they are sensitive to occlusions and
viewpoint selection, impacting performance. Tangent Convolution ad-
dresses geometric information by projecting local surface features onto
a virtual tangent plane. However, these methods may not fully exploit
inherent 3D geometric information, leading to potential information
loss.

Spherical Representations: Spherical representation techniques
leverage the projection of 3D PCs onto a spherical surface for effi-
cient processing and segmentation. Researchers have explored various
spherical representation methods for industrial PC processing. Based
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on CNN, an end-to-end pipeline named SqueezeSeg [110] was pro-
posed to provide labeled point-wise output data. This method utilizes
a conditional random field (CRF) as a recurrent layer to refine the
segmented points further. To reduce the impact of dropout noise on
the accuracy of SqueezeSeg, the author proposed SqueezeSegV2 [111].
SqueezeSeg?2 introduced a novel CNN module named context aggrega-
tion module (CAM) to aggregate contextual information from a large
receptive field, improving the network’s robustness to dropout noise.
However, challenges persist in handling issues arising from interme-
diate representations, including blurry CNN outputs and discretization
errors.

Building upon these advancements, RangeNet++ [112] overcame
the limitations of the previous methods by performing segmentation
using CNN and an encoder—decoder hourglass-shaped architecture. The
decoder in RangeNet++ incorporates a modified DarkNet [113] back-
bone architecture, enabling the use of aspect ratios beyond square
configurations. Furthermore, RangeNet++ substitutes the CRF utilized
in [110,111] with GPU-based nearest neighbor calculations across the
complete PC. However, when dealing with unbalanced training sam-
ples, the training outcomes may become skewed, leading to inaccura-
cies in segmentation results. To improve the segmentation accuracy,
AsL-RangeNet++, an extension of RangeNet++, introduces an asym-
metric loss (AsL) function proposed by [114]. This method uses the AsL
function with Adam optimizer, integrating asymmetric loss and proba-
bility transfer for calculating and adjusting object weights, enhancing
the precision of semantic segmentation given by:

= — Y.
asp =1 Le=U - Blog(B) 10)
L_=(B,)-log(1 - B,)
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B - B
B=o(z); B, = { meBem an
0, B<m

where B is network probability while m is marginal probability, and
o(z) is sigmoid function. L, and L_ are loss components of positive
and negative samples based on the loss parameter y. Compared to
the loss function in RangeNet++, AsL accurately segments the PC in
small proportions, and then, according to the loss parameters, it can
adapt to the PC of different sample categories, improving the semantic
segmentation. However, these methods stack point data from various
modalities, such as coordinate, depth, and intensity, as inputs without
accounting for their heterogeneous distributions.

Volumetric Representations: These methods transform unstruc-
tured 3D PCs into regular volumetric occupancy grids. The feature
learning is then performed using NN to achieve semantic segmenta-
tion [27,47,115]. [116] projects the PC into occupancy voxels and fed
into 3D-CNN to produce voxel-level labels, where all points within
each voxel are assigned the same semantic label. This approach can
be beneficial for tasks such as defect detection and component-level
analysis in industrial systems. Building upon this, [117] introduced
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InspectionNet, a 3D CNN-based framework designed to detect de-
fects in synthetically generated concrete columns, demonstrating the
potential of volumetric representations for infrastructure monitoring
applications. SEGCloud [118] presented an end-to-end framework for
semantic segmentation that integrates NN, tri-linear interpolation (TI),
and fully connected CRF (FC-CRF). This approach generates coarse
voxel predictions using 3D-CNN, which are then transferred back to
the raw input 3D points through TI. Finally, FC-CRF is used to en-
force global consistency and improve the semantic understanding of
the points, resulting in fine-grained segmentation results. Voxel vari-
ational autoencoder network (VV-Net) [119] used a combination of
variational autoencoder (VAE) and 3D-CNNs to capture the point distri-
bution within each voxel for semantic segmentation tasks, potentially
enhancing the understanding of the underlying PC structure for in-
dustrial applications. [120] introduced SalsaNet, an encoder-decoder
network comprising a series of ResNet blocks in the encoder and
employing upsampling and feature fusion in the decoder. Subsequently,
SalsaNext [121] enhanced SalsaNet by replacing the ResNet encoder
with a stack of residual dilated convolutions and a pixel-shuffle layer
in the decoder, facilitating uncertainty-aware semantic segmentation.
(AF)2-S3Net [122], an extension of S3Net [123] and S3CNet [124],
is an encoder-decoder model designed for 3D semantic segmentation
using sparse-CNN. In this approach, the encoder incorporates an atten-
tive feature fusion module to capture global and local features, while
the decoder uses an adaptive feature selection module and feature
map re-weighting to emphasize contextual information obtained from
the feature fusion module. Cascade point-grid fusion network (CPG-
Net) [125] adopts a cascading approach to extract and aggregate
semantic features from point-view, bird’s-eye view, and range-view
representations. To improve robustness, a transformation consistency
loss based on test-time augmentation is introduced to ensure agreement
between original and augmented PCs. PCSC-Net [126] combines point
convolution and 3D sparse convolution for semantic segmentation. It
generates large-size voxels from input PCs, applies point convolution to
extract voxel features, and then utilizes 3D sparse convolution to prop-
agate features into neighboring regions, enhancing feature extraction
and context understanding. However, volumetric methods may lose
information with low-resolution 3D grids, and their computational costs
and memory requirements increase cubically with voxel resolution.

While volumetric methods have proven effective in various PC
processing tasks, they may suffer from information loss due to low-
resolution 3D grids. Also, their computational costs and memory re-
quirements increase cubically with voxel resolution. This can be a
critical consideration for industrial CM applications, where real-time
processing and efficient resource utilization are crucial.

4.1.2. Direct point-based methods

These methods operate directly on unstructured and irregular PCs,
which poses a challenge for applying standard CNNs. PointNet [37]
is a pioneering work in this domain, introducing a framework for
processing direct PCs. Building upon PointNet, various approaches have
been proposed, including pointwise MLP, point convolution, and graph-
based methods, all aiming to enhance the processing and understanding
of unstructured and unordered PC data.

Pointwise MLP methods: These methods utilize shared MLPs as
the fundamental building block in their networks. However, the fea-
tures extracted on a pointwise basis by these shared MLPs may face
challenges in capturing the complex local geometry within PCs and the
mutual interactions between points. To address these limitations, novel
strategies have been introduced, including neighboring feature pooling,
attention-based aggregation, and local-global feature concatenation.

Neighboring feature pooling: These methods are designed to cap-
ture local geometric patterns by aggregating information from nearby
points to learn features for individual points in a PC. In [127], Point-
Net [37] was employed for semantic segmentation of elements such
as pipes, valves, and background in two underwater environments:
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pool and sea. Additionally, the author created a novel PC dataset
containing pipes and valve elements in various underwater scenarios.
This work achieved an F1l-score of 97.2% and 89.3% for the pool and
sea test sets, respectively. PointNet++ [54] performs a hierarchical
grouping of points to learn features from large local regions. Subse-
quent developments, such as multi-scale grouping and multi-resolution
grouping, have been introduced to address challenges arising from the
non-uniform density of PCs, well-suited for handling the non-uniform
density often encountered in industrial PC data [128] proposed the
surface-normal enhanced PointNet++ (SNEPointNet++) for infrastruc-
ture inspection and monitoring by semantic segmentation of defects,
such as cracks and spalls, on concrete bridge surfaces. The method
was tested on their custom dataset containing concrete surface defects
with 1785 cracks and 2319 spalls with minimum width of 2 mm and
5 mm. This approach emphasizes utilizing normal vector, color, and
depth characteristics to address challenges associated with small size
and imbalanced PC data. If S(x, y,z) = 0 is any surface based on local
surface fitting, then for point P, = (x, ¥y, zy) on the surface, the normal
vector 7 can be calculated by:

)
[VS]
where V.S is gradient of S, and |V.S| is vector length. Furthermore,
based on PointNet++, normalized coordinates (X;,Y;, Z;) are used to
provide the relative information of each point in a segment expressed
as:
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where X,,,c» Vimax> Zmax T€Presents maximum values of x;,y;, z; in each
segment respectively. This work resulted in 93% and 92% recalls for
semantic segmentation of cracks and spalls, respectively. Also, the
severe defects deeper than 7 cm achieved a recall of 98% and 99%
for cracks and spalls, respectively.

In [129], the authors introduced a focal loss function and a PC reg-
istration network (PCCR-Net) network for industrial construction and
infrastructure monitoring applications based on PointNet++ for seg-
menting precast concrete structures. PCCR-Net specializes in segment-
ing components such as columns, beams, slabs, walls, concrete, and
rebars. Notably, the conventional negative log-likelihood loss function
of PointNet++ was replaced with the focal loss function for gradient
descent. Furthermore, the authors presented a synthetic PC dataset
comprising diverse precast concrete components. PCCR-Net achieved
an OA of 97.47% and a mIoU of 93.12%, in comparison to PointNet++,
which attained an OA of 95.17% and a mIoU of 87.68 %. However, the
approach was not implemented for large PCs or PCs with geometric
irregularities. [130] introduced ResPointNet++ featuring two NNs: a
local aggregation operator for learning complex local structures and
residual bottleneck modules to overcome gradient vanishing issues.
ResPointNet++ demonstrates superior segmentation performance for
indoor industrial systems, demonstrating its relevance for industrial
CM and asset management use cases in comparison to PointNet++,
achieving F1 scores of 98.74 % and 65.46%, respectively. The PointSift
module, as proposed by [131], achieves multi-scale representation by
stacking and convolving features from the nearest points across eight
different spatial orientations. This versatile module can seamlessly
integrate into any PointNet-based framework, enhancing the network’s
representation capability to achieve OA and mloU of 88.72% and
70.23% on the S3DIS dataset. [132] defines points neighborhood in
both the world space and feature space using K-means clustering and
k-nearest neighbors (kNN), respectively. The learned point feature
space is then structured by using pairwise distance loss and centroid
loss. The mutual interaction between different points in the PC was
explored by PointWeb [61] by constructing a local fully-linked web.
An adaptive feature adjustment module is proposed to exchange in-
formation and refine features, then aggregate the learned features to
obtain discriminative feature representation. RandLA-Net [133] intro-
duces a lightweight NN designed to directly infer per-point semantics
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for large-scale PC segmentation tasks. The author incorporates a lo-
cal feature aggregation module and random point sampling to retain
fine-grained geometric details during object segmentation. RandLA-Net
processes 200x faster than existing approaches on large PCs, surpassing
SOTA semantic segmentation methods on the S3DIS and SemanticKITTI
datasets. Multiple view pointwise networks (MVP-Net) [134] intro-
duced space-filling curves and multi-rotation PC methods to expand the
receptive field and efficiently aggregate the captured semantic feature.
Compared to RandLA-Net [133], MVP-Net demonstrates 11 times faster
performance and higher efficiency in semantic segmentation tasks using
the SemanticKITTI dataset. In another study, [135] investigated the im-
pact of neighborhood size selection for CM of bridges by segmentation
of defects in 3D bridge PCs. The authors compare various sub-sampling
approaches, including fast-graph, uniform, and random methods, to
identify the optimal neighborhood selection strategy.

Attention-based methods: These methods introduce innovative
techniques for learning relations between points in PC data. [60]
proposed a self-attention operator called GSA to learn relations be-
tween points. Later, the author used a task-agnostic sampling operation
named GSS to replace the traditional FPS approach. This module is
less sensitive to outliers, allowing a selective representative subset of
points. The spatial distribution of the PC can be captured effectively
using the local spatial awareness network (LSA-Net) [136]. The LSA
layer hierarchically generates spatial distribution weights based on
relationships in spatial regions and local structures in the PC. Based
on the CRF framework proposed by [110,137] introduced an attention-
based score refinement (ASR) module. This module computes weights
for each point in the PC based on their initial segmentation scores,
facilitating a refinement process where the scores of each point, along
with those of its neighbors, are pooled together. The computed weights
influence the pooling operation, offering adaptability to efficiently inte-
grate the module into various network architectures, thereby enhancing
PC segmentation. [138] used an attention-based learning module for
capturing local features and semantic relations in an anisotropic man-
ner. Subsequently, a multi-scale context-guided aggregation module
was used to differentiate points in the feature space, enhancing the
scene-level understanding of semantic segmentation. Global attention
network (GA-Net) [139] incorporated point-independent and point-
dependent GA modules for learning global contextual information
across the entire PCs. Additionally, a point-adaptive aggregation block
was introduced to group learned features, enhancing discriminative
feature aggregation compared to linear skip connections. In [140], a
semi-supervised learning (SmSL) approach called SPC-Net is introduced
for segmenting various elements in tunnel PC data, including cables,
segments, pipes, power tracks, supports, and tracks. A step-wise PC
completion network (SPC-Net) utilizes a supervised learning model
with attention mechanisms and a downsampling-up sampling structure
to facilitate efficient learning and feature extraction. Furthermore, a
formulated loss function is implemented to enable SPC-Net to con-
duct SmSL for multi-class object semantic segmentation of 3D tunnel
PCs. [141] proposed a similar attention-based network called attention-
enhanced sampling PC network (ASPC-Net), aimed at tunnel defect
classification for infrastructure inspection and monitoring in industrial
settings. ASPC-Net incorporates a weighted focal loss strategy to over-
come the impact of imbalanced data, enhancing its ability to classify
defects in tunnel PC datasets accurately.

Local-global feature concatenation: This approach addresses the
segmentation challenges posed by various object sizes and scales in
large-scale industrial PCs by integrating both local and global features.
Many existing methods prioritize global or local features, while hi-
erarchical approaches often emphasize local features at the expense
of global shape features. By concatenating local and global features,
this approach enables comprehensive feature representation, enhanc-
ing segmentation accuracy across different object sizes and scales in
large-scale industrial PC datasets. For example, PointMixer, as intro-
duced in [142], facilitates information sharing among unstructured
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3D industrial PCs by substituting token-mixing MLPs with a SoftMax
function. This method aggregates features across multiple points, en-
compassing intra-set, inter-set, and hierarchy sets, thereby promoting
effective feature fusion and information exchange within the industrial
PC data. In [143], PS2-Net was introduced as a permutation-invariant
approach for 3D semantic segmentation, integrating local structures
and global context. The method leverages Edgeconv [8] to capture
local structures and NetVLAD [144] to model global context from PCs,
enabling comprehensive feature extraction for accurate segmentation
of industrial components or defects. SCF-Net [145] presented a unique
approach to learning spatial contextual features (SCF) tailored for
large-scale industrial PCs. SCF-Net uses a local polar representation
(LPR) block to construct a representation invariant to z-axis rotation.
Neighboring representations are then aggregated via a dual-distance
attentive pooling (DDAP) block to capture local features effectively.
Furthermore, a global contextual feature (GCF) block utilizes local and
neighborhood information to learn global context, which can be ben-
eficial for industrial PC processing and analysis. SCF-Net’s versatility
allows it to integrate seamlessly into encoder—decoder architectures for
3D semantic segmentation. LGFF-Net [146] introduces a novel local
feature aggregation (LFA) module to capture geometric and seman-
tic information concurrently, preserving original data integrity during
cross-augmentation. Following this, a global feature extraction (GFE)
module is used to extract global features. Ultimately, local and global
features are concatenated using a U-shaped segmentation structure, en-
hancing overall segmentation performance for industrial applications.
In [147], a dual feature complementary (DFC) module is proposed
to learn local features effectively. This module employs a position-
aware block to move with smaller points adaptively sets, enhancing
the capture of geometric features. Additionally, a global correlation
mining (GCM) module is utilized to gather contextual features, further
improving semantic segmentation performance. [148] highlights the
integration of local feature extraction and contextual information is
particularly relevant for the segmentation of overhead catenary systems
in high-speed rail infrastructure, which is a critical component of in-
dustrial transportation systems. Here, local features are extracted from
both the local points and their neighborhoods, followed by the aggrega-
tion of contextual information using CNN layers. Subsequently, feature
enhancement and fusion techniques are applied to refine the segmen-
tation process. Point central transformer (PointCT) [149] introduces
a central-based attention mechanism and transformer architecture to
address sparse annotations in PC semantic segmentation. Spatial po-
sitional encoding is introduced to focus on various geometries and
scales for point representations as a valuable technique for handling the
challenges associated with incomplete or limited labeling of industrial
PC data. In [3], a Dempster-Shafer (D-S) evidence-based feature fusion
model was employed to integrate local and global features extracted
from different CNN models. The study targeted the segmentation of
tunnel PC defects, encompassing cable, pipe, segment, track, and power
tracks. Results showcased enhanced segmentation scores compared to
raw point-based segmentation models across various baselines. This
method can be used within the industrial infrastructure monitoring
context. Recently, [150] introduced a transformer-based feature em-
bedding network (3D Trans-Embed) for detecting defective industrial
products for quality control and CM applications in industrial settings.
The method leverages a transformer model for PC segmentation and
integrates local feature embedding technology and multi-channel fea-
ture map fusion to enhance attention towards defective regions, thereby
improving semantic segmentation outcomes.

Convolution-based Methods: These methods harness the intrinsic
capabilities of CNNs to extract high-level discriminative features from
complex spatial structures present in PCs. [151] used two CNNs and
an RNN to conduct semantic segmentation of structural, architectural,
and mechanical objects. The approach was trained and evaluated on PC
data from 83 rooms representing real-world industrial and commercial
buildings. In the work by [152], a novel combinational convolutional
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Fig. 11. Framework of MLS-based defect segmentation in automotive components.
Source: Adapted from Zhao et al. [158].

block (CCB) called PCNet++ is introduced and applied to the synthetic
gear dataset (Gear-PCNet++) to detect gear defects (wear, fracture,
glue, and pitting) in CM of manufacturing industries. PCNet++ replaces
the convolution layer in MLP networks with the novel CCB to extract lo-
cal gear information effectively while identifying its complex topology.
The method outperforms PointNet, PointNet++, PointCNN, and KP-
Conv on the gear PC dataset, achieving superior segmentation results.
In [88], features of individual points within the PC are learned using
a point-wise CNN for semantic segmentation and object recognition.
Furthermore, parametric-continuous CNN (PCNN) [153] operates on
non-grid data structures by employing a parameterized kernel function
that spans continuous vector space. These methods utilize the spatial
properties of PCs to develop point-based CNNs with spatial kernels,
enabling the application of convolution operators tailored to the lo-
cal structures of the PC, which could be valuable for analyzing the
local structures and geometries encountered in industrial PC data. KP-
Conv [85] presents a distinctive approach to 3D semantic segmentation
by using radius neighborhoods as input for convolution, ensuring a
consistent receptive field. This method processes these neighborhoods
with weights determined spatially by a small set of kernel points.
Additionally, KPConv incorporates a deformable operator to learn local
shifts, enabling the customization of convolution kernels for improved
alignment with the geometry of industrial PC data, potentially improv-
ing segmentation and analysis tasks. Dense connection-based kernel
point network (DenseKP-NET) [154] extends the receptive field by
introducing a multi-scale convolution kernel point module, facilitating
the extraction of coarse-to-fine geometric features. Subsequently, a
dense connection module refines these features while capturing the
complex contextual information and varied object scales commonly
encountered in industrial PC datasets. However, while kernel-based
approaches excel in semantic segmentation, they may fail to provide
ample local contextual features. To address this, [155] introduces
attention kernel convolution (AKConv) to discern local contextual fea-
tures while preserving object geometric shape information. In [156],
a dilated point CNN (DP-CNN) is proposed to investigate the impact
of the receptive field on existing point-convolution methods. DP-CNN
enhances the receptive field size by aggregating features from dilated
neighbors instead of KNN. Meanwhile, [157] introduces PointCon-
vFormer, amalgamating point convolution with transformers to bolster
model robustness. PointConvFormer utilizes pointwise CNN for feature
extraction and computes attention weights based on feature disparities,
refining convolutional weights and enhancing model performance.
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Graph-based methods: These methods utilize a graph as the fun-
damental structure for applying convolution to irregular PCs. This
approach eliminates the necessity of transforming PCs into regular grids
or voxels, enabling direct processing on the intrinsic graph-like nature
of industrial PC data. [1] used region-growing network to segment
defects, such as dents, protrusions, or scratches, on aircraft components,
which is a crucial task for CM and quality control applications. The
process involved smoothing the collected PC using a moving least
squares (MLS) algorithm. Subsequently, curvature and normal infor-
mation were collected for each point in the PC before applying the
region-growing segmentation. In [158], small 3D-printed defects such
as humps, collapses, and poor bridging are segmented for quality in-
spection using a two-step process. Initially, MLS smoothing with rough
boundary removal and an improved normal rotated projection statistics
(INRoPS) feature descriptor are employed to extract defect features.
Subsequently, in the second stage, a neighborhood point calculation
method is introduced to delineate the shape of the defects. Fig. 11
illustrates the approach employed in [158]. The approach achieved an
average accuracy of 99.75% in segmenting defective regions in automo-
tive components. A similar approach was adopted for industrial welding
inspection and quality control in [159] to detect hump, pore, and bulge
defects in weld bead PCs. In this study, 2D curvature analysis was
utilized to detect hump defects, while 3D curvature analysis was em-
ployed to identify pore and bulge defects. A region-growing approach
was then used to locate high-curvature areas for defect segmentation.
Normal vectors and curvatures are essential to analyze geometrical
PCs, facilitating tasks such as feature extraction, segmentation, and
classification.

The local surface properties, such as normal vectors and surface
curvatures for a given point p; = (x;,);,z;), can be analyzed using
the eigenvalues of the covariance matrix C of the local neighborhood,
defined as:

T
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where N, is the k-nearest neighbor, p;, is the jth neighborhood point
of p; and p is centroid of the neighborhood point N,. Singular value
decomposition (SVD) is then performed on C to obtain eigenvalues 4,,
(49 < A; < Ay). The corresponding eigenvectors v,,(vy, v;,v,) can be
calculated as:

C.v,, = Ay, me {0, 1,2} (15)
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Fig. 12. Illustration of 3D instance segmentation frameworks on ScanNet benchmark [18]: (a) Proposal-based methods, and (b) proposal-free methods.

Source: Adapted from Dai et al. [18].

The normal vector n; at point p; can be estimated with the eigen
vector v corresponding to the smallest eigenvalue A, given by:

n; = v, (16)

Further, surface curvature o can be calculated using eigenvalues of
the covariance matrix C given by:

4o

= 17
Jo+ A+ 4 a7

o(p;)
These curvature values at each point in the PC are used to distinguish
features and identify the damages.

DGCNN [8] treats neighboring points as a local graph and feeds it
into a filter-generating network to assign edge labels. Being a transfor-
mation invariance network, DGCNN is unaffected by local point order
which is well-suited for handling the irregular nature of industrial PC
data. However, while it handles local points, it does not fully exploit
the geometric information of neighboring points in the PC. In [160],
DGCNN was examined for segmenting concrete surface defects in in-
dustrial infrastructure, such as cracks and spalls, where modifications
to the loss function and data augmentation techniques, particularly
flipping, were discussed to enhance performance. Later, the author [9]
proposed an improved DGCNN method for semantic segmentation on
concrete surfaces, effectively leveraging normal vectors and depths to
detect surface defects. This normal vector-enhanced DGCNN (NVE-
DGCNN) incorporates a 10-D vector by adding normal vectors N,,
N,, and N, to the existing 7-D vectors (x,y,zr,gb,d) used in the
adapted DGCNN. The method achieved recalls of 98.6% for cracks
and 96.5% for spalls defects. In the study conducted by [161], the
segmentation of bridge components (abutment, girder, background,
pier, deck, slab, and surface) for inspection and assessment of industrial
transportation infrastructure was performed using PointNet, PointCNN,
and DGCNN. The results showed that DGCNN outperformed other
networks, achieving an OA and mIoU of 94% and 86%, respectively.
Unlike PointNet, which focuses solely on global features of input points,
DGCNN incorporates information from neighboring points, enabling
the generation of meaningful features to classify different bridge com-
ponents based on their relationships with the surroundings. In [162]
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presented an enhanced version of DGCNN incorporating additional
features, such as normals and colors, to segment architectural elements
(arc, column, decoration, floor, door, wall, window, stairs, vault, and
roof) during the inspection of buildings. The study demonstrated su-
perior segmentation performance with custom architectural cultural
heritage (ArCH) datasets with ten classes using the enhanced DGCNN
and compared them to PointNet, PointNet++, PCNN, and the original
DGCNN. In [10], a graph attention convolution (GAC) with learnable
kernels was introduced, enabling dynamic adaptation to the structure
of objects. GAC effectively learns discriminative features for semantic
segmentation, offering characteristics similar to those of traditional
CRF models. [163] extended the concept of GAC by introducing a
cross-scale graph interaction network (CGIN) for segmenting industrial
elements in remote-sensing images. CGIN used a CGI module to ex-
tract multi-scale semantic features and a boundary feature extraction
(MBFE) module to learn multi-scale boundary features. Furthermore, a
similarity-guided aggregation module calculates the similarity between
these features, highlighting boundary information within semantic fea-
tures. In [164], a simulation-to-real (sim2real) transfer learning (TL)
approach is introduced, utilizing DGCNN as the backbone network for
segmenting industrial elements such as pole pot, electric connection,
gear container, cover, screws, magnets, armature, lower gear, and
upper gear. The author also introduced a patch-based attention network
to tackle imbalanced learning challenges. The network is forced to learn
the same number of kernel points for all categories using an additional
kernel loss. The total loss in this work is given as:

Ltotal = Lseg + aer‘ + ﬂLker’ (18)

where g is the loss weight, and L.eg, L.ot and Ler are the segmen-
tation, rotation and kernel losses. Here, the kernel loss is the L2 loss
between the goal and the learned kernels. [165] introduced a local-
attention edge convolution (LEA-Conv) layer to construct a local graph
by considering neighborhood points along sixteen directions. The LAE-
Conv layer assigns attention coefficients to each edge of the graph
while aggregating the extracted point features through a weighted
sum computation of its neighborhood. This local attention mechanism
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effectively captures long-range spatial contextual features, enhancing
semantic segmentation’s precision. [166] proposed a local-global graph
CNN for semantic segmentation to capture both short and long-range
dependencies within PCs. The author computes a weighted adjacency
matrix for the local graph, utilizing information from neighboring
points, and performs feature aggregation to capture spatial geometric
features. Subsequently, these learned features are fed into a global
spatial attention module to extract long-range contextual information.

4.2. Instance segmentation

In contrast to semantic segmentation, instance segmentation
presents a more challenging task as it requires distinguishing points
sharing the same semantic meaning. To address this complexity, in-
stance segmentation methods fall into two main categories: proposal-
based and proposal-free. Proposal-based instance segmentation meth-
ods can identify and segment individual industrial components, ma-
chinery parts, or defective regions within a larger PC dataset, which
can then be used for comprehensive condition assessment and main-
tenance planning. On the other hand, proposal-free instance segmen-
tation approaches are more suitable for handling the complex and
cluttered PC data commonly encountered in industrial environments.
The ability of these methods to directly segment individual instances
without the need for explicit proposals could be framed as a key
advantage for industrial applications, where the PC data may exhibit
significant occlusions, varying object sizes, and complex spatial rela-
tionships. Fig. 12 compares proposal-based and proposal-free instance
segmentation methods using the 3D ScanNet dataset [18].

4.2.1. Proposal-based methods

Proposal-based instance segmentation methods can be conceptual-
ized as a fusion of object detection and mask prediction strategies.
These methods follow a top-down pipeline where the initial step in-
volves the generation of region proposals, usually bounding boxes
(BBox’s), followed by predicting instance masks within these proposed
regions. The pipeline encompasses multiple stages, including proposal
generation, classification, and mask prediction, often integrating object
detection and semantic segmentation techniques.

In [167], the authors propose Mask-Point, a multi-head region
proposal extractor, to generate multiple regions of interest (ROI), al-
lowing networks to focus on potential defective regions. However,
not all 3D-ROIs belong to target defects or may overlap one another.
Following this, an aggregation module comprising shared classifier, fil-
ters, and non-maximum suppression (NMS) is designed to improve the
segmentation of surface defects in fiber-reinforced composites. There-
fore, Mask-RCNN is used to compute the ROI probabilities through
a classifier, and NMS is used to remove ROIs with lower probabili-
ties concerning overlap and obtain final detection results. This work
generated a new 3D surface defect dataset containing 120 M points
and obtained mAcc and precision of 95.24% and 98.04%, respec-
tively. [168] proposed a region-CNN (R-CNN) method by combining
region proposals with features extracted from CNN to segment cracks
on concrete bridges for the inspection and maintenance of industrial
infrastructure, such as transportation systems and facilities. Unlike
traditional CNNs based on sliding windows, R-CNN detects objects
using region proposals. TL with a pre-trained model on the 50k CIFAR-
10 dataset was used in the DL architecture. This pre-trained network
was then fine-tuned to detect cracks on 384 collected crack images. The
detected cracks were cropped and quantified using image processing
techniques. Finally, the cracks were identified on an inspection map
through location matching. 3D-SIS [169] is an FCN designed for 3D
semantic instance segmentation using RGB-D scans. This network uses
a series of CNN layers to extract 2D features for each pixel, which are
then projected back onto 3D voxel grids. The RGB-D scan features are
processed by 3D-CNN and aggregated into a global semantic feature
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map. Subsequently, 3D-Region Proposal Network (3D-RPN) and 3D-
ROI layers are utilized to predict the locations of BBox’s, instance
masks, and object class labels. Building upon 3D-SIS, [170] applies
this framework in manufacturing environments by segmenting casting
defected regions (CDR) in a foundry industrial plant, introducing a non-
linear topological dimension parameter to characterize the geometrical
features of the segmented regions. This work evaluates cdrCNN, and
DCNN defect detection networks by taking AlexNet, VGGNet-19, and
ResNet-34 as backbone architectures. These networks are integrated
with 3D-ROIs and instance segmentation branches to improve the AP
by 10%. Generative shape proposal network (GSPN) [171] introduces a
novel approach for proposal generation by reconstructing shapes from
scenes, contrasting with conventional methods that regress BBox’s.
These generated proposals undergo refinement through a region-based
PointNet, with the final labels determined by predicting point-wise
binary masks for each class label, valuable for accurately segmenting
and localizing individual industrial components, machinery parts, or
defective regions within complex PC datasets. Importantly, GSPN incor-
porates a mechanism to discard trivial proposals by directly learning
geometric features from the PCs. Based on PointNet++, [172] intro-
duced 3D-BoNet, a single-stage, anchor-free, and end-to-end trainable
method for achieving instance segmentation on PCs. 3D-BoNet adopts
a direct regression approach to predict 3D BBox for all instances in a
PC while simultaneously predicting point-level masks for each instance.
The BBox prediction branch proposed in this work does not rely on
pre-defined spatial anchors or RPN rather it includes 3D geometrical
information along with a multi-criteria loss function. These predicted
BBoxes with point and global features are fed to the point mask
prediction branch to predict an accurate point-level binary mask for
each instance. Gaussian instance center network (GICN) [173] utilizes
Gaussian heat maps to represent the locations of instance centers dis-
tributed across the scene. By estimating the size of each instance, GICN
adjusts its feature extraction process to capture relevant information
within the specified neighborhood, thereby enhancing the precision and
adaptability of segmentation. In [174], OccuSeg, an occupancy-aware
3D instance segmentation method, was introduced to predict point-
wise instance-level segmentation. It leverages a 3D occupancy signal
to predict the number of occupied pixels/voxels for each instance.
This occupancy signal, learned in conjunction with feature and spatial
embeddings, guides the clustering stage of 3D instance segmentation,
enhancing the precision and adaptability of segmentation in industrial
PC analysis, particularly for applications like asset monitoring and
quality control.

Transformer-Based Methods: Transformer-based methods have
emerged as powerful tools in various CV tasks, including semantic
segmentation and instance segmentation of PCs. These methods utilize
the self-attention mechanism to capture long-range semantic relation-
ships within industrial PC data, effectively combining positional and
feature information. This can be particularly valuable for industrial
applications, where understanding the complex spatial and contextual
relationships between different components or defects within a PC can
lead to more accurate and reliable segmentation and analysis.

[175] utilizes a transformer architecture to compute object features
directly from the PC data while refining predictions by updating the
spatial encoding of the objects across different stages. On the other
hand, segmenting objects with transformers (SOTR) [176] combines
the strengths of both CNN and transformer methodologies for segment-
ing objects. This is achieved using a feature pyramid network (FPN)
alongside twin transformers to extract lower-level features and cap-
ture long-range context dependencies for object segmentation. In the
medical domain, [177] introduced a fusion of CNN and transformers
termed CoTr for 3D-multi-organ segmentation. In this approach, CNNs
were used for feature extraction, while a deformable transformer was
utilized to capture long-range dependencies within high-resolution and
multi-scale feature maps, enhancing the segmentation performance. A
similar approach could be adapted for industrial inspection and CM
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tasks, such as the segmentation of defects or anomalies in industrial
assets. BoundaryFormer [178] used pixel-wise masks as ground truth
to predict object boundaries in the form of polygons. The method eval-
uates the loss using an end-to-end differentiable rasterization model,
enabling precise delineation of object boundaries during instance seg-
mentation. SPFormer, as proposed by [179], is an end-to-end two-stage
method designed, for instance, segmentation of PCs. Potential features
extracted from the input PCs are aggregated into super points in the
first stage. Subsequently, a query decoder equipped with transform-
ers is used to directly predict instances based on these super points,
facilitating efficient and accurate instance segmentation. [180] im-
plemented improved Mask RCNN to perform instance segmentation
in sewer pipelines such as breaks, deformations, and cracks. Here,
the spit attention mechanism was integrated into the CNN backbone
providing robust and efficient features. Also, a balanced L1 loss mod-
ule was employed to improve the defect detection performance. In
this work, the improved MaskRCNN was compared to Single-Shot
Detector, YOLOv3, and Faster-RCNN approaches indicating improved
results from the aspects of backbone, loss function, and data aug-
mentation. However, the work faces challenges in detecting smaller
defects in comparison to larger defects. Mask3D [181] used stacked
transformer decoders to predict instance queries, enabling the encoding
of both semantic and geometric information for individual instances
within a scene. While previous methods relied on instance masks for
computing object queries followed by iterative refining, which often
led to slow convergence, Mask3D offers an alternative approach. To
alleviate the dependency on mask attention, [182] proposed a mask-
attention-free transformer (MAFTr). MAFTr utilizes contextual relative
position encoding for cross-attention, where position queries are iter-
atively updated to provide more accurate representations. Therefore,
these methods precisely delineate object boundaries, efficiently predict
instances, and reduce computational complexity, leading to valuable
industrial PC analysis and instance segmentation tasks.

Indeed, proposal-based methods for instance segmentation offer an
intuitive approach by combining object detection and mask prediction
strategies. However, these methods typically involve multi-stage train-
ing processes and the need to prune redundant proposals, which can
be time-consuming and computationally expensive. This complexity
arises from the necessity of generating region proposals, such as BBoxs,
followed by classification and mask prediction within these proposed
regions. As a result, while proposal-based methods may achieve high
accuracy, they often come with a significant computational cost and
training overhead.

4.2.2. Proposal-free methods

Proposal-free methods for instance segmentation could leverage the
inherent characteristics of industrial PC data, such as their spatial
distribution and semantic information, to directly segment the PCs
into distinct instances without relying on explicit region proposals.
Instead, these methods typically use clustering techniques to group
points with similar semantic meanings into distinct instances. By di-
rectly segmenting PCs into instances without the need for explicit
proposals, proposal-free methods can be more computationally efficient
and simpler in concept compared to proposal-based approaches. This
can be framed as a more computationally efficient and conceptually
simpler approach compared to the multi-stage proposal-based methods,
making it potentially more suitable for real-time industrial applications.

Similarity group proposal network (SGPN) [183] is a pioneering
work designed to learn features and semantic maps for individual points
in a PC. This network constructs a similarity matrix that encapsulates
the similarity between every pair of features within the PC. SGPN uses a
double-hinge loss to enhance the discriminative features, which adjusts
both the similarity matrix and the semantic segmentation results. Later,
it uses a heuristic non-maximal suppression technique to merge similar
points into distinct instances. However, constructing the similarity ma-
trix demands substantial memory resources, limiting the scalability of
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this method. Similarly, the multi-scale affinity with sparse convolution
(MASC) [184] utilizes sparse convolution to predict semantic scores
for each voxel while capturing the point affinity between neighboring
voxels across multiple scales. Furthermore, it uses a clustering algo-
rithm to organize points according to the learned local similarities and
the inherent mesh topology. This could be positioned as a relevant
technique for segmenting complex industrial assets or infrastructure,
where understanding the relationships between different components
is important for condition assessment and maintenance planning. [185]
proposed a structure-aware loss function to learn discriminative embed-
dings for each instance by considering the similarity between geometric
and embedding information. The author proposed attention-based kNN
to refine the learned features by grouping information from neighbors
while eliminating the quantization error caused by the 3D voxel.

Several methods have been proposed, such as integrating semantic
category and instance label prediction into a single task. Milestones
in 3D PC instance segmentation, including both proposal-based and
proposal-free methods, are depicted in Fig. 13. [186] integrates the
advantages of both instance and semantic segmentation through an
end-to-end learnable module called associatively segmenting instances
and semantics (ASIS). The ASIS module incorporates semantic-aware
point-level embedding to achieve instance segmentation and performs
instance fusion to obtain semantic segmentation simultaneously. [187]
introduced a joint instance and semantic segmentation (JISS) mod-
ule, which combines instance and semantic segmentation to generate
discriminative features. To address the large memory consumption
of JSNet, the authors proposed dynamic filters for convolution (DF-
Conv) on PCs. Based on JSNet, DFConv, and an enhanced JISS (JISS*)
module, [188] introduced JSNet++ to enhance instance segmentation.
These methods emphasize the impact of joint learning for industrial
applications, where understanding both the semantic context and the
individual instances of components or defects can provide a more
comprehensive understanding of the overall system or asset condition.
3D-Multi proposal aggregation (3D-MPA) [189] presents a technique
for predicting object proposals using semantic features derived from a
sparse volumetric backbone network. In contrast to conventional non-
maximum suppression (NMS), this method employs the MPA strategy,
based on learned features, to derive semantic instances from the gen-
erated object proposals. [71] identified structural defects in 3D PC of
concrete bridges by detecting, mapping, and extracting defects through
instance clustering using a CNN-based detection method called Detec-
tionHMA. In the detection stage, semantic segmentation is performed
on all images to return class probabilities, which are then mapped from
2D to a dense cloud, yielding segmented PCs. Finally, the segmented
PC is clustered, and the respective sub-clouds are transformed into
defect instances. Three CNN-based approaches — TopoCrack [190],
nnU-Net [191], and DetectionHMA — were compared. DetectionHMA
showed better performance for cracks with a mIoU of more than
90%, while nnU-Net performed well for areal anomalies such as spalls
and corrosion. However, instance segmentation, measured in AP, was
distinctly low, indicating a need for more advanced quantitative anal-
yses. Nevertheless, they leverage semantic features and clustering to
derive instance segmentation demonstrating relevant techniques for the
detection and mapping of structural defects in industrial infrastructure,
such as bridges or concrete surfaces, contributing to improved CM and
maintenance planning.

Grouping-Based Methods: In contrast to proposal-based meth-
ods, grouping-based methods follow a bottom-up pipeline approach,
leveraging the inherent characteristics of industrial PC data, such as
semantic labels and instance center offsets, to directly group points into
distinct instances without the need for explicit region proposals [192,
193]. This can be framed as a computationally efficient approach that
aligns well with the requirements of industrial applications, where
real-time processing and analysis of PC data are often crucial.

[194] proposed a multi-task segmentation algorithm (MSA) to learn
unique feature embeddings for each instance by leveraging grouping
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Fig. 13. Chronological overview of the most relevant DL-based 3D instance and part segmentation methods.

or clustering information associated with individual objects. Point-
Group [195] focuses on grouping points by identifying the void space
between distinct objects. The authors proposed a two-branch network
capable of extracting point features, predicting semantic labels, and
computing offsets concurrently to achieve this. These offsets are then
employed to relocate each point towards its corresponding instance
centroid. Based on PointGroup, [196] introduced a clustering-based
framework called hierarchical aggregation for 3D IS (HAIS) to produce
detailed instance predictions while effectively filtering out noisy points
within instance predictions. PointGroup and its subsequent extensions
could be positioned as relevant techniques for industrial PC analysis.
The grouping of points by identifying the void space between distinct
objects, as well as the effective filtering of noisy points, can contribute
to more accurate and robust instance segmentation for asset man-
agement and quality control applications. Dyco3D [197] introduced
dynamic convolution kernels, which encode category-specific context
by utilizing a sub-network to explore homogeneous points showing
close votes, for instance, centroids and sharing the semantic labels.
The parallel decoding of instance masks is accomplished by convolv-
ing the generated class-specific filters with coordinate information.
SST-Net [192] introduced a semantic super-point tree, where each
super-point represents a geometrically homogeneous neighborhood.
This method utilizes tree traversal for object proposal by splitting
non-similar nodes in this semantic super-point tree. SoftGroup [193]
addresses errors arising from hard semantic predictions by perform-
ing grouping based on semantic scores. The method uses a top-down
refinement module using U-Net to improve positive samples while sup-
pressing false positives introduced by incorrect semantic predictions.
This top-down refinement can contribute to more accurate and reliable
instance segmentation, ultimately benefiting industrial systems in CM
tasks.

In summary, while proposal-free methods alleviate the computa-
tional burden associated with region-proposal mechanisms, they often
exhibit lower objectness in the resulting grouped instance segments.
This limitation stems from their inherent inability to explicitly detect
object boundaries, leading to less precise delineation of individual
objects within the PC.

4.3. Part segmentation

Part segmentation involves categorizing the PC into distinct groups,
each representing a specific physical part of the object. It is cru-
cial for industrial systems, where accurately categorizing the distinct
physical parts of an object or asset can provide valuable insights for
maintenance, inspection, and optimization. However, part segmenta-
tion encounters two significant challenges. First, parts with the same
semantic label may exhibit considerable geometric variation and am-
biguity. Second, objects with identical semantic meanings may consist
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of different numbers of constituent parts. Several milestone 3D PC part
segmentation methods have been illustrated in Fig. 13.

VoxSegNet [201] introduced a spatial dense extraction (SDE) mod-
ule to extract multi-scale discriminative features from sparse volumetric
data. These learned features are contextually selected and aggregated
through an attention feature aggregation (AFA) module, ensuring dense
prediction with semantic consistency and enhanced accuracy. It can
contribute to more accurate and consistent part segmentation for com-
plex industrial assets, enabling better understanding of their inter-
nal structure and condition. PartNet [202] introduces a top-down,
fine-grained, and hierarchical approach to part segmentation. Unlike
conventional methods that segment shapes into a fixed set of labels,
PartNet formulates part segmentation as a cascade binary labeling
process. This methodology decomposes the input PC into an arbitrary
number of parts determined by the underlying geometric structures,
essential for maintenance planning, quality control, and optimization
of manufacturing processes. [203] introduced an end-to-end network
called projective CNNs (PCNNs), which combines FCNs and surface-
based CRFs to achieve part segmentation of 3D shapes. The authors
selected images from multiple views to ensure optimal surface coverage
and fed them into the network to generate per-part confidence maps.
These confidence maps are then aggregated using surface-based CRFs
to label the entire surface. However, dealing with different shapes
resulted in different nearest-neighbor graphs in the PC, posing chal-
lenges for weight sharing among convolution kernels across various
shapes. To address this challenge, synchronized spectral CNN (Sync-
SpecCNN) [204] uses a spectral network for convolution, allowing
weight sharing across different non-isometric shapes. The multi-view
information and the ability to handle non-isometric shapes can con-
tribute to more robust and accurate part segmentation of industrial PC
data, where the geometry and structure of assets or components can
vary significantly. Additionally, [205] introduced part segmentation
on 3D meshes using shape FCNs (SFCNs). The author utilized SFCNs
to process low-level geometric features and refined the segmentation
outcomes through feature voting-based multi-level graph cuts. In [206],
the authors proposed Part-Mask RCNN for predicting shape categories,
BBoxs, object masks, and object part masks in RGB-D images. The
authors utilized a voting-based pose estimation algorithm on semantic
information of the objects to obtain part segmentation. This combi-
nation of shape category prediction, BBox estimation, object mask
generation, and part mask segmentation can provide a comprehensive
understanding of the structure and composition of industrial assets or
components. Later, [207] proposed an adaptive shape co-segmentation
(AdaCoSeg) network to address the challenges associated with re-
training and adapting to newer input datasets which can be used for
handling the evolving nature of industrial assets and the variability
in PC data collected from different sources. AdaCoSeg takes a set of
unsegmented PC shapes as input and iteratively minimizes the group
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Table 3
Summary of PC-based defect segmentation in industrial systems.
Ref. Application Classes Method Results Points/Objects
[162] Semantic segmentation of 10 classes: column, decoration, door, PointNet OA = 21.6, mloU = 10.9 114 M
architectural elements arc, wall, window, stairs, vault, and roof
PointNet++ OA = 24.5, mIoU = 18.0
DGCNN OA = 54.7, mloU = 35.8
PCNN OA = 39.5, mloU = 33.1
Modified DGCNN OA = 71.6, mloU = 37.7
[161] Semantic segmentation of 6 classes: abutment, slab, pier, girder, PointNet OA = 93.8, mloU = 84.3 N/A
architectural elements surface, and background
PointCNN OA = 92.6, mloU = 76.8
DGCNN OA = 94.5, mloU = 86.9
[168] Segmentation of bridge elements 3 classes: deck, pier, and background PointNet OA = 94, mloU = 84 50,000
[127] Semantic segmentation of underwater 3 classes: pipe, valve, and background PointNet F1 score = 89.3 262
pipe
[160] Segmentation of concrete surface 3 classes: crack, spall, and normal DGCNN OA = 98, F1 score = 98 49 M
[117] Segmentation of synthetic concrete 2 classes: cracks, and spalls InspectionNet mAcc = 96.46 12,000
defects
[100] Segmentation of bridge elements 2 classes: slab and pier DGCNN OA = 95.9, mloU = 71.1 447 M
PointNet OA = 84.4, mloU = 45.9
[128] Semantic segmentation of concrete 3 classes: cracks, spalls, and normal SNEPointNet++ OA = 95.9, mloU = 83.26 27 M
bridge elements
Adaptive PointNet++ OA = 97.12, mloU = 63.36
[152] Segmentation of gear 5 classes: basic gear, fracture, glue, Gear-PCNet++ OA = 99.53, mloU = 98.97 10,000
wear, pitting
PointNet++ OA = 99.29, mloU = 98.50
PointCNN OA = 99.43, mloU = 98.76
KPConv OA = 99.64, mloU = 97.50
[129] Semantic segmentation in precast 4 classes: column, beam, slab, and wall PCCR-Net OA = 97.47, mloU = 93.12 342
concrete rebar
PointNet++ OA = 95.17, mloU = 87.68
[198] Panoptic segmentation in railway 7 classes: informative signs, masts, PointNet++ OA = 95.34, mloU = 80.3 4.5 M
infrastructure traffic lights, traffic signs, cables,
droppers and rails
[140] Semi-supervised segmentation of 3D 6 classes: cable, segment, pipe, power SPCNet OA = 97.23, mloU = 97.41 32 M
tunnel elements track, support, track
[141] Segmentation of 3D tunnel elements 7 classes: cable, segment, pipe, power ASPCNet OA = 97.58, mloU = 89.80 34 M
track, seepage, support, track
[199] Segmentation of 3D tunnel elements 7 classes: cable, segment, pipe, power DGCNN F1 = 91.9, mloU = 97.5 34 M
track, seepage, support, track
PointNet F1 = 98.1, mloU = 96.3
[148] Segmentation of overhead catenary 8 classes: cantilevers, catenary wires, KNN+CNN Precision = 97.50, mIoU = 94.84 16 M
systems (OCS’s) in high-speed rails contact wires, droppers, insulators,
poles, registration arms, steady arms
PointNext Precision = 96.49, mloU = 93.39
PointNet++ (SSG) Precision = 96.42, mloU = 93.06
PointNet Precision = 94.52, mloU = 89.18
[164] Segmentation of industrial elements 9 classes: pole pot, electric connection, DGCNN mloU (real) = 93.75, mloU 52 M
gear container, cover, screws, magnets, (Simulation) = 98.01
armature, lower gear, upper gear
[130] Industrial indoor LiDAR dataset 6 classes: I-beam, pipe, pump, PointNet OA = 53.0, mloU = 21.1 5M
rectangular beam, and tank
PointNet++ OA = 70.6, mloU = 45.5
ResPointNet++ OA = 94.0, mloU = 87.3
[150] Segmentation of vegetation and 6 classes: potatoes, carrots, peaches, 3D Trans-Embed Fl-score = 83.32, Precision = 4000
industrial products cookies, bagels, cable, 6 industrial 87.82
products: cable gland, dowel, tyres,
foam, and ropes
PCT Fl-score = 72.71, Precision =
73.48
PointNet++ Fl-score = 65.15, Precision =
69.18
[200] Instance segmentation of different 8 classes: cylinders, angles, channels, CLOI-NET mPrec = 73.2, mRec = 71.1 N/A
object shapes in an oil refinery, I-beams, elbows, flanges, valves and
petrochemical plant, and warehouse miscellaneous
ASIS mPrec = 74, mRec = 24.9
[151] Semantic segmentation of structural, 6 classes: beam, ceiling, column, floor, CNN+RNN mAcc = 86.13 10.8 M
architectural, and mechanical objects pipe, and wall
CNN mAcc = 84.70
[167] Segmentation of surface defects in 2 classes: void defects and surface MaskPoint mAcc = 99.97, mloU = 94.02 120 M
fiber composites defects
PointNet++ mAcc = 99.50, mIoU = 58.81
PointNet mAcc = 99.41, mloU = 62.72
KPConv mAcc = 99.32, mloU = 49.53
PointTransformer mAcc = 99.38, mloU = 49.83
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Ref. Application Classes Method Results Points/Objects
[66] Defect segmentation in concrete 5 classes: 3 circular defects of varying Improved PointNet++ mloU = 94.15 1.4 M
sewer pipes diameter, square and triangular defect
PointNet++ mloU = 82.69
Point Transformer mloU = 86.31
[9] Semantic segmentation in concrete 3 classes: cracks, spalls, and normal NVE-DGCNN mPrec = 96.99, Recall = 98.11, 49 M
surfaces mloU = 95.24
SNEPointNet++ mPrec = 87.5, Recall = 94.6,
mloU = 83.26
[109] Defect segmentation in railway tracks 3 classes: scratches, peeling, and cracks T-PCIF mAcc = 86.27, mloU = 70.18 618
[159] Defect segmentation in wire and arc 3 classes: pores, bulges, and humps Region-growing mAcc = 90.5, mPrec = 92, mRec 899
AM = 90.4
[180] Instance segmentation in sewer pipes 3 classes: breaks, cracks, and Improved Mask RCNN  mPrec = 92.5 mloU = 92.7 1744
inspection deformations
[71] Instance segmentation in concrete 4 classes: spalls, cracks, corrosion, and DetectionHMA mloU = 99.0. 108.4 M
bridges background
nnU-Net mloU = 90.6
TopoCrack mloU = 85.6

consistency loss to produce shape part labels. Unlike traditional CFR
methods, the authors refine and denoise the part proposals using a
pre-trained part-refinement network. The branched auto-encoder net-
work (BAE-NET) [208] tackles the 3D shape co-segmentation task
by framing it as a representation learning challenge. This approach
aims to discover the most concise part representations by minimiz-
ing the shape reconstruction loss. Each network branch is dedicated
to learning a condensed representation for a particular part shape
using an encoder-decoder architecture. The features acquired from
each branch, combined with the point coordinates, are fed into the
decoder to produce a binary value indicating whether the point belongs
to that part. In the medical domain, [209] proposed a shape-aware
segmentation (SAS) technique for processing MRI imaging scans. This
method imposes geometric constraints on both labeled and unlabeled
input data. It involves learning a shape-aware representation using
a signed distance map (SDM) approach. Following this, the obtained
predictions undergo refinement through an adversarial loss. Similar
approaches leveraging geometric constraints and adversarial learning
can be adapted for part segmentation of industrial PC data, where main-
taining shape consistency and refining the segmentation results are
crucial for accurate asset analysis and condition assessment. Based on
the ShapeGlot framework [210], PartGlot [211] utilizes a transformer-
based attention mechanism to understand the regions corresponding
to semantic parts by leveraging linguistic descriptions. [212] pro-
posed a soft density peak clustering (SDPC) algorithm tailored for
3D shape segmentation. [213] developed a segmentation assignment
with topological re-weighting (SATR) to achieve part segmentation
from the predicted multi-view BBox’s. Firstly, Gaussian geodesic re-
weighting is performed to adjust weights by considering the geodesic
distance from potential segment centers. Secondly, a graph kernel is
used to refine the inferred weights considering the neighbor’s visi-
bility. These two techniques are combined to achieve state-of-the-art
3D shape segmentation for fine-grain queries. It could be framed as
advanced techniques that can contribute to more accurate and robust
part segmentation of industrial PCs, particularly for complex assets or
components with intricate geometric structures. [213] used geodesic
curves for discriminative modeling of the object shapes within an NN
framework. The method involves selecting pairs of 3D points on depth
images to compute surface geodesics. The approach leverages a large
training set of geodesics created using minimal ground truth instance
annotations, where each geodesic is labeled binary to indicate whether
it belongs entirely to one instance segment. An NN is then trained to
classify geodesics based on these labels. During inference, geodesics
are generated from selected seed points in the test depth image, and
a convex hull is constructed for points classified by the neural network
(NN) as belonging to the same instance, thereby achieving instance
segmentation.

In summary, 3D part segmentation allows a fine-grained under-
standing of objects by categorizing the PCs into distinct parts, providing
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geometric information about the objects in the scene. Also, it con-
tributes to semantic interpretation, enabling systems to recognize and
label structural components of objects. However, objects from the same
semantic class may have significant intra-class variability, making it
challenging to define consistent part boundaries. Table 3 present the
outcomes of defect segmentation for industrial systems.

4.4. Summary

This section presents key challenges and research directions in
processing 3D PCs for defect classification and segmentation:

» Data Collection: Collecting extensive datasets for industrial ap-
plications is inherently challenging due to the need for varied
environments, equipment, and scenarios. Achieving a represen-
tative dataset requires capturing data from different times, lo-
cations, and conditions to ensure the model generalizes well to
real-world situations. To address this, creating synthetic datasets
through simulation environments can supplement real-world data
collection.

Labeling: Annotation and ground truth labeling, especially for
complex industrial defects, are labor-intensive and prone to er-
rors. Domain adaptation and TL can overcome the need for exten-
sive labeled datasets, especially in scenarios with limited labeled
data availability. Techniques like generative adversarial networks
(GANSs) or other generative models can augment datasets, expand
training data and improve model generalization.

Noisy and Incomplete Data: The quality of collected PC data,
particularly from outdoor scenes, is often compromised by vari-
ous factors, including noise, outliers, and missing points. These
issues pose significant challenges for accurate data analysis and
interpretation. Efforts are being made to address these challenges
by developing advanced methods, such as generative approaches
that can synthesize realistic data to fill in gaps and reduce noise,
and discriminative methods that enhance the ability to distinguish
between true data points and outliers.

Scalability: High-resolution PCs can encompass several million
points, leading to significant challenges in data processing, stor-
age, and analysis. To address these issues, methods such as down-
sampling reduce the number of points while preserving essential
geometric features. Additionally, spatial partitioning techniques
such as octrees and voxel grids organize data into hierarchical
structures for efficient processing. However, it is still necessary to
continually develop new strategies to manage PC sizes effectively,
ensuring efficient handling and processing of large-scale datasets.
Computational Efficiency: Efficient processing of PC data re-
quires reducing computational load and optimizing algorithms to
handle the high-dimensional, and unstructured PC data. Develop-
ment of lightweight DL models such as PointNet and PointNet++
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has helped to minimize this by reducing the number of parameters
and computation complexity. Additionally, utilizing GPUs for
parallel processing and distributed computing frameworks can
significantly accelerate these processing methods, enabling faster
and more efficient analysis of PC data.

Information Loss: The projection-based methods often adopt
network architectures similar to their 2D image counterparts.
However, a key limitation of these methods is the loss of in-
formation due to the conversion from 3D to 2D projection. On
the other hand, volumetric-based representations encounter chal-
lenges with significantly increased computational and memory
costs attributed to the cubic growth in resolution. Addressing
these issues, sparse convolution methods leveraging indexing
structures emerge as a promising solution that needs further
exploration. Popular for defect classification and segmentation,
point-based networks lack explicit, neighboring information, rely-
ing on costly neighbor-searching mechanisms, thus limiting their
efficiency.

Imbalanced Data: Learning from imbalanced data remains chal-
lenging, with approaches struggling in minority classes despite
strong overall performance. Novel techniques are needed to han-
dle imbalanced datasets effectively, such as data augmentation,
class balancing, or specialized loss functions (weighted cross-
entropy loss and focal loss).

Insufficient Data: The literature presents numerous studies ded-
icated to defect segmentation within general objects or spaces
using 3D PC data. However, a significant gap exists in the research
concerning detecting damages within industrial systems using 3D
PC data. Despite the promising outcomes of semantic segmenta-
tion in PC analysis for damage detection in industrial systems, its
effectiveness heavily relies on the availability of comprehensive
datasets for model training. Unfortunately, the literature lacks
sufficient datasets for defect estimation in industrial systems,
underscoring the urgent need to collect abundant and efficient
data for this purpose.

While considerable research has been done in PC shape classifica-
tion and object segmentation across fields like robotics, autonomous
vehicles, and other CV applications using 3D PC data, the detection of
damages in industrial systems remains relatively underexplored. This
gap signifies a significant opportunity for future research to devise
specialized methods and models specifically addressing the distinct
challenges of CM in industrial systems.

5. Conclusion

This paper provides a comprehensive survey and discussion of DL-
based PC classification and segmentation, with a specific focus on their
applications in industrial systems. The review outlines the significance
of PC data and the unique challenges associated with processing this
unstructured information. The paper presents a detailed taxonomy of
the existing DL methods for processing 3D PC data, categorizing them
into view-based, volumetric-based, and direct point-based approaches.
Direct PC-based methods process the original 3D PC data, leveraging
the rich information in the PC representation. These methods can
overcome the potential information loss associated with the projection
and discretization steps required by multi-view and volumetric-based
approaches. Therefore, direct PC-based methods can be considered a
promising future research direction, as they can better preserve the
inherent geometric properties and spatial relationships within the 3D
data. Moreover, recent advancements in transformer-based architec-
tures such as MVCVT, PCT, and BERT have shown great potential for
PC tasks.

The paper also delves into various DL-based methods for 3D PC
segmentation, including semantic segmentation, instance segmentation,
and part segmentation. Instance segmentation represents a challenging
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task in CV, combining target detection and semantic segmentation.
While limited studies focus on 3D instance segmentation of defects in
industrial systems, the future holds promising prospects for DL models
in this domain. The paper compares the performance of the exist-
ing methods for PC shape classification and segmentation, providing
insights into their strengths and limitations for industrial systems.

While the diversity of real-world scenes, including indoor environ-
ments, roads, railways, and buildings, presents opportunities for PC
classification and segmentation, it also poses challenges in determining
the specific advantages of the numerous methods. Researchers need
to carefully select classification algorithms that align with the unique
requirements of a given industrial scenario, emphasizing the need for
adaptability to diverse real-world conditions. This challenge is further
exacerbated by the current scarcity of suitable datasets, highlighting the
importance of expanding and diversifying training data to comprehen-
sively evaluate and improve the efficacy of PC processing techniques
across different industrial applications.

In the future, researchers should focus on developing more robust
and generalizable DL models that can handle the complex challenges
encountered in real-world industrial environments, such as noisy data,
occlusions, and varying operating conditions. In parallel, advancing
computational efficiency and scalability of PC processing techniques
is crucial to enable their deployment in industrial settings. This in-
cludes developing more lightweight NN architectures, such as PointNet
and PointNet++-based architectures, and leveraging efficient convo-
lution operations. Furthermore, exploring TL and domain adaptation
strategies can enhance the adaptability of DL models across diverse in-
dustrial assets and defect types, particularly in case of data scarcity. By
leveraging knowledge gained from related domains or simulated data,
researchers can improve the generalization capabilities of these models,
enabling their application in a wider range of industrial scenarios. By
exploring these research directions, researchers can ultimately lead to
more robust, adaptive, and practical solutions for defect detection and
classification in industrial systems.
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