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Abstract—Power electronic-based systems exhibit non-linear
dynamics requiring simultaneous control of multiple control
objectives. It is therefore expected that controllers that can cope
with those nonlinearities will have a better performance than
controllers requiring system linearization or nesting of the control
objectives in a cascaded structure. However, the problem remains
how to quantify their robustness and make a fair comparison
between different non-linear controllers. The conventional tools
used for the robustness validation of linear controllers cannot
directly be applied to different non-linear controllers. Therefore,
this paper demonstrates an approach based on statistical model
checking for performing controller comparisons. The perfor-
mance and robustness of different controllers (linear, model
predictive, and neural networks-based) were compared in the
same stochastic environment. Using this approach, a statistical
estimate can be obtained for how the controller performance will
be affected under different scenarios.

Index Terms—Controller, hybrid automata, model predictive
control, modelling, neural networks, power electronics, robust-
ness, statistical model checking.

I. INTRODUCTION

Linear controllers like proportional-integral (PI) or propor-
tional resonant (PR) controllers are the most widely imple-
mented control solutions in multiple power electronics-based
systems (PES). Since the technology of these controllers is
mature, methods for validating their robustness and stability
are well-defined and extensively researched [1], e.g. root-
locus, Bode plots and Nyquist stability criteria. In most
industrial applications these controllers will be taken as go-
to solutions [2]. However, since PES systems contain non-
linear dynamics and have multiple control objectives, their
performance will deteriorate if the non-linearities cannot be di-
rectly included or their bandwidth is limited due to the cascade
control structure. On the other hand, non-linear controllers like
model predictive control (MPC) are suitable for multiple-input
multiple-output (MIMO) systems with complex nonlinear dy-
namics and they can provide a fast transient response [3]. Their
initial limitation in PES was the computational burden, which
through the increase of processing power in digital signal
processing (DSP) units is no longer the major limiting factor
for the implementation [4]. Both direct MPC and indirect

MPC have been the focus of researcher for several years,
to introduce design guidelines and methods to validate the
robustness and stability [5]–[9]. The performance of model-
based controllers is highly dependent on the model accuracy,
thus robustness validation should not only be performed on
disturbance impacts but also model parameter mismatch.

MPC-based methods are not the only methods considered
as an alternative to linear controllers. One of the currently
extensively researched controllers are based on machine learn-
ing methods such as feed-forward neural networks (NN) [10],
[11]. Similar to the direct MPC, NN controllers might also
suffer from a large computational burden if the network
structure has several layers of neurons. Nevertheless, in recent
publications, it was shown that approximating a control law
of a multistep direct MPC controller does not require a large
network structure to make the application feasible [12], [13].
The challenge for NN lies in the quality of the training
data, which has to adequately represent the possible converter
operating conditions. Moreover, when a linear controller is
designed it is possible to directly assess the margins for the
stable and robust performance, this is not straightforward for
the NN controllers. Since the explainability of NN is still in
the research stage [14], NN training performance metrics like
Root Mean Squared Error (RMSE) do not necessarily lead to
stable and robust performance once the NN is implemented in
a PES system. Thus, there is a need for a method that would
be able to quantify this performance.

To justify the use of non-linear control methods like MPC or
NN in industrial PES, it is important to benchmark the method
against the conventional control methods that are currently
employed as demonstrated in [15] for motor-drives applica-
tions. The benchmarking typically includes an experimental
comparison of steady-state performance and transient response
in some operating conditions or a simulation study where pa-
rameters like switching frequency can be swept over a certain
range to compare the harmonic distortion of the inverter output
or compare semiconductor losses [15]. However, PES do not
operate in deterministic operating conditions, typically the load
is variable as well as the grid conditions. Thus, there remains



the question of how operating conditions should be selected
for comparison and how many iterations are required to obtain
certainty of the desired performance.

This paper proposes the application of Statistical Model
Checking (SMC) for robustness comparison of different linear
and non-linear controllers in a stochastic environment. The
modelling formalism used in this formal method is hybrid
timed automata [16] that allow modelling of both deterministic
and stochastic system dynamics, thus suitable for PES models.
In this way, control methods that do not have analytical tools
for robustness validation can be compared. Moreover, due to
the presence of stochastic elements in the system and the
degradation of components that influence the performance
over time, the deterministic validation of robustness might
miss potential critical scenarios that could lead to loss of
system stability [17]. By applying an SMC approach, a sta-
tistical guarantee of the desired performance can be obtained.
Herein, a case study is built around three controllers: a linear
controller, a direct MPC controller, and an NN controller.
The controllers are evaluated under the same stochastic load
conditions in numerous simulations using the verification tool
UPPAAL [16], [18]. Such extensive evaluation is usually not
feasible in experiments, furthermore, the proposed method is
faster and does not incur the risk of possible hardware damage.

The rest of the paper is structured as follows. Section II
provides some information about the modelling formalism.
Section III presents the specific models, their structures, ad-
vantages, and disadvantages. Section IV shows the results
of performance validation both under stochastic load and
model parameter mismatch. Finally, Section V summarizes
and concludes the paper.

II. MODELLING FORMALISM

This paper utilizes the modelling and verification tool
UPPAAL [18] to model and analyze three different control
algorithms. UPPAAL is an integrated environment that supports
modelling, validation, and verification of real-time systems.
The models are prepared as networks of hybrid timed au-
tomata, which enables connecting individual components with
each other. UPPAAL timed automata are a low-level modelling
formalism in the sense that a lot of decisions are made by
the engineer implementing the model, such as to what a time
unit in an automaton model corresponds to in the real-world
or what the boundary conditions are for the automata system
making certain state transitions.

Since 2012 the UPPAAL tool has been extended with
statistical model checking [16] of hybrid timed automata
providing statistically valid results predicting system behavior.
This functionality has great potential as it allows to directly
evaluate different controllers (in this case: a linear controller,
an FS-MPC controller, and an NN controller) under the same
stochastic conditions. The hybrid timed automata models of
UPPAAL can model both deterministic state-based behavior,
non-linear behavior based on ordinary differential equations
(ODEs), and stochastic behavior in the same models. The
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Fig. 1. Two-level voltage source converter in standalone operation used in
this study for controller robustness validation.

TABLE I
SYSTEM PARAMETERS.

Parameter Value

DC link voltage (Vdc) 700 V

Filter inductance (Lf ) 2.4 mH

Filter capacitance (Cf ) 14 µF

Reference voltage (V ∗
c rms) 400 V

Reference freq. (f∗) 50 Hz

modelling language also includes a large subset of the C pro-
gramming language, which made it trivial to port the NN to
a UPPAAL model.

Previous papers on performance verification using UPPAAL
have validated individual controllers [7], [19]. In [20] the
modelling process has been simplified and interfaces between
components have been established. That allowed to build
modular structures, easily adaptable to the particular area of
application. Additionally, comparison of multiple converters
or systems has become possible and the performance of the
systems could be directly confronted. This paper goes one
step further and evaluates the performance of three controller
models by running them in parallel with the same physical
system parameters and stochastic behavior of the load.

III. CONTROLLER STRUCTURES

In this section the structures of three controllers will be
introduced. These controllers were used to control the PES il-
lustrated in Fig. 1 with the system parameters given in Table I.
The system is a simplified version of a load-side converter used
for standalone systems like uninterruptible power supplies
(UPS) that typically have to deal with a variable load during
the day. A two-level voltage source converter (2L-VSC) is
used for this purpose and it is connected to a variable load
through an LC filter to provide a low ripple voltage supply.

A. Linear controller structure

The linear controller selected for this case study is based
on the controller proposed in [21] and depicted in Fig. 2. The
controller structure consists of an inner current control loop
with a propotional (P) controller, an outer voltage control loop
with PR controller compensating the 5th and 7th harmonic (1),
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Fig. 2. Block diagram of the control structure using linear controller.

TABLE II
LINEAR CONTROLLER PARAMETERS.

Parameter Value Parameter Value

kpI 11.3 kpV 0.05

k1V 31.5 ϕ1 3

k5V 15 ϕ5 37

k7V 15 ϕ7 44

τz 1.8e-4 τp 3.4e-5

which are typically associated with non-linear loads in UPS
systems, and a state feedback decoupling path to compensate
for system delays. The state feedback decoupling in (2) is
designed as a first-order phase-lead compensator with a low-
pass filter to reduce the effects of high frequencies and
noise. The generated voltage reference vα,β is then passed
to the modulator block to obtain the pulse width modulation
(PWM) signals for the semiconductor devices. The switching
frequency is set to 10 kHz. For implementation, the load
voltage (vc αβ) and inverter current (if αβ) measurements are
required. The design and tuning of the control parameters
is performed according to the Nyquist criterion. Controller
parameters are given in Table II. More details on designing
the presented controller can be found in [21]. An example of
a simulated run of a load step in a PES system with a linear
controller is given in Fig. 3 where the voltage drop is visible
during a load change.

Gv = kpV +
∑

h=1,5,7

kiV,h
s cos(ϕh)− hω1 sin(ϕh)

s2 + (hω1)2)
(1)

Gdec =
1 + τzs

1 + τps
·GLPF (2)

B. FS-MPC controller structure

The second controller used in this case study is based on
Finite Set Model Predictive Control (FS-MPC) as proposed
in [22]. The structure of the FS-MPC controller used herein
is shown in Fig. 4. The advantage of FS-MPC lies in faster
transient response due to the use of a single control loop
but it also comes with a higher computational load due to
iterative calculations that need to be used to evaluate the
cost function for the finite set of voltage vectors that the
converter can produce. Therefore it is necessary to compensate
for the computational delay using the two-step predictions as
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Fig. 3. Load step change in a PES with a linear controller recorded in the
UPPAAL simulator.
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Fig. 4. Block diagram of the control structure using FS-MPC controller.

explained in [23]. The compensated value of load voltage
(vc αβ), inverter current (if αβ) together with load current
(ioαβ) (which can be obtained using an observer or a sensor)
are used in the prediction model to obtain future values:

d

dt

if αβ

vc αβ

io αβ

 =

 0 − 1
Lf

0
1
Cf

0 − 1
Cf

0 0 0

if αβ

vc αβ

io αβ

+

 1
Lf

0
0

 [
vi αβ

]
(3)

The predictions are compared to the reference values in the
cost function proposed in [24] for obtaining low distortion load
voltage in stand-alone converter applications:

g = (v∗cα − vPcα)
2 + (v∗cβ − vPcβ)

2 + λd · gd (4)

gd = (iPfα − iPoα + Cfωv
∗
cβ)

2 + (iPfβ − iPoβ − Cfωv
∗
cα)

2 (5)

where Lf and Cf are filter parameters, vi is the inverter
output voltage, ω is the reference frequency, voltages and
currents annotated with P are calculated predictions at k + 2,
while ∗ defines the extrapolated reference voltage values, and
parameter λd is the weighting factor and set to value 1.0.

Compared to the previously introduced linear control, the
control signals are directly applied to the semiconductor
switches without the use of a modulator. Thus, to obtain
a fair comparison, the carrier frequency was adjusted to
approximately fit the average switching frequency achieved
on the converter system using the FS-MPC algorithm and NN
controller. As mentioned in the introduction, model parameter
mismatch will impact the performance of this controller, an
example is given in Fig. 5 where 50% model parameter
mismatch was simulated for a PES model in UPPAAL.
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Fig. 5. Load step change in PES with FS-MPC and 50% error in the system
parameters (Lf , Cf ) recorded in the UPPAAL simulator.
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C. NN controller structure

The structure of the NN controller used in this case study
is shown in Fig. 6. The controller was trained using the data
generated by the FS-MPC controller with delay compensation
presented in Section III-B, thus for operation it requires the
same set of measurements as the original FS-MPC controller
plus the information on the previously applied voltage vector.
Imitating the control law of FS-MPC was defined as a pattern
recognition problem, where each voltage vector of the inverter
was defined as one class, with 7 in total. The structure of the
NN was the following: 8 input neurons, 15 hidden neurons and
a rectified linear unit (ReLu) activation function, and 7 output
neurons with sigmoid activation function to obtain the one-
hot coded optimal voltage vector. Similar to FS-MPC, the
selected vector is applied for the whole sampling time. The
adaptive moment estimation (Adam) optimization algorithm
was used to obtain the parameters of the NN. An example of
a simulation run performed in UPPAAL SMC with the designed
NN controller is shown in Fig. 7, where the Vdc was reduced
to more than 50% of the value used in the training data and
the system could not reach the reference voltage.

IV. PERFORMANCE VALIDATION

A load step change was performed in Fig. 8 and Fig. 9
on an experimental VSC set-up controlled by the FS-MPC
and NN controllers described in the previous section. It can
be observed that both controllers quickly respond to the load
change with a low voltage dip. However, one such test cannot
give much insight into the overall performance and it will be
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Fig. 7. Load step change in PES using NN controller with Vdc 50% lower
than in training data recorded in the UPPAAL simulator.
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Fig. 8. Transient response of FS-MPC controller to load step 60Ω - 30Ω.

time-consuming to test different load step scenarios including
also mismatched parameters. Therefore in this section, mul-
tiple simulation runs were conducted using SMC, where the
RMSD (root mean squared difference) between the reference
and load voltage was calculated (∆Vα,∆Vβ). Examples of
simulation runs are shown in Fig. 3, Fig. 5, and Fig. 7.

Before performing the performance comparison during load
transients, the controllers were simulated in a system with
nominal values and constant load to confirm that their perfor-
mance is comparable (see Table III). The results for estimation
of the maximal RMSD value for the three controllers with
variable load 30→60Ω for both nominal conditions and with
parameter mismatch are presented in Table IV and Fig. 10. The
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Fig. 9. Transient response of NN controller to load step 60Ω - 30Ω.



TABLE III
RESULTS FOR RMSD SIMULATION FOR THREE CONTROLLERS IN NOMINAL OPERATION WITH CONSTANT LOAD AND WITHOUT PARAMETER MISMATCH.

Load (Ω) L error C error Vref ampl. (V) Vdc (V) Linear Controller FS-MPC NN

30 0 0 325 700 ∆Vα = 3.57 ∆Vα = 2.39 ∆Vα = 3.20

∆Vβ = 3.41 ∆Vβ = 2.61 ∆Vβ = 3.20

60 0 0 325 700 ∆Vα = 2.26 ∆Vα = 2.28 ∆Vα = 3.10

∆Vβ = 2.21 ∆Vβ = 2.47 ∆Vβ = 3.10

TABLE IV
RESULTS FOR ESTIMATION OF MAX RMSD FOR THREE CONTROLLERS WITH VARIABLE LOAD 30→60Ω

(NOMINAL CONDITIONS AND WITH PARAMETER MISMATCH).

Load (Ω) L error C error Vref ampl. (V) Vdc (V) Linear Controller FS-MPC NN

30→60 0 0 325 700 ∆Vα = 9.07 +/- 0.34 ∆Vα = 2.56 +/- 0.11 ∆Vα = 3.31 +/- 0.10

∆Vβ = 9.50 +/- 0.26 ∆Vβ = 2.83 +/- 0.07 ∆Vβ = 3.37 +/- 0.14

30→60 0 0 120 700 ∆Vα = 4.03 +/- 0.15 ∆Vα = 1.79 +/- 0.02 ∆Vα = 1.65 +/- 0.02

∆Vβ = 3.92 +/- 0.14 ∆Vβ = 1.83 +/- 0.02 ∆Vβ = 1.72 +/- 0.02

30→60 0 0 120 300 ∆Vα = 3.48 +/- 0.13 ∆Vα = 1.12 +/- 0.02 ∆Vα = 6.58 +/- 0.02

∆Vβ = 3.53 +/- 0.09 ∆Vβ = 1.22 +/- 0.03 ∆Vβ = 6.71 +/- 0.05

30→60 +25% +25% 325 700 ∆Vα = 9.50 +/- 0.49 ∆Vα = 2.82 +/- 0.12 ∆Vα = 3.69 +/- 0.10

∆Vβ = 9.47 +/- 0.44 ∆Vβ = 3.23 +/- 0.10 ∆Vβ = 3.55 +/- 0.08

30→60 -25% -25% 325 700 ∆Vα = 9.59 +/- 0.31 ∆Vα = 3.98 +/- 0.16 ∆Vα = 8.09 +/- 0.18

∆Vβ = 9.07 +/- 0.33 ∆Vβ = 3.89 +/- 0.10 ∆Vβ = 8.31 +/- 0.23

verification has been performed with 95% confidence level and
as a consequence UPPAAL has determined that 30 simulation
runs are necessary. The verification of a single query (for the
estimation of one value) lasted less than an hour. Additionally,
an extended simulation was performed for six sample queries
(one configuration) to check whether enough samples had been
taken and the values had converged. The verification lasted 40
hours, but the obtained results were pretty similar and did not
exceed in the worst case 5% of value difference.

As expected, load changes had the highest effect on the
linear controller reference tracking performance with more
than 10% voltage error during transients, on the contrary, it
was not affected by parameter mismatch. What was interesting
to observe was how the other two controllers performed in
comparison to the linear controller. Under nominal conditions,
both FS-MPC and NN controllers had three times lower errors
in the reference tracking. The results showed that parameter
mismatch, where the values in the system were smaller than
the training data used, significantly deteriorated the NN con-
troller’s performance but not the FS-MPC controller. It was
also observed for the value of Vdc, which does not vary in the
training data, that the reference tracking error was over 10%
of the reference voltage value.

V. CONCLUSION

In this paper, a robustness verification approach for compar-
ing different controllers has been presented. The verification
has shown in which conditions certain controllers were under-
performing and will require parameter re-tuning or in the case
of NN network which operating condition data needs to be

added to the training. The same approach can likewise be
applied to compare the controller performance in other PES
applications and it is not limited only to stochastic loads. Grid
conditions such as voltage dips, and harmonic pollution can
also be included as other stochastic factors influencing the
performance and robustness.

Future development of the proposed approach will focus on
incorporating stability validation in an automated SMC test to
find a set of controller parameters that can provide a stable
response of PES with stochastic elements that are difficult to
model in conventional simulation software.

ACKNOWLEDGMENT

Part of this work was supported by the Innovation Fund
Denmark (IFD) through the project of Artificial Intelligence
for Next-Generation Power Electronics (AI-Power).

REFERENCES

[1] Q. Peng, G. Buticchi, N. M. L. Tan, S. Guenter, J. Yang, and P. Wheeler,
“Modeling techniques and stability analysis tools for grid-connected
converters,” IEEE Open Jour. of Power Electron., vol. 3, pp. 450–467,
2022.

[2] V. Yaramasu and B. Wu, Model Predictive Control of Wind Energy
Conversion Systems, ch. 3: Overview of Digital Control Techniques.
Wiley, 2016.

[3] P. Cortes, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and
J. Rodriguez, “Predictive control in power electronics and drives,” IEEE
Trans. Ind. Electron., vol. 55, no. 12, pp. 4312–4324, 2008.

[4] S. Vazquez, J. I. Leon, L. G. Franquelo, J. Rodriguez, H. A. Young,
A. Marquez, and P. Zanchetta, “Model predictive control: A review of
its applications in power electronics,” IEEE Ind. Electron. Mag., vol. 8,
no. 1, pp. 16–31, 2014.



Fig. 10. Results for estimation of max RMSD (vc) for three controllers with variable load 30→60Ω (nominal conditions and with parameter mismatch).
Configurations:
C1: L error = 0, C error = 0, Vref ampl. = 325 V, Vdc = 700 V; C4: L error +25%, C error +25%, Vref ampl. = 325 V, Vdc = 700 V;
C2: L error = 0, C error = 0, Vref ampl. = 120 V, Vdc = 700 V; C5: L error -25%, C error -25%, Vref ampl. = 325 V, Vdc = 700 V.
C3: L error = 0, C error = 0, Vref ampl. = 120 V, Vdc = 300 V;

[5] J. S. Costa, A. Lunardi, D. A. Fernandes, and A. J. S. Filho, “Robust
model predictive control of a renewable energy converter under paramet-
ric uncertainty conditions,” IEEE Open Jour. of Power Electron., vol. 5,
pp. 123–134, 2024.

[6] P. Karamanakos, E. Liegmann, T. Geyer, and R. Kennel, “Model
predictive control of power electronic systems: Methods, results, and
challenges,” IEEE Open Jour. of Ind. Appl., vol. 1, pp. 95–114, 2020.

[7] M. Novak, U. M. Nyman, T. Dragicevic, and F. Blaabjerg, “Statistical
model checking for finite-set model predictive control converters: A
tutorial on modeling and performance verification,” IEEE Ind. Electron.
Mag., vol. 13, no. 3, pp. 6–15, 2019.

[8] J. Rodriguez and et al., “Latest advances of model predictive control in
electrical drives—part i: Basic concepts and advanced strategies,” IEEE
Trans. Power Electron., vol. 37, no. 4, pp. 3927–3942, 2022.

[9] G. I. Rivas-Martı́nez, J. Rodas, and J. D. Gandoy, “Statistical tools
to evaluate the performance of current control strategies of power
converters and drives,” IEEE Trans Instrum. Meas., vol. 70, pp. 1–11,
2021.

[10] S. Zhao, F. Blaabjerg, and H. Wang, “An overview of artificial intelli-
gence applications for power electronics,” IEEE Trans. Power Electron.,
vol. 36, no. 4, pp. 4633–4658, 2021.

[11] S. Zhang, O. Wallscheid, and M. Porrmann, “Machine learning for the
control and monitoring of electric machine drives: Advances and trends,”
IEEE Open J. Ind. Appl., vol. 4, pp. 188–214, 2023.

[12] M. Novak and T. Dragicevic, “Supervised imitation learning of finite-
set model predictive control systems for power electronics,” IEEE Trans.
Ind. Electron., vol. 68, no. 2, pp. 1717–1723, 2021.

[13] I. Hammoud, S. Hentzelt, T. Oehlschlaegel, and R. Kennel, “Long-
horizon direct model predictive control based on neural networks for
electrical drives,” in IECON The 46th Annual Conf. of the IEEE
Industrial Electronics Society, pp. 3057–3064, 2020.

[14] S. Sahoo, H. Wang, and F. Blaabjerg, “On the explainability of black
box data-driven controllers for power electronic converters,” in IEEE
Energy Conversion Congress and Exposition (ECCE), pp. 1366–1372,
2021.

[15] J. Rodriguez and et al., “Latest advances of model predictive control in
electrical drives part 2: Applications and benchmarking with classical
control methods,” IEEE Trans. Power Electron., vol. 37, no. 5, pp. 5047–
5061, 2022.

[16] A. David, K. G. Larsen, A. Legay, M. Mikucionis, and D. B. Poulsen,
“Uppaal smc tutorial,” Int. J. Softw. Tools Technol. Transf., vol. 17,
pp. 397–415, Aug. 2015.

[17] Y. Song, S. Sahoo, Y. Yang, and F. Blaabjerg, “Stability constraints
on reliability-oriented control of ac microgrids: Theoretical margin and
solutions,” IEEE Trans. Power Electron., vol. 38, no. 8, pp. 9459 – 9468,
2023.

[18] G. Behrmann, A. David, and K. G. Larsen, A Tutorial on Uppaal,
pp. 200–236. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

[19] M. Novak, I. Grobelna, U. Nyman, P. Szczesniak, and F. Blaabjerg,
“Statistical performance verification of the fs-mpc algorithm applied to
the matrix converter,” in 2022 Int. Power Electronics Conf. (IPEC-Himeji
2022-ECCE Asia), pp. 76–82, IEEE, 2022.

[20] M. Novak, I. Grobelna, U. Nyman, P. Szczesniak, and F. Blaabjerg,
“Modular modelling and statistical validation for grid connected FS-
MPC controlled matrix converters,” IEEE Trans. Ind. Electron., vol. 70,
no. 9, pp. 8613–8623, 2023.

[21] F. de Bosio, L. A. de Souza Ribeiro, F. D. Freijedo, M. Pastorelli, and
J. M. Guerrero, “Effect of state feedback coupling and system delays
on the transient performance of stand-alone vsi with LC output filter,”
IEEE Trans. Ind. Electron., vol. 63, no. 8, pp. 4909–4918, 2016.

[22] P. Cortes, G. Ortiz, J. I. Yuz, J. Rodriguez, S. Vazquez, and L. G.
Franquelo, “Model predictive control of an inverter with output LC
filter for UPS applications,” IEEE Trans. Ind. Electron., vol. 56, no. 6,
pp. 1875–1883, 2009.

[23] P. Cortes, J. Rodriguez, C. Silva, and A. Flores, “Delay compensation in
model predictive current control of a three-phase inverter,” IEEE Trans.
Ind. Electron., vol. 59, no. 2, pp. 1323–1325, 2012.
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