Aalborg Universitet AALBORG

UNIVERSITY

Enhancing Construction Site Safety Using Al
The Development of a Custom YOLOV8 Model for PPE Compliance Detection
Al-khiami, Mohamad lyad; ElHadad, Mohamed M

Published in:
Proceedings of the 2024 European Conference on Computing in Construction

DOl (link to publication from Publisher):
10.35490/EC3.2024.307

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2024

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Al-khiami, M. I., & ElHadad, M. M. (2024). Enhancing Construction Site Safety Using Al: The Development of a
Custom YOLOV8 Model for PPE Compliance Detection. In M. Srec¢kovi¢, M. Kassem, R. Soman, & A.
Chassiakos (Eds.), Proceedings of the 2024 European Conference on Computing in Construction (pp. 577-584).
European Council on Computing in Construction. https://doi.org/10.35490/EC3.2024.307

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: October 21, 2025


https://doi.org/10.35490/EC3.2024.307
https://vbn.aau.dk/en/publications/a759e42f-5d00-4af0-8e73-a793c9b26e6c
https://doi.org/10.35490/EC3.2024.307

2024 European Conference on Computing in Construction -
Chania, Crete, Greece 2 B
July 14-17, 2024 _—

ENHANCING CONSTRUCTION SITE SAFETY USING Al: THE DEVELOPMENT OF A
CUSTOM YOLOV8 MODEL FOR PPE COMPLIANCE DETECTION
Mohamad lyad Al-Khiami*?, Mohamed M ElHadad?,
!Australian University - Kuwait, Mishref, Kuwait
’Aalborg University, Aalborg, Denmark
3Gulf University for Science & Technology, Mishref, Kuwait

Abstract

This study addresses construction safety by deploying
computer vision techniques, specifically a YOLOv8
model by Ultralytics, to monitor PPE compliance.
Targeting helmets, vests, and safety shoes, it aims to
mitigate accident risks. The model was trained with 2934
images and validated with 816, achieved a 95% mAP.
Emphasizing Al's potential in safety management and
occupational health in the construction industry. This
research lays groundwork for future Al-based safety
enhancements in construction sector, highlighting the
industry's pressing need for innovative approaches to
reduce occupational hazards and improve compliance
standards.

Introduction

The construction industry, known for being the primary
driver to infrastructure development been consistently
ranked among the most dangerous industries worldwide,
with a high incidence of accidents and fatality rates
making it one of the most hazardous sectors (Lingard,
2013; Pinto et al., 2011; Waehrer et al., 2007). High rates
of accidents and fatalities have been consistently reported,
many attributable to non-compliance with safety
measures, particularly the use of Personal Protective
Equipment (PPE) (Memon et al., 2023; Sehsah et al.,
2020). In many incidents, the lack of PPE or improper use
of safety gear such as helmets, vests, and boots has been
a critical factor. (Kang, 2018) reported that more than
70% of all fatal accidents had some form of incompliance
with PPE. This persistent challenge highlights a gap in
safety protocols and enforcement on construction sites,
highlighting the need for more stringent and effective
monitoring tools to ensure worker safety and reduce the
risk of accidents.

Given the high importance of maintaining safety
standards and reducing injuries from accidents in
construction sites along with the prevalent safety
challenges, it is necessary to rethink traditional methods
and employ innovative technologies to enhance safety
compliance rates on sites (Zhang, 2021). Among these
technologies, artificial intelligence (Al) takes the lead
when it comes to the development of object detection
systems specifically for PPE in the site (Abioye et al.,
2021). On a site, monitoring systems using Al can assist
safety engineers in achieving higher compliance of safety
due to the fact that traditional human supervision can
sometimes be expensive, prone to error and insufficient in
maintaining safety standards (Yi and Wu, 2020). Such
systems can aid in the detection of workers who are not

complying with safety standards mainly, wearing proper
PPE while working on sites. The necessity for improved
safety compliance on construction sites, coupled with the
inadequacies of traditional safety monitoring methods
dictates the need to start integrating Al-driven object
detection systems in construction sites. The integration of
Al-driven systems in construction sites represents an
important opportunity and a significant leap forward in
terms of technology adoption within the construction
industry.

This paper is part of a larger project that aims to utilize Al
in the construction sector. The project is divided into
several phases where the objective of this phase is to
answer the following research question (RQ).

RQ - Are fine-tuned object detection models, specifically
YOLOVS efficient and effective in identifying safety
helmets, safety shoes and vests in construction sites?

Literature Review

Safety risks in the construction sector

The construction engineering sector is a key driver of
economic growth in both developed and developing
nations (Sanchez et al.,, 2017). Despite advances in
workplace safety within the construction sector, it still
faces a greater risk of injuries and deaths than many other
industries (Johansson et al., 2019). According to the US
bureau of labor statistics (BLS), more than 1 in 5 deaths
occurred in the workplace was within the construction
industry in the year 2020 with a reported number of 1,008
construction workers that were killed on the job (A Look
at Workplace Deaths, Injuries, and Illnesses on Workers’
Memorial Day, 2022). Each year, more than 100,000
individuals suffer from fatal injuries each year within the
construction industry as per the International Labor
Organization (ILO) which alone, represents about 30% of
all occupational fatal injuries (“Construction,” 2015).

A recent study (Memon et al., 2023) highlights that
substandard quality of PPE is a leading cause of accidents
in the construction industry. This study also found that the
use of PPE can reduce accidents related to falls by 30%.
Another study indicated that many accidents on
construction sites occur due to the lack of PPE or failure
to wear it properly (Ammad et al., 2021). Despite
approximately 62% of construction workers being at risk
of falls, only about half use PPE, as reported by the
Bureau of Labor Statistics (BLS) (A Look at Workplace
Deaths, Injuries, and Illnesses on Workers’ Memorial
Day, 2022). Furthermore, it was noted that over 70% of
fatal fall accidents involved workers not wearing PPE
(Kang, 2018). Additionally, according to the Health and



Safety Executive (HSE), there are more than 9,000 PPE-
related accidents annually on construction sites in the
United Kingdom. Understanding the frequency of these
incidents underscores the need to educate employees on
the importance of proper PPE usage (Martin et al., 2021).
Severe brain injuries on construction sites, primarily
caused by falls and falling objects, are a significant
concern (Kamardeen and Hasan, 2022). Furthermore, the
Centers for Disease Control and Prevention (CDC, 2011)
estimates that almost half (49%) of all fatal injuries in this
sector are due to head injuries (Occupational Ladder Fall
Injuries — United States, 2011).

The concerning statistics and studies highlighted in this
section emphasize the urgent need for more stringent and
effective enforcement of PPE safety compliance in the
construction industry (Ebekozien, 2021; Gattuso, 2021).
It is imperative to develop and implement reliable
strategies to ensure that workers are adequately protected,
thereby reducing the high incidence of injuries and
fatalities that currently plague this sector.

Technology adoption and integration in construction
industry

The potential of Artificial Intelligence (Al) is increasingly
being recognized across various sectors. However, its
adoption and application in the construction industry are
scarce compared to other industries. As a matter of fact,
the construction industry ranks among the least digitized
sectors globally, and a common misconception among
stakeholder exists regarding the industry’s longstanding
culture of resistance to change (Young et al., 2021).
Additionally, the lack of technology integration in the
construction industry is often associated with health and
safety concerns (Nikas et al., 2007). In an effort to address
this slow growth in adoption, many companies are now
turning to Artificial Intelligence (Al) as a means to
streamline their processes and boost productivity within
the working environment (Yigitcanlar, 2021; Yigitcanlar
and Cugurullo, 2020). The adoption of Al technology
grants a competitive edge in terms of automation when
compared to conventional approaches (Chien et al., 2020).
Within the wide variety of Al-Based technologies, the
application of computer vision through deep learning has
shown promising potential in construction safety
management. The object detection capability of Al
provides flexibility in terms of classifying and
recognizing objects, which is something to be capitalized
upon to improve safety compliance. This technology,
serves a foundation to effectively substitute human vision
for many tasks across the construction safety workflow
(Abioye et al., 2021). This sets the stage for exploring
advancements in Al for PPE compliance monitoring in the
next section.

Advancement in Al for PPE compliance monitoring

In recent years, the construction industry has seen
significant advancements in the application of Artificial
Intelligence (Al) for safety management, particularly in
monitoring Personal Protective Equipment (PPE)

compliance. The effectiveness of Al, specifically deep
learning, and computer vision, in real-time monitoring of
safety helmets and PPE compliance, showing promise for
enhanced on-site safety have been demonstrated in the
literature (Delhi et al., 2020; Kisaezehra et al., 2023).

Recent advancements in the construction industry's
approach to safety management have been significantly
influenced by the application of Artificial Intelligence
(Al). A focus on enhancing Personal Protective
Equipment (PPE) compliance has been evident, with Al-
driven systems, particularly those incorporating YOLO
models for object detection, demonstrating notable
accuracy and real-time capabilities. This shift towards Al-
based methodologies for safety gear recognition,
especially through the use of advanced YOLO v5 and v8
models, underscores a growing trend in leveraging
technology to improve on-site safety measures (Chen et
al., 2021; Kim et al., 2023; Wang et al., 2023).

The advancements in Al for construction safety have seen
significant strides in the development of systems for
detecting safety helmets and protective clothing. A
notable approach involves the enhancement of YOLOv3
methods, specifically tailored to improve the detection of
smaller-sized safety gear. This innovation, focusing on
the addition of a large-size input layer for multi-scale
prediction, represents a crucial step in fine-tuning Al
models to meet the unique demands of construction site
applications, underscoring the critical role of Al
optimization in specific industrial contexts (Wang et al.,
2020).

The exploration of Al in the construction industry has
further expanded with the introduction of rapid PPE
detection systems for actual construction sites, utilizing
deep learning techniques. This advancement, as presented
in the literature, signifies the practicality and effectiveness
of Al in enhancing real-time safety management on
construction sites. It addresses the critical requirement for
advanced and efficient safety monitoring tools within the
industry, showcasing the potential of Al to significantly
improve construction safety practices (Wang et al., 2021).

Together, these studies underscore the potential of Al and
machine learning, particularly YOLO models, in
revolutionizing safety compliance in the construction
industry. They highlight the technical feasibility and
practical implications of deploying Al systems for real-
time, accurate PPE monitoring, marking a significant step
forward in occupational safety management.

Closing remarks

As indicated by the literature, to the best of the authors’
knowledge, there has been limited empirical research
examining the adoption of Al technologies in the
construction industry. As such, this study aims to
contribute to the growing body of knowledge surrounding
the integration of artificial intelligence, namely, PPE
compliance detection systems in the construction
industry.



Methodology

Development of the PPE Compliance Al model —
YOLOVS

You Only Look Once V8 (YOLOVS), developed by
Ultralytics in January 2023, served as the foundation for
our Al model. YOLOVS is a convolutional neural
network (CNN), that is a category of deep learning neural
networks, commonly used in analyzing visual imagery.
YOLO was trained and validated using a dataset, namely
Common Objects in Context (COCQ). The COCO dataset
contains more than 330 thousand images of 80 different
common objects, including but not limited to, humans,
bicycles, cars and animals. A total of 118 thousand images
were used for the training, 5000 for validation and 20
thousand for testing. The model was then benchmarked
against the validation dataset using the mean average
precision (mMAP) which is basically a percentage precision
of the number of detected objects correctly identified
across multiple objects (Ultralytics, 2023a). YOLOVS8
can be used for different purposes, including object
detection, object tracking, object classification and
segmentation. The project utilizes the object detection
capabilities of YOLOVS.

Currently, there exists five YOLO models with varying
sizes, (1) Nano, (2) Medium, (3) Large, (4) Extra Large.
Simply put, smaller models compromise accuracy for
speed, and are useful where computational power is
limited and speed is a necessity. On the contrary, the
larger models are the most accurate, but also the most
resource intensive.  According to  Ultraltytics
documentations, mAP is 37.3 and 53.9 for the Nano and
Extra-large model respectively (Ultralytics, 2023b).

Based on the limited computational power available, and
the fact that the model is aimed to run in real-time, the
YOLOV8 (m) model was used, with a mAP of 50.2. The
(m) model offers a middle ground between speed and
accuracy with a good balance between performance and
efficiency.

YOLOVS8 (m) fine tuning

While COCO is a well-established dataset, it fails to serve
the purpose of the project, therefore, a custom dataset was
required. Following Ultralytics recommendations, two
main folders were created, a folder dedicated specifically
to the training dataset and a folder dedicated to the model
validation. Within each directory, two subfolders were
created, namely “Images” and “Labels”. All the training
images that were collected were inserted in the “Images”
subfolder under “Train” main folder. On the other hand,
the images used for validations were inserted in “Images”
subfolder under the “Validation” main folder. A total of
2934 images and 816 images were for training and
validation respectively. Figure 1 shows the breakdown of
the dataset organization.

Train (No. Validation
2934) (No. 816)
[
E ﬂ

Figure 1: Directory organization for the customized training

The 2934 images collected were to fine tune the model to
detect if a construction worker, within a construction site
setting is adhering to the PPE requirements. The object
detection model aims to detect if workers are wearing
their safety helmets, vests, and safety shoes. The open-
source images were collected in addition to taking photos
using a phone camera in construction sites after taking
consent from safety officers. To avoid bias in the image
collection, the data collected was made sure to be as
diverse as possible, encompassing different colors and
shapes of helmets, vests, and safety shoes with varying
backgrounds ensuring transferability of the model across
different countries.

After the collection of the photos, the fine-tuning process
begins. First, Conda, an open-source package
management and environment management system was
downloaded and installed in which all the machine
learning is managed. A dedicated environment was
created using Conda where all the packages required for
YOLOV8 were installed. Using the command “pip install
ultralytics” downloads all the packages and dependencies
required to run YOLOVS. Prior to installing the packages
concerning YOLOVS, it is necessary to annotate the
images in the “Train” and “Validation” folders and save
the output into the “Labels” subfolder of both “Train” and
“Validation”. For that, “Labellmg”, an open-source
graphical image annotation tool, was downloaded and
installed. Labelling the images using “Labellmg” outputs
a .txt file for each image with the location of the label
within an image. Figure 2 shows the user interface and the
labelling using “Labellmg".

o
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Figure 2: LabelIMG annotation user interface

The annotation process involved six classes:
e Class 0 - “Helmets”



Class 1 - “Vests”

Class 2 — “Safety shoes”
Class 3 - "No vests”

Class 4 - "No helmets”
Class 5 - "No safety shoes”

Upon annotating all the images collected, a “.yaml” file
was prepared where the train and validation directory
were set, the number of classes and the names of each
class in order. This file is necessary as it contains all the
necessary information required to override the existing
trained YOLOVS.

An important parameter to consider before initiating the
training, is the number of epochs required, that is basically
one complete pass of the entire training dataset through
the algorithm. Zhang et al., (2019) underscores the
importance of setting the number of epochs to an
acceptable and reasonable number. For example, a very
small number of epochs can result in an underfitted
model, meaning that the model has not been trained
enough on the trained data, thus resulting in a poor
performance against validation or testing data.
Conversely, overfitting phenomena can occur in the cases
of an exaggerated number of epochs. In such cases, the
model memorizes the training set rather than generalizing.
The model would ultimately perform well on the trained
data but poorly on unseen data.

Selecting the appropriate number of epochs is an iterative
process requiring several trials. The number of epochs for
the project was set to 100 and the performance was
constantly checked against the validation dataset setting
an early stopping parameter in case there is no
improvement in the performance as the number of epochs
continues to increase. The command used in the Conda
environment to conduct the training was as follows “yolo

task=detect mode=train epochs=100
data=data_custom.yaml model=yolov8m.pt imgsz=640".

Figure 3 summarizes the whole processes followed to
create the custom model.

Select
appropriate
number of

epochs

Select
appropriate
YOLO model

Annotate
[ images using
Labelimg

Pip install

Labelimg

Prepare .yam|
file to set
parameters
and
repositories
paths

Divide image Create custom
intotrainand i 2 environment
validation in Conda

Pip install Conduct

Ultralytics training

Figure 3: Summary of the fine-tuning on custom dataset.

Results and Discussion

The results and discussion section summarizes the
findings of the methodological approach conducted.

YOLOVS8 (m) was selected as the foundation for the fine-
tuning process. A total of 2934 and 816 photos were used
for the training and validation respectively. A processor
of Intel® Core (TM) i9-9980HK CPU @ 2.40GHZ
(16CPUs), with a dedicated graphics card of NVIDIA
RTX 2060 and 32 GB RAM served as the training
hardware.

By default, a patience value = 50 is set, where the
numerical value represents the number of epochs. The
patience parameter simply means that while the training
is in process, the model shall check its performance
against the validation dataset, in any case where no
improvement is perceived in the last 50 completed
epochs, an early stop is employed. As a result, the
YOLOVS fine-tuning process took 23.33 hours and had
an early stop at 96 epochs, as there was no improvement
seen beyond 46 epochs.

(a) train/box_loss (b) train/cls_loss (c)  train/dfl_loss (d) metrics/precision(B) (€) metrics/recall(B)
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Figure 4: Training dashboard against the validation dataset



Figure 4. illustrates the results of the custom trained
model from the validation dataset. The x-axis represents
the number of epochs, while the y-axis varies depending
on the graph it represents.

A total of 10 graphs (a) — (j) are shown in Figure 4. Figure
4 (a) — (c) and Figure 4 (f) — (h) shows the *“box loss”,
“cls_loss” and “dfl_loss” that correspond to box loss,
classification loss, and directional focal loss on the
training and validation dataset respectively. Box loss
measures how well the model is predicting the bounding
box coordinates for each detected object. It can be seen as
the number of epochs increases, Figure 4 (a) — (c)
decreases illustrating a downwards trend. This means that
the model gets better at defining the coordinates of the
binding boxes, improving its ability to detect the
orientation of the objects along with their presence.
Though, when considering Figure 4 (f) — (h) it can be seen
that all three figures see improvement in the box_loss,
cls_loss, and dfl_loss up to the 46th epochs. This confirms
the early stop and patience parameter were beyond the
46th epochs, there was no improvement seen. The change
in the figures trend indicates a sign of overfitting. When
the validation loss starts to increase while the training loss
continues to decrease, it means that the improvements in
the model are specific to the training data and are not
improving the model’s predictive ability for new, unseen
data.

Figure 4 (d) — (e) shows the precision and recall changes
through 96 epochs for the validation dataset. Both Figures
(d) and (e) show a positive and linear trend against the
epochs. Once the training hits the 46th epochs mark, the
precision reaches its highest value of 0.89/1 and 0.92/1 for
the recall. The training continues all the way to the 96th
epochs where the value of the precision and recall falls to
0.88/1 and 0.91/1 respectively. The precision level shows
that the model, at the 46th epochs is precisely detection
the correct object 89% of the time. On the other hand, a
recall of 92% indicates that the model is able to recall 92%
of the objects.

Figure 4 (i) — (j) shows the mean average precision and
the mean average precision at 95% at Intersection over
Union (loU). Similar to Figure 3 (d) — (e), the figures here
look at the average precision per class. In addition, loU of
95% is considered a very stringent threshold, it means that
for a detection to be considered to be a true positive, the
predicting bounding box must overlap with the ground
truth bounding by at least 95%. Only detections that
satisfy this threshold is considered true positive. On the
46th epochs, the mean average precision at 95 % loU is
0.53/1.
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Figure 5: Normalized confusion matrix

To further understand the model reliability, and to
visualize the performance of the algorithm, a normalized
confusion matrix is shown in Figure 5. The matrix shows
that the model predicted 'helmet’ with 99% accuracy
indicating true positive. Moreover, the 'vest' class has
been predicted by the model with high accuracy. As for
'safety shoes', the true positives were 80%, but there were
some instances where it predicted 'safety shoes' when
there were none indicating false positives, and some
instances where it failed to predict 'safety shoes' when
there were some (false negatives). This can be due to the
fact that normal shoes may emulate the look of safety
shoes designs which can lead to false positives. It can also
be mentioned that there are very few cases where the
model indicated a 1% of false positives in helmets. While
this result indicates high precision, it is limited to the used
dataset.

The confusion matrix suggests that the model is quite
effective at predicting 'helmet' and 'vest' classes, is fairly
good at predicting 'safety shoes', and generally does not
confuse items with the background. However, there are
some areas where the model can generate false
predictions, particularly with the ‘'safety shoes'. This
information can be used to refine the model further,
potentially by providing it with more training data for the
classes where it is less accurate or adjusting the model's
parameters.
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Figure 6: Results of YOLOV8 (m) “Best.pt” model against
testing dataset

Figure 6 presents the performance results of the YOLOV8
(m) “Best.pt” model when evaluated against a testing
dataset to detect various types of PPE. The figure
illustrates and compares the percentage of correct
identifications against the percentage of error across the
six classes discussed before across 300 photos of workers
complying or not in construction sites. All the 300 photos
used for testing were exclusive to the testing dataset and
were not used in the training nor the validation dataset.

The model clearly demonstrates high levels of accuracy in
detecting the presence of a helmet, with a score of 100%
and no perceived errors. Similarly, detecting vests
achieved a 98% accuracy and success rate. The ‘without
helmet’ category shows a slight decrease in accuracy of
4% error rate only which could be improved by further
training the model. However, the model's performance
exhibits a notable decline in the 'with safety shoes'
category, with a correct identification rate of 84% and a
corresponding error rate of 16%. This suggests that while
the model is highly effective at identifying vests and
helmets, it finds safety shoes more challenging, which
may indicate a need for further model training or data
augmentation in this category specially since safety shoes
can exhibit a diverse number of models, colours and
shapes.

The mAP for the testing dataset can be calculated by
finding the average of all the precision from the 6 classes.
A percentage of 95.6 was obtained, indicating a similar
mMAP to the validation dataset.

The error rates presented in the graph are essential for
understanding the model's limitations and guide future
improvements to enhance its predictive capabilities for
PPE compliance on construction sites. It is important to
note that since the testing data was only from 300 photos,
the results cannot be considered reliable. Furthermore,
construction sites are dynamic with variations in settings,
lighting conditions and working environment. This
illustrates the need to diversify the collected data to cover
wider landscapes of conditions. A possible solution is

using data augmentation techniques to transform images
and simulate different lighting conditions.

helmet 0.81 . -

Figure 7: PPE detection of sample in-test photo

Figure 7 demonstrates the PPE detection model’s output
when using the YOLOV8 (m) fine-tuned model. Each
class is bounded by a box which states the confidence
level of the PPE detection. The confidence level
represents how accurately is the model detecting and
determining the class of the PPE in use within the
detection frame. While the testing was only conducted on
images, the model can be utilized with a high-resolution
camera to be tested and implemented in real-time
scenarios.

Conclusion and Limitations

This research endeavor has illustrated the core hazards
within the construction industry, examining the critical
concerns concerning Personal Protective Equipment
(PPE) safety standards. It highlights the necessity of
upholding stringent safety compliance on construction
sites to mitigate the risk of accidents and enhance worker
protection.

Additionally, this study has detailed the capabilities of
object detection technologies, namely, YOLO technique's
robust framework. The analysis revealed that the
YOLOVS8 is balanced between precision and
computational efficiency, particularly when utilizing a
dataset of medium size to fine-tune the trade-off between
speed and accuracy. The model's effectiveness at
identifying compliance with helmet, vest, and safety
shoes requirements in PPE protocols was notable,
although it did exhibit a potential for enhancement in
detecting ‘safety shoes’ class type.

The model is limited to the collected dataset which
illustrates a need to increase the size of the training data,
specifically, safety shoes. In addition, it is worth noting
that the testing data was limited to 300 images which does
not necessarily cover all real-world scenarios. Data
augmentation techniques can further enhance the
collected dataset to cover wider working conditions in
construction sites. These insights not only validate
YOLOVS's utility in practical applications but also
identify specific possibilities for refining the model to



achieve even higher levels of accuracy in PPE detection
in future phases.

This stage of the conducted research was limited to the
development of the Al-based PPE detection system. In the
forthcoming stage of our research, a case study approach
can be implemented to further investigate the model
reliability. The focus will be on evaluating the impact of
deploying the Al-based PPE compliance monitoring
system within construction environments in real time.
This assessment will illustrate the system's efficacy in
reinforcing adherence to PPE usage standards and
protocols. Moreover, we intend to conduct a thorough
investigation into the sector’s behavior in response to the
system's implementation and acceptance.

While Al-based PPE compliance monitoring comprises
privacy, it is essential to consider an ethical framework.
Construction companies willing to implement this
technology must obtain consent of workers being
surveilled and implement anonymity approaches such as
face blur techniques to preserve the privacy of workers. In
addition, the reports generated by the Al model should be
inspected against bias. Decision makers within the
construction industry must be aware that the intention of
such systems is to augment manual inspection and not
replace it.
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