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Abstract 
This study addresses construction safety by deploying 
computer vision techniques, specifically a YOLOv8 
model by Ultralytics, to monitor PPE compliance. 
Targeting helmets, vests, and safety shoes, it aims to 
mitigate accident risks. The model was trained with 2934 
images and validated with 816, achieved a 95% mAP. 
Emphasizing AI's potential in safety management and 
occupational health in the construction industry. This 
research lays groundwork for future AI-based safety 
enhancements in construction sector, highlighting the 
industry's pressing need for innovative approaches to 
reduce occupational hazards and improve compliance 
standards. 

Introduction 
The construction industry, known for being the primary 
driver to infrastructure development been consistently 
ranked among the most dangerous industries worldwide, 
with a high incidence of accidents and fatality rates 
making it one of the most hazardous sectors (Lingard, 
2013; Pinto et al., 2011; Waehrer et al., 2007). High rates 
of accidents and fatalities have been consistently reported, 
many attributable to non-compliance with safety 
measures, particularly the use of Personal Protective 
Equipment (PPE) (Memon et al., 2023; Sehsah et al., 
2020). In many incidents, the lack of PPE or improper use 
of safety gear such as helmets, vests, and boots has been 
a critical factor. (Kang, 2018) reported that more than 
70% of all fatal accidents had some form of incompliance 
with PPE. This persistent challenge highlights a gap in 
safety protocols and enforcement on construction sites, 
highlighting the need for more stringent and effective 
monitoring tools to ensure worker safety and reduce the 
risk of accidents. 
Given the high importance of maintaining safety 
standards and reducing injuries from accidents in 
construction sites along with the prevalent safety 
challenges, it is necessary to rethink traditional methods 
and employ innovative technologies to enhance safety 
compliance rates on sites (Zhang, 2021). Among these 
technologies, artificial intelligence (AI) takes the lead 
when it comes to the development of object detection 
systems specifically for PPE in the site (Abioye et al., 
2021). On a site, monitoring systems using AI can assist 
safety engineers in achieving higher compliance of safety 
due to the fact that traditional human supervision can 
sometimes be expensive, prone to error and insufficient in 
maintaining safety standards (Yi and Wu, 2020). Such 
systems can aid in the detection of workers who are not 

complying with safety standards mainly, wearing proper 
PPE while working on sites.  The necessity for improved 
safety compliance on construction sites, coupled with the 
inadequacies of traditional safety monitoring methods 
dictates the need to start integrating AI-driven object 
detection systems in construction sites. The integration of 
AI-driven systems in construction sites represents an 
important opportunity and a significant leap forward in 
terms of technology adoption within the construction 
industry. 
This paper is part of a larger project that aims to utilize AI 
in the construction sector. The project is divided into 
several phases where the objective of this phase is to 
answer the following research question (RQ). 
RQ – Are fine-tuned object detection models, specifically 
YOLOV8 efficient and effective in identifying safety 
helmets, safety shoes and vests in construction sites? 

Literature Review 
Safety risks in the construction sector 
The construction engineering sector is a key driver of 
economic growth in both developed and developing 
nations (Sánchez et al., 2017). Despite advances in 
workplace safety within the construction sector, it still 
faces a greater risk of injuries and deaths than many other 
industries (Johansson et al., 2019). According to the US 
bureau of labor statistics (BLS), more than 1 in 5 deaths 
occurred in the workplace was within the construction 
industry in the year 2020 with a reported number of 1,008 
construction workers that were killed on the job (A Look 
at Workplace Deaths, Injuries, and Illnesses on Workers’ 
Memorial Day, 2022). Each year, more than 100,000 
individuals suffer from fatal injuries each year within the 
construction industry as per the International Labor 
Organization (ILO) which alone, represents about 30% of 
all occupational fatal injuries (“Construction,” 2015). 
A recent study (Memon et al., 2023) highlights that 
substandard quality of PPE is a leading cause of accidents 
in the construction industry. This study also found that the 
use of PPE can reduce accidents related to falls by 30%. 
Another study indicated that many accidents on 
construction sites occur due to the lack of PPE or failure 
to wear it properly (Ammad et al., 2021). Despite 
approximately 62% of construction workers being at risk 
of falls, only about half use PPE, as reported by the 
Bureau of Labor Statistics (BLS) (A Look at Workplace 
Deaths, Injuries, and Illnesses on Workers’ Memorial 
Day, 2022). Furthermore, it was noted that over 70% of 
fatal fall accidents involved workers not wearing PPE 
(Kang, 2018). Additionally, according to the Health and 



Safety Executive (HSE), there are more than 9,000 PPE-
related accidents annually on construction sites in the 
United Kingdom. Understanding the frequency of these 
incidents underscores the need to educate employees on 
the importance of proper PPE usage (Martin et al., 2021). 
Severe brain injuries on construction sites, primarily 
caused by falls and falling objects, are a significant 
concern (Kamardeen and Hasan, 2022). Furthermore, the 
Centers for Disease Control and Prevention (CDC, 2011) 
estimates that almost half (49%) of all fatal injuries in this 
sector are due to head injuries (Occupational Ladder Fall 
Injuries — United States, 2011). 
The concerning statistics and studies highlighted in this 
section emphasize the urgent need for more stringent and 
effective enforcement of PPE safety compliance in the 
construction industry (Ebekozien, 2021; Gattuso, 2021). 
It is imperative to develop and implement reliable 
strategies to ensure that workers are adequately protected, 
thereby reducing the high incidence of injuries and 
fatalities that currently plague this sector. 

Technology adoption and integration in construction 
industry 
The potential of Artificial Intelligence (AI) is increasingly 
being recognized across various sectors. However, its 
adoption and application in the construction industry are 
scarce compared to other industries. As a matter of fact, 
the construction industry ranks among the least digitized 
sectors globally, and a common misconception among 
stakeholder exists regarding the industry’s longstanding 
culture of resistance to change (Young et al., 2021). 
Additionally, the lack of technology integration in the 
construction industry is often associated with health and 
safety concerns (Nikas et al., 2007). In an effort to address 
this slow growth in adoption, many companies are now 
turning to Artificial Intelligence (AI) as a means to 
streamline their processes and boost productivity within 
the working environment (Yigitcanlar, 2021; Yigitcanlar 
and Cugurullo, 2020). The adoption of AI technology 
grants a competitive edge in terms of automation when 
compared to conventional approaches (Chien et al., 2020). 
Within the wide variety of AI-Based technologies, the 
application of computer vision through deep learning has 
shown promising potential in construction safety 
management. The object detection capability of AI 
provides flexibility in terms of classifying and 
recognizing objects, which is something to be capitalized 
upon to improve safety compliance. This technology, 
serves a foundation to effectively substitute human vision 
for many tasks across the construction safety workflow 
(Abioye et al., 2021). This sets the stage for exploring 
advancements in AI for PPE compliance monitoring in the 
next section. 

Advancement in AI for PPE compliance monitoring 
In recent years, the construction industry has seen 
significant advancements in the application of Artificial 
Intelligence (AI) for safety management, particularly in 
monitoring Personal Protective Equipment (PPE) 

compliance. The effectiveness of AI, specifically deep 
learning, and computer vision, in real-time monitoring of 
safety helmets and PPE compliance, showing promise for 
enhanced on-site safety have been demonstrated in the 
literature (Delhi et al., 2020; Kisaezehra et al., 2023). 
Recent advancements in the construction industry's 
approach to safety management have been significantly 
influenced by the application of Artificial Intelligence 
(AI). A focus on enhancing Personal Protective 
Equipment (PPE) compliance has been evident, with AI-
driven systems, particularly those incorporating YOLO 
models for object detection, demonstrating notable 
accuracy and real-time capabilities. This shift towards AI-
based methodologies for safety gear recognition, 
especially through the use of advanced YOLO v5 and v8 
models, underscores a growing trend in leveraging 
technology to improve on-site safety measures (Chen et 
al., 2021; Kim et al., 2023; Wang et al., 2023). 
The advancements in AI for construction safety have seen 
significant strides in the development of systems for 
detecting safety helmets and protective clothing. A 
notable approach involves the enhancement of YOLOv3 
methods, specifically tailored to improve the detection of 
smaller-sized safety gear. This innovation, focusing on 
the addition of a large-size input layer for multi-scale 
prediction, represents a crucial step in fine-tuning AI 
models to meet the unique demands of construction site 
applications, underscoring the critical role of AI 
optimization in specific industrial contexts (Wang et al., 
2020). 
The exploration of AI in the construction industry has 
further expanded with the introduction of rapid PPE 
detection systems for actual construction sites, utilizing 
deep learning techniques. This advancement, as presented 
in the literature, signifies the practicality and effectiveness 
of AI in enhancing real-time safety management on 
construction sites. It addresses the critical requirement for 
advanced and efficient safety monitoring tools within the 
industry, showcasing the potential of AI to significantly 
improve construction safety practices (Wang et al., 2021). 
Together, these studies underscore the potential of AI and 
machine learning, particularly YOLO models, in 
revolutionizing safety compliance in the construction 
industry. They highlight the technical feasibility and 
practical implications of deploying AI systems for real-
time, accurate PPE monitoring, marking a significant step 
forward in occupational safety management. 

Closing remarks 
As indicated by the literature, to the best of the authors’ 
knowledge, there has been limited empirical research 
examining the adoption of AI technologies in the 
construction industry. As such, this study aims to 
contribute to the growing body of knowledge surrounding 
the integration of artificial intelligence, namely, PPE 
compliance detection systems in the construction 
industry. 



Methodology 
Development of the PPE Compliance AI model – 
YOLOV8 
You Only Look Once V8 (YOLOV8), developed by 
Ultralytics in January 2023, served as the foundation for 
our AI model. YOLOV8 is a convolutional neural 
network (CNN), that is a category of deep learning neural 
networks, commonly used in analyzing visual imagery. 
YOLO was trained and validated using a dataset, namely 
Common Objects in Context (COCO). The COCO dataset 
contains more than 330 thousand images of 80 different 
common objects, including but not limited to, humans, 
bicycles, cars and animals. A total of 118 thousand images 
were used for the training, 5000 for validation and 20 
thousand for testing. The model was then benchmarked 
against the validation dataset using the mean average 
precision (mAP) which is basically a percentage precision 
of the number of detected objects correctly identified 
across multiple objects (Ultralytics, 2023a). YOLOV8 
can be used for different purposes, including object 
detection, object tracking, object classification and 
segmentation. The project utilizes the object detection 
capabilities of YOLOV8. 
Currently, there exists five YOLO models with varying 
sizes, (1) Nano, (2) Medium, (3) Large, (4) Extra Large. 
Simply put, smaller models compromise accuracy for 
speed, and are useful where computational power is 
limited and speed is a necessity. On the contrary, the 
larger models are the most accurate, but also the most 
resource intensive. According to Ultraltytics 
documentations, mAP is 37.3 and 53.9 for the Nano and 
Extra-large model respectively (Ultralytics, 2023b). 
Based on the limited computational power available, and 
the fact that the model is aimed to run in real-time, the 
YOLOV8 (m) model was used, with a mAP of 50.2. The 
(m) model offers a middle ground between speed and 
accuracy with a good balance between performance and 
efficiency. 

YOLOV8 (m) fine tuning 
While COCO is a well-established dataset, it fails to serve 
the purpose of the project, therefore, a custom dataset was 
required. Following Ultralytics recommendations, two 
main folders were created, a folder dedicated specifically 
to the training dataset and a folder dedicated to the model 
validation. Within each directory, two subfolders were 
created, namely “Images” and “Labels”. All the training 
images that were collected were inserted in the “Images” 
subfolder under “Train” main folder. On the other hand, 
the images used for validations were inserted in “Images” 
subfolder under the “Validation” main folder. A total of 
2934 images and 816 images were for training and 
validation respectively. Figure 1 shows the breakdown of 
the dataset organization. 
 

Figure 1: Directory organization for the customized training 

The 2934 images collected were to fine tune the model to 
detect if a construction worker, within a construction site 
setting is adhering to the PPE requirements. The object 
detection model aims to detect if workers are wearing 
their safety helmets, vests, and safety shoes. The open-
source images were collected in addition to taking photos 
using a phone camera in construction sites after taking 
consent from safety officers. To avoid bias in the image 
collection, the data collected was made sure to be as 
diverse as possible, encompassing different colors and 
shapes of helmets, vests, and safety shoes with varying 
backgrounds ensuring transferability of the model across 
different countries. 
After the collection of the photos, the fine-tuning process 
begins. First, Conda, an open-source package 
management and environment management system was 
downloaded and installed in which all the machine 
learning is managed. A dedicated environment was 
created using Conda where all the packages required for 
YOLOV8 were installed. Using the command “pip install 
ultralytics” downloads all the packages and dependencies 
required to run YOLOV8. Prior to installing the packages 
concerning YOLOV8, it is necessary to annotate the 
images in the “Train” and “Validation” folders and save 
the output into the “Labels” subfolder of both “Train” and 
“Validation”. For that, “LabelImg”, an open-source 
graphical image annotation tool, was downloaded and 
installed. Labelling the images using “LabelImg” outputs 
a .txt file for each image with the location of the label 
within an image. Figure 2 shows the user interface and the 
labelling using “LabelImg". 
 

 
Figure 2: LabelIMG annotation user interface 

 
The annotation process involved six classes: 

• Class 0 – “Helmets” 



• Class 1 – “Vests” 
• Class 2 – “Safety shoes” 
• Class 3 - "No vests” 
• Class 4 - "No helmets” 
• Class 5 - "No safety shoes” 

Upon annotating all the images collected, a “.yaml” file 
was prepared where the train and validation directory 
were set, the number of classes and the names of each 
class in order. This file is necessary as it contains all the 
necessary information required to override the existing 
trained YOLOV8. 
An important parameter to consider before initiating the 
training, is the number of epochs required, that is basically 
one complete pass of the entire training dataset through 
the algorithm. Zhang et al., (2019) underscores the 
importance of setting the number of epochs to an 
acceptable and reasonable number. For example, a very 
small number of epochs can result in an underfitted 
model, meaning that the model has not been trained 
enough on the trained data, thus resulting in a poor 
performance against validation or testing data. 
Conversely, overfitting phenomena can occur in the cases 
of an exaggerated number of epochs. In such cases, the 
model memorizes the training set rather than generalizing. 
The model would ultimately perform well on the trained 
data but poorly on unseen data. 
Selecting the appropriate number of epochs is an iterative 
process requiring several trials. The number of epochs for 
the project was set to 100 and the performance was 
constantly checked against the validation dataset setting 
an early stopping parameter in case there is no 
improvement in the performance as the number of epochs 
continues to increase. The command used in the Conda 
environment to conduct the training was as follows “yolo 

task=detect mode=train epochs=100 
data=data_custom.yaml model=yolov8m.pt imgsz=640”. 
Figure 3 summarizes the whole processes followed to 
create the custom model. 

 
Figure 3: Summary of the fine-tuning on custom dataset. 

Results and Discussion 
The results and discussion section summarizes the 
findings of the methodological approach conducted.  
YOLOV8 (m) was selected as the foundation for the fine-
tuning process. A total of 2934 and 816 photos were used 
for the training and validation respectively. A processor 
of Intel® Core (TM) i9-9980HK CPU @ 2.40GHZ 
(16CPUs), with a dedicated graphics card of NVIDIA 
RTX 2060 and 32 GB RAM served as the training 
hardware.  
By default, a patience value = 50 is set, where the 
numerical value represents the number of epochs. The 
patience parameter simply means that while the training 
is in process, the model shall check its performance 
against the validation dataset, in any case where no 
improvement is perceived in the last 50 completed 
epochs, an early stop is employed. As a result, the 
YOLOV8 fine-tuning process took 23.33 hours and had 
an early stop at 96 epochs, as there was no improvement 
seen beyond 46 epochs. 
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Figure 4: Training dashboard against the validation dataset 
 



Figure 4. illustrates the results of the custom trained 
model from the validation dataset. The x-axis represents 
the number of epochs, while the y-axis varies depending 
on the graph it represents. 
A total of 10 graphs (a) – (j) are shown in Figure 4. Figure 
4 (a) – (c) and Figure 4 (f) – (h) shows the “box loss”, 
“cls_loss” and “dfl_loss” that correspond to box loss, 
classification loss, and directional focal loss on the 
training and validation dataset respectively. Box loss 
measures how well the model is predicting the bounding 
box coordinates for each detected object. It can be seen as 
the number of epochs increases, Figure 4 (a) – (c) 
decreases illustrating a downwards trend. This means that 
the model gets better at defining the coordinates of the 
binding boxes, improving its ability to detect the 
orientation of the objects along with their presence. 
Though, when considering Figure 4 (f) – (h) it can be seen 
that all three figures see improvement in the box_loss, 
cls_loss, and dfl_loss up to the 46th epochs. This confirms 
the early stop and patience parameter were beyond the 
46th epochs, there was no improvement seen. The change 
in the figures trend indicates a sign of overfitting. When 
the validation loss starts to increase while the training loss 
continues to decrease, it means that the improvements in 
the model are specific to the training data and are not 
improving the model’s predictive ability for new, unseen 
data. 
Figure 4 (d) – (e) shows the precision and recall changes 
through 96 epochs for the validation dataset. Both Figures 
(d) and (e) show a positive and linear trend against the 
epochs. Once the training hits the 46th epochs mark, the 
precision reaches its highest value of 0.89/1 and 0.92/1 for 
the recall. The training continues all the way to the 96th 
epochs where the value of the precision and recall falls to 
0.88/1 and 0.91/1 respectively. The precision level shows 
that the model, at the 46th epochs is precisely detection 
the correct object 89% of the time. On the other hand, a 
recall of 92% indicates that the model is able to recall 92% 
of the objects.   
Figure 4 (i) – (j) shows the mean average precision and 
the mean average precision at 95% at Intersection over 
Union (IoU). Similar to Figure 3 (d) – (e), the figures here 
look at the average precision per class. In addition, IoU of 
95% is considered a very stringent threshold, it means that 
for a detection to be considered to be a true positive, the 
predicting bounding box must overlap with the ground 
truth bounding by at least 95%. Only detections that 
satisfy this threshold is considered true positive. On the 
46th epochs, the mean average precision at 95 % IoU is 
0.53/1. 

 
Figure 5: Normalized confusion matrix 

To further understand the model reliability, and to 
visualize the performance of the algorithm, a normalized 
confusion matrix is shown in Figure 5. The matrix shows 
that the model predicted 'helmet' with 99% accuracy 
indicating true positive. Moreover, the 'vest' class has 
been predicted by the model with high accuracy. As for 
'safety shoes', the true positives were 80%, but there were 
some instances where it predicted 'safety shoes' when 
there were none indicating false positives, and some 
instances where it failed to predict 'safety shoes' when 
there were some (false negatives). This can be due to the 
fact that normal shoes may emulate the look of safety 
shoes designs which can lead to false positives. It can also 
be mentioned that there are very few cases where the 
model indicated a 1% of false positives in helmets. While 
this result indicates high precision, it is limited to the used 
dataset. 
The confusion matrix suggests that the model is quite 
effective at predicting 'helmet' and 'vest' classes, is fairly 
good at predicting 'safety shoes', and generally does not 
confuse items with the background. However, there are 
some areas where the model can generate false 
predictions, particularly with the 'safety shoes'. This 
information can be used to refine the model further, 
potentially by providing it with more training data for the 
classes where it is less accurate or adjusting the model's 
parameters. 



 
Figure 6: Results of YOLOV8 (m) “Best.pt” model against 

testing dataset 
Figure 6 presents the performance results of the YOLOV8 
(m) “Best.pt” model when evaluated against a testing 
dataset to detect various types of PPE. The figure 
illustrates and compares the percentage of correct 
identifications against the percentage of error across the 
six classes discussed before across 300 photos of workers 
complying or not in construction sites. All the 300 photos 
used for testing were exclusive to the testing dataset and 
were not used in the training nor the validation dataset. 
The model clearly demonstrates high levels of accuracy in 
detecting the presence of a helmet, with a score of 100% 
and no perceived errors. Similarly, detecting vests 
achieved a 98% accuracy and success rate. The ‘without 
helmet’ category shows a slight decrease in accuracy of 
4% error rate only which could be improved by further 
training the model. However, the model's performance 
exhibits a notable decline in the 'with safety shoes' 
category, with a correct identification rate of 84% and a 
corresponding error rate of 16%. This suggests that while 
the model is highly effective at identifying vests and 
helmets, it finds safety shoes more challenging, which 
may indicate a need for further model training or data 
augmentation in this category specially since safety shoes 
can exhibit a diverse number of models, colours and 
shapes. 
The mAP for the testing dataset can be calculated by 
finding the average of all the precision from the 6 classes. 
A percentage of 95.6 was obtained, indicating a similar 
mAP to the validation dataset. 
The error rates presented in the graph are essential for 
understanding the model's limitations and guide future 
improvements to enhance its predictive capabilities for 
PPE compliance on construction sites. It is important to 
note that since the testing data was only from 300 photos, 
the results cannot be considered reliable. Furthermore, 
construction sites are dynamic with variations in settings, 
lighting conditions and working environment. This 
illustrates the need to diversify the collected data to cover 
wider landscapes of conditions. A possible solution is 

using data augmentation techniques to transform images 
and simulate different lighting conditions. 

 
Figure 7: PPE detection of sample in-test photo 

Figure 7 demonstrates the PPE detection model’s output 
when using the YOLOV8 (m) fine-tuned model. Each 
class is bounded by a box which states the confidence 
level of the PPE detection. The confidence level 
represents how accurately is the model detecting and 
determining the class of the PPE in use within the 
detection frame. While the testing was only conducted on 
images, the model can be utilized with a high-resolution 
camera to be tested and implemented in real-time 
scenarios. 

Conclusion and Limitations 
This research endeavor has illustrated the core hazards 
within the construction industry, examining the critical 
concerns concerning Personal Protective Equipment 
(PPE) safety standards. It highlights the necessity of 
upholding stringent safety compliance on construction 
sites to mitigate the risk of accidents and enhance worker 
protection. 
Additionally, this study has detailed the capabilities of 
object detection technologies, namely, YOLO technique's 
robust framework. The analysis revealed that the 
YOLOV8 is balanced between precision and 
computational efficiency, particularly when utilizing a 
dataset of medium size to fine-tune the trade-off between 
speed and accuracy. The model's effectiveness at 
identifying compliance with helmet, vest, and safety 
shoes requirements in PPE protocols was notable, 
although it did exhibit a potential for enhancement in 
detecting ‘safety shoes’ class type.  
The model is limited to the collected dataset which 
illustrates a need to increase the size of the training data, 
specifically, safety shoes. In addition, it is worth noting 
that the testing data was limited to 300 images which does 
not necessarily cover all real-world scenarios. Data 
augmentation techniques can further enhance the 
collected dataset to cover wider working conditions in 
construction sites. These insights not only validate 
YOLOV8's utility in practical applications but also 
identify specific possibilities for refining the model to 
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achieve even higher levels of accuracy in PPE detection 
in future phases. 
This stage of the conducted research was limited to the 
development of the AI-based PPE detection system. In the 
forthcoming stage of our research, a case study approach 
can be implemented to further investigate the model 
reliability. The focus will be on evaluating the impact of 
deploying the AI-based PPE compliance monitoring 
system within construction environments in real time. 
This assessment will illustrate the system's efficacy in 
reinforcing adherence to PPE usage standards and 
protocols. Moreover, we intend to conduct a thorough 
investigation into the sector’s behavior in response to the 
system's implementation and acceptance. 
While AI-based PPE compliance monitoring comprises 
privacy, it is essential to consider an ethical framework. 
Construction companies willing to implement this 
technology must obtain consent of workers being 
surveilled and implement anonymity approaches such as 
face blur techniques to preserve the privacy of workers. In 
addition, the reports generated by the AI model should be 
inspected against bias. Decision makers within the 
construction industry must be aware that the intention of 
such systems is to augment manual inspection and not 
replace it. 
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