
Aalborg Universitet

Verified Verifying

SMT-LIB for Strings in Isabelle

Lotz, Kevin; Kulczynski, Mitja ; Nowotka, Dirk; Poulsen, Danny Bøgsted; Schlichtkrull, Anders

Published in:
Implementation and Application of Automata

DOI (link to publication from Publisher):
10.1007/978-3-031-40247-0_15

Publication date:
2023

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Lotz, K., Kulczynski, M., Nowotka, D., Poulsen, D. B., & Schlichtkrull, A. (2023). Verified Verifying: SMT-LIB for
Strings in Isabelle. In B. Nagy (Ed.), Implementation and Application of Automata: 27th International Conference,
CIAA 2023, Proceedings (pp. 206-217). Springer. https://doi.org/10.1007/978-3-031-40247-0_15

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 18, 2025

https://doi.org/10.1007/978-3-031-40247-0_15
https://vbn.aau.dk/en/publications/09c24928-f877-4c88-8f7f-aebd818fd99e
https://doi.org/10.1007/978-3-031-40247-0_15

Verified Verifying: SMT-LIB for Strings
in Isabelle

Kevin Lotz 1, Mitja Kulczynski 1, Dirk Nowotka1,
Danny Bøgsted Poulsen2 , and Anders Schlichtkrull2

1 Department of Computer Science, Kiel University, Kiel, Germany
{kel,mku,dn}@informatik.uni-kiel.de

2 Department of Computer Science, Aalborg University, Aalborg, Denmark
{dannybpoulsen,andsch}@cs.aau.dk

Abstract. The prevalence of string solvers in formal program analysis
has led to an increasing demand for more effective and dependable solv-
ing techniques. However, solving the satisfiability problem of string con-
straints, which is a generally undecidable problem, requires a deep under-
standing of the structure of the constraints. To address this challenge, the
community has relied on SMT solvers to tackle the quantifier-free first-
order logic fragment of string constraints, usually stated in SMT-LIB
format. In 2020, the SMT-LIB Initiative issued the first official standard
for string constraints. However, SMT-LIB states the semantics in a semi-
formal manner, lacking a level of formality that is desirable for validating
SMT solvers. In response, we formalize the SMT-LIB theory of strings
using Isabelle, an interactive theorem prover known for its ability to for-
malize and verify mathematical and logical theorems. We demonstrate
the usefulness of having a formally defined theory by deriving, to the
best of our knowledge, the first automated verified model verification
method for SMT-LIB string constraints and highlight potential future
applications.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers [6] have been instrumental in deter-
mining the satisfiability of first-order logic formulae within a given theory, driving
much of the development of software verification [24,18] and formal verification
applications. They have also seen widespread use in areas such as security [41,48]
and program analysis [9,39].

A particular area where SMT solving is frequently applied is the verification
of string-heavy programs. This can be partly attributed to the fact that strings
are the most commonly used data type for processing user data and, conse-
quently, mishandling of strings can pose significant security risks. Indeed, third-
ranked security risk on the Open Web Application Security Project’s (OWASP)
top ten security risks in 2023 are injection attacks, which are fundamentally
caused by inadequate string handling. While string reasoning is most commonly
associated with web security applications[41,47], it is also applied in other areas

https://orcid.org/0000-0001-6759-3304
https://orcid.org/0000-0003-4650-1110
https://orcid.org/0000-0001-9623-0748
https://orcid.org/0000-0001-9212-6150

2 K. Lotz, M. Kulczynski, D. Nowotka, D. Poulsen, and A. Schlichtkrull

such as model checking [25] and cloud security [2,40]. Verification and automated
reasoning tools typically discharge the heavy lifting of string constraint solving
to dedicated SMT solvers. Over the past years, this led to the development
of numerous solvers specialized in string reasoning (e.g.,[1,15,36,16,30]) and to
widely adapted SMT solvers, such as cvc5 [3] and Z3 [17], adding support for
strings. In 2020, efforts converged and were incorporated into the SMT-LIB 2.6
standard [44]. With the addition of the theory of strings, the SMT-LIB 2.6 stan-
dard strives to establish a common language and consistent semantics for solving
problems related to strings.

Given their extensive usage, it is crucial to ensure that SMT solvers behave
correctly and that implementation errors are detected as early as possible. A
central question in that regard: Can we trust an SMT solver’s result? If a solver
determines that an input formula is satisfiable, it usually provides evidence of its
decisions in the form of a model, i.e., an assignment of constants to the variables
which satisfies the formula. A common practice to assess the soundness of a solver
is to use another solver as an oracle to check whether the produced assignment
indeed satisfies the formula at hand. However, that shifts the trust problem from
one solver to another and poses a high risk of implementation errors carrying
over to new solvers.

To address this problem, we present a novel approach for validating models
produced by SMT solvers using Isabelle/HOL, an interactive theorem prover
that provides a high-level specification language for expressing logical problems
and powerful automation capabilities for proving properties [45]. In particular,
our contributions are the following. We formalise the semantics of the SMT-
LIB 2.6 theory of strings in Isabelle/HOL and provide an implementation of the
standard model that is provably correct. The formalisation proved itself useful
as we found inconsistencies in the standard, e.g., in the str. indexof operator, as
we highlight in Section 3. The formalisation enables us to assess the soundness
of SMT solvers by proving that an assignment produced by a solver is indeed a
model of the input formula. Unlike using existing SMT solvers as test oracles,
this provides a very strong guarantee that a model is indeed correct. We outline
our efforts in building a model verification framework in Section 4 and show its
usefulness on soundness issues reported in the literature.

Related Work. If we look at the Boolean satisfiability problem (SAT) rather than
SMT then there are a number of works that use interactive theorem provers to
construct verified SAT solvers. These were developed in Isabelle by Maric et al.
[35,33,34], also in Isabelle by Fleury et al. [20,23,19,22,10,21,12,11], in Coq by
Lescuyer [32] and in PVC by Shankar and Vaucher [43]. Additionally, there is the
verified SAT solver in GURU by Oe et al. [38] which ensures model soundness
at run time but is not proven to terminate.

SMT has also been combined with interactive theorem proving. In Isabelle,
the smt tactic will run an SMT solver on a proof goal given in Isabelle, and then
the tactic will try to reconstruct the proof in Isabelle’s logic. The tactic supports
Z3 with the theories of equality, uninterpreted functions, arrays, linear integer
arithmetics and real arithmetics [13]. In order to be able to reconstruct the

Verified Verifying: SMT-LIB for Strings in Isabelle 3

proofs generated by the SMT solver, the SMT solver needs to be able to return
a representation of the proof it generated. A recent work in this direction is by
Schurr et al. who are building a common format, Alethe, to be used to reconstruct
proofs made by SMT solvers [42]. Another recent work is by Barbosa et al. [4] who
generate proofs for cvc5 and are also working on exporting them to the Alethe
format. The above work concerns proof production from SMT solvers where the
interest is in proving that a formula is satisfied by all models. The focus of our
work goes in a different direction, namely that of checking in the String theory
whether the model given by an SMT solver actually satisfies the input formula.

In the context of string solving, Kan et al. [27] developed a solver for a frag-
ment of string constraints that is completely verified in Isabelle/HOL. On the
theoretical side, implementations of regular expressions [29] and general theo-
rems on combinatorics on words [26] were made in Isabelle/HOL.

2 Preliminaries

SMT. SMT extends SAT solving to many-sorted first-order logic within a given
logical background theory T that fixes the domain and the interpretation of the
non-logical symbols. Solving an SMT formula φ in the theory T involves deter-
mining whether a model M exists in T that satisfies φ. The increasing interest in
SMT led to the development of the SMT-LIB standard [5], which provides a mod-
eling language for many-sorted first-order logic and specifies various background
theories. SMT solvers ingest formulae expressed in the language of SMT-LIB
and check their satisfiability according to a theory or a combination of theories
specified in the SMT-LIB standard. Theories in SMT-LIB are described in terms
of syntactical elements, i.e., the non-logical symbols. The intended semantics of
theories are defined informally in natural language [5]. Examples of available
theories include fixed-size bitvectors, integers, reals, and strings.
Theory of strings. We briefly summarise the theory of strings, TS . An outline of
the syntax is depicted in Figure 1. The theory deals with Boolean combinations
of atomic formula including string equalities and inequalities, regular expres-
sion membership, and extended string predicates like containment and prefix
relations.

A string term is a finite, ordered sequence of characters drawn from a finite
alphabet, like ASCII or Unicode. String concatenation is denoted by tstr · tstr.
The length of a string term w, denoted by str .len(w), is the number of charac-
ters. We also use |w| to refer to the length of w for readability. An empty string
is represented by ϵ and has a length of 0. Operations referring to the index of
a character or a sub-string within a string utilise zero-based indexing, that is,
the first character has an index of zero. The term str.to_int treats a string as
a non-negative base-10 integer, possibly with leading zeros. If the string is neg-
ative or contains non-digit characters, the value is -1. The term str.from_int
converts a non-negative integer to the shortest possible string representing it in
base 10. If the integer is negative, the value is an empty string. The atoms in
Are correspond to regular membership constraints of a string term in a regular

4 K. Lotz, M. Kulczynski, D. Nowotka, D. Poulsen, and A. Schlichtkrull

F ::= Atom | F ∧ F | F ∨ F | ¬F
Atom ::= tstr = tstr | Aint | Aext | Are

Are ::= tstr ∈ RE
Aint ::= tint = tint | tint < tint

Aext ::= str .contains(tstr , tstr) | str .prefixof (tstr , tstr) | str .suffixof (tstr , tstr)
tint ::= m | v | str .len(tstr) | tint + tint | m · tint | str .indexof (tstr , tstr , tint) |

str .to_int(tstr) where m ∈ Conint & v ∈ Var int
tstr ::= s | v | tstr · tstr | str .from_int(tint) | str .replace(tstr , tstr , tstr) |

str .replace_all(tstr , tstr , tstr) | str .at(tstr , tint) | str .substr(tstr , tint , tint)
where s ∈ Constr and v ∈ Varstr

Fig. 1: The syntax of the theory of strings TS .

expression RE, constructed using accustomed regular operators. The satisfia-
bility problem for the quantifier-free theory TS involves determining whether
there exists an assignment of some constant in Constr to every string variable
in V arstr and some constant in Conint to every integer variable in V arint, such
that the formula evaluates to true under the semantics given in the SMT-LIB
standard. If such an assignment exists, the formula is satisfiable, and if not, it
is unsatisfiable.

For more information on the syntax and semantics of the theory of strings,
we recommend referring to the SMT-LIB standard for the theory of strings [44].
Isabelle. Isabelle [37,45,46] is a generic proof assistant. Proof assistants are com-
puter programs in which users can define objects from mathematics, logic and
computer science, and prove lemmas and theorems about them. The proof as-
sistant checks that the proofs are correct, and it can also perform parts of (or
whole) proofs automatically. The value of this is that users get a very strong
guarantee that their proofs are correct. Isabelle achieves this by having a small
kernel that implements a relatively simple logical derivation system. That Is-
abelle is generic means that it supports several logics, the most prominent being
Isabelle/HOL which is Isabelle’s implementation of higher-order logic (HOL).
This is also the logic that we are using in the present paper. Popularly speaking,
Isabelle/HOL combines typed functional programming and logic.

3 Formalising the SMT Theory of Strings

The SMT-LIB theory of strings allows reasoning over finite sequences of char-
acters and regular languages. The signature of the theory contains three sorts
String, RegLan, and Int and consists of the various function symbols shown in
Figure 1, such as str. substr, str. at. The SMT-LIB standard not only specifies
syntax but also provides corresponding semantics. That is, the symbols are not
intended to be interpreted arbitrarily but rather in a standard model in which
the domains of the sorts are fixed and the interpretation of the function sym-
bols is predefined. In particular, the domain of String is fixed to the set of all

Verified Verifying: SMT-LIB for Strings in Isabelle 5

finite words in UC∗, where UC is the alphabet of 196607 Unicode characters,
the domain of RegLan is the set of all regular languages over String, i.e., the set
2UC∗ , and Int refers to the standard set of integers. The intended semantics of
the function symbols within the respective domains are expressed semi-formally,
in natural language. For example, the standard defines the semantics of the
function as follows.

If 0 ≤ m < |w| and 0 < n then str. substr(w, m, n) is the unique word
w2 such that w = w1w2w3, |w3| = m, and |w2| = min(n, |w| − m) for
some words w1 and w3. Otherwise str. substr(w, m, n) = ε.

We formalise the standard model in Isabelle/HOL. This formalisation comprises
an interpretation of all symbols as functions in Isabelle, a translation of the
semantics of the standard model into higher-order logic sentences, and proofs
that our interpretation satisfies them.

For example, we implement a function substr::"uc_string ⇒ int ⇒int ⇒
uc_string", where uc_string denotes the type of Unicode strings, and int is

the type of integers, and prove the following two lemmas:

assumes "0≤m ∧ m<|w| ∧ 0<n" shows "∃!v. substr w m n = v
∧ ∃x y. w=x·v·y ∧ |x|=m ∧ |v|= min n (|w|-m)"

assumes "0>m ∨ m≥|w| ∨ 0≥n" shows " substr w m n = ε"

These lemmas formalise the meaning of str. substr as detailed above. Our formal-
isation3 currently encompasses all function symbols except for str. replace_all,
str. replace_re, and str. replace_re_all.
Formalisation. We implement SMT-LIB functions based on a formalisation of
the notions of words and regular expressions in Isabelle/HOL. To represent words
over an arbitrary alphabet, we introduce the type ’a word which is a synonym for
lists of arbitrary type, i.e., ’a word ≡ ’a list. The type ’a word allows instan-
tiation with arbitrary types as the underlying alphabet. The SMT-LIB standard
specifies the alphabet to be Unicode characters. Therefore, we introduce a new
type UC defined as the subset {0, . . . , 196, 607} of integers, such that each term
of type UC corresponds to a unique code point in the Unicode alphabet. By using
UC as the type of the alphabet, the resulting type UC word is inhabited by all
words over the Unicode alphabet and is thus a formalisation of the String sort
defined by the SMT-LIB standard.

We implement the SMT-LIB string functions in terms of UC word and show
that the implementation satisfies the properties of the standard model, as ex-
emplified above. In doing so, we rely on functions on lists, as well as associated
lemmas, that are already present in the Isabelle core libraries. For instance, the
str. ++ function directly corresponds to the Isabelle list append function. More
complex SMT-LIB functions additionally require reasoning about the factors of
a word, which we handle by implementing a function that projects a word w onto
the factor w[i; j] between two indices i, j ∈ N with 0 ≤ i ≤ j. We implement

3 Available at https://github.com/formalsmt/isabelle_smt

https://github.com/formalsmt/isabelle_smt

6 K. Lotz, M. Kulczynski, D. Nowotka, D. Poulsen, and A. Schlichtkrull

SMT-LIB str. substr and str. at in terms of this function. Moreover, the projec-
tion to factors allows searching and replacing occurrences and factors with other
words, as required by the SMT-LIB functions str. indexof, str. replace, respec-
tively. However, while Isabelle uses natural numbers to represent the lengths of
lists, the SMT-LIB standard defines the length of a string, including the indices
of substrings, as integers. Therefore, we require additional conversions between
integers and natural numbers and must handle edge cases. For example, in the
str. substr implementation, we first check whether the given indices are valid,
i.e., whether they are within the bounds of the string, then convert them to
natural numbers, and finally project the string onto the corresponding factor:

str_substr w m n = if n ≥ 0 ∧ 0 ≤ m ∧ ((nat m) ≤ |w|-1)
then w[(nat m);(nat (m+n))] else ε

To formalise the regular membership predicate, i.e., str. in_re, which evalu-
ates to true whenever a given string term is a member of a given regular language,
we first introduce an algebraic data type ’a regex characterizing regular expres-
sions. The type contains a constructor for each regular operation defined by the
SMT-LIB standard, including ’a word as one of the base cases. Likewise to the
type ’a word, we instantiate ’a regex with the type UC to obtain the type UC
regex, which is inhabited by all regular expressions over the Unicode alphabet.
To establish a connection between regular expressions and regular languages as
defined by the standard, we additionally define the function lang::"’a regex ⇒
’a word set that maps a regular expression to its language using accustomed

semantics. Hence, for any UC regex term r, the set lang r is a (regular) subset
of the set of all UC word terms, which means that UC regex formalises the sort
RegLan. We prove that the regular expression type, equipped with the lang
function, satisfies all properties that the SMT-LIB theory of strings requires.

For example, we show that regular concatenation, re_concat, expresses the exact
language specified by the standard, by proving the following lemma:

lang (re_concat r e) = { x·y | x y. x ∈ lang r ∧ y ∈ lang e }

Finally, we implement the str. in_re predicate in terms of Brzozowski deriva-
tives [14]. We follow the approach outlined in [28], but adapt it to account for
the full set of regular operations defined by the SMT-LIB theory of strings. That
is, we define a function deriv::"’a regex ⇒ ’a ⇒ ’a regex that computes the
derivative of a regular expression w.r.t. a single character, and its extensions
to words derivw::"’a regex ⇒ ’a word ⇒ ’a regex. We then prove that for a
term w of type ’a word and a term r of type ’a regex, w is contained in the set
lang r if and only if the derivative derivw r w contains the empty word.

Using Brzozowski derivatives, testing regular membership amounts to exe-
cuting a finite number of deterministic derivations steps. This approach is prefer-
able to testing whether a words is contained in a (possibly infinite) set using the
lang function, as Isabelle can perform the finitely many derivation steps auto-
matically. This is especially important for the automated model verification as
described in Section 4.

Verified Verifying: SMT-LIB for Strings in Isabelle 7

φ SMT-LIB
formula ½ SMT solver � Model

$ Conversion Û Isabelle/HOL

e Theory

✓ valid model

? unknown

p invald model

Fig. 2: SMT model verification process overview.

Inconsistencies. During our formalisation, we discovered several inconsistencies
in the standard. Foremost, we found that the function str. indexof is not well-
defined for all inputs. The standard requires that

if str. contains(w, w2) = true and i ≥ 0 then str. indexof(w, w2, i) is
the smallest n such that w = w1w2w3 for some words w1, w3 with
i ≤ n = |w1|. Otherwise, str. indexof(w, w2, i) is −1.

However, if either i ≥ |w| or str. contains(substr(w, i, |w|), w2) = false, then such
an n cannot exist. For instance, str. indexof(“ab”, ε, 3) is a counterexample con-
cerning the first case. We have 3 ≥ 1 and str. contains(“ab”, ε) by the definition
of str. contains, but there are no words w1, w3 with “ab” = w1 · ε · w3 = w1 · w2
and 3 ≤ |w1|. For the second case, consider str. indexof(“ab”, “a”, 1). Again
str. contains(“ab”, “a”) and 1 ≥ 0, but no words w1 w2 with “ab” = w1 · “a” · w2
and 1 ≤ |w1| exist. In order to establish well-defined semantics for str. contains,
we suggest modifying the premises such that str. contains(substr(w, i, |w|), w2) =
true instead of str. contains(w, w2) = true and additionally ensuring that i ≤ |w|
is satisfied.

Besides that, we found a minor inconsistency in the signatures of str. replace_re
and str. replace_re_all. The standard defines them first as functions of type
String → RegLan → String → String but later as functions of type String →
String → String → String. The former was clearly intended.

4 Model Verification using Isabelle

We present SMTmv4, an automated tool for SMT model verification that lever-
ages our formalisation to check the accuracy of models generated by SMT solvers.
The verification process involves a sequence of steps, which are summarized in
Figure 2. For a satisfiable formula φ, an SMT solver is able to produce a model
M , i.e., a variable assignment that satisfies the formula. SMTmv takes this
potential model and converts it into Isabelle/HOL by mapping SMT-LIB func-
tions to corresponding counterparts in the presented formalisation, and logical
connectives to equivalent Isabelle primitives. The result is a shallow embedding
φI in Isabelle that is equivalent to φ within the standard model of the theory
4 Available at https://github.com/formalsmt/SMTmv

https://github.com/formalsmt/SMTmv

8 K. Lotz, M. Kulczynski, D. Nowotka, D. Poulsen, and A. Schlichtkrull

Table 1: Results using SMTmv to replicate and verify soundness issues high-
lighted in [8]. Here, “t.o.” stands for “timeout” (60 seconds) and “�-time” mea-
sures the average time it took SMTmv to verify a model, not including timeouts.

Solver Tested Solver Result SMTmv
sat unsat t.o. invalid valid unknown error t.o. �-time

Z3Trau 5325 2940 2126 259 1846 0 1 0 1093 33.36s
Ostrich 28 21 7 0 20 0 0 1 0 4.88s
Z3Str3 13 0 13 0 0 0 0 0 0 -

of strings. Afterwards, SMTmv represents the assignment M equivalently as a
conjunction of equalities MI . Thus, within the SMT-LIB theory of strings, M is
a model to φ if and only if MI |= φI . SMTmv expresses MI |= φI as a lemma
in Isabelle/HOL and queries the system to search for a proof. If Isabelle finds a
proof, the assignment produced by the SMT solver is provably a model to the
formula, and consequently, SMTmv returns valid. If Isabelle/HOL instead finds
that the model doesn’t satisfy the formula, it returns invalid. In cases where
Isabelle/HOL can neither find a proof nor a counterexample, SMTmv returns
unknown.
Analysis. To showcase the effectiveness of SMTmv, we utilise it to verify
the soundness problems highlighted in [8]. The accompanying artifact offers a
database of SMT-LIB instances and their reported outcomes. We re-ran the –
at the time – unsound solvers Z3Trau [1], OSTRICH [15], and Z3str3 [7] to
replicate the soundness issues and used SMTmv to verify the produced models.
Note that we intentionally used outdated solver versions on which the errors were
reported to demonstrate the effectiveness of SMTmv and that all solvers might
have since been fixed. All experiments were run with a timeout of 60 seconds
per instance for each, the solver and SMTmv. Our findings are summarised in
Table 1. According to Berzish et al., Z3Trau had 5,325 soundness issues, out
of which SMTmv was able to identify 1846 provably invalid models. On 1,093
instances SMTmv timed out. However, Z3Trau persistently produced models
with a total length of well over 40,000 characters, which Isabelle was unable
to handle within the set time limit. OSTRICH supposedly had 28 soundness
issues. SMTmv found that 20 of them are due to invalid models. In one case
OSTRICH returned sat on a formula that contains a unary disjunction, which
is not valid syntax according to the SMT-LIB standard. Isabelle rejected this
formula and SMTmv reported error. For Z3str3 [7], the authors reported 13
soundness issues, none of which were due to an invalid model.

5 Conclusion and Further Work

We presented a formalisation of the SMT-LIB theory of strings in Isabelle/HOL.
Through this formalisation, we have identified inconsistencies in the SMT-LIB
theory of strings and proposed rectifications for them. Additionally, we have

Verified Verifying: SMT-LIB for Strings in Isabelle 9

introduced a tool, named SMTmv, that automates the validation of SMT mod-
els and successfully identified invalid model production as the cause of known
soundness issues in several solvers. We believe SMTmv will be valuable for both
SMT solver developers and practitioners in identifying and rectifying sound-
ness errors, e.g. integrated into the benchmarking tool ZaligVinder [31]. Our
formalisation in Isabelle/HOL lays the groundwork for future research, such as
extending the expressiveness to support other SMT-LIB theories beyond strings
or providing a deep embedding of the SMT-LIB logic into Isabelle.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.F., Diep, B.P., Holík, L., Rezine, A., Rümmer,
P.: Trau: SMT solver for string constraints. In: 2018 Formal Methods in Computer
Aided Design (FMCAD). pp. 1–5. IEEE (2018)

2. Backes, J., Bolignano, P., Cook, B., Dodge, C., Gacek, A., Luckow, K., Rungta,
N., Tkachuk, O., Varming, C.: Semantic-based automated reasoning for AWS ac-
cess policies using SMT. In: 2018 Formal Methods in Computer Aided Design
(FMCAD). pp. 1–9 (2018). https://doi.org/10.23919/FMCAD.2018.8602994

3. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., et al.: cvc5: A versatile and
industrial-strength SMT solver. In: Tools and Algorithms for the Construction and
Analysis of Systems: 28th International Conference, TACAS 2022, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2–7, 2022, Proceedings, Part I. pp. 415–442. Springer
(2022)

4. Barbosa, H., Reynolds, A., Kremer, G., Lachnitt, H., Niemetz, A., Nötzli, A.,
Ozdemir, A., Preiner, M., Viswanathan, A., Viteri, S., Zohar, Y., Tinelli, C., Bar-
rett, C.W.: Flexible proof production in an industrial-strength SMT solver. In:
Blanchette, J., Kovács, L., Pattinson, D. (eds.) Automated Reasoning - 11th Inter-
national Joint Conference, IJCAR 2022, Haifa, Israel, August 8-10, 2022, Pro-
ceedings. Lecture Notes in Computer Science, vol. 13385, pp. 15–35. Springer
(2022). https://doi.org/10.1007/978-3-031-10769-6_3, https://doi.org/10.
1007/978-3-031-10769-6_3

5. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017), available
at www.SMT-LIB.org

6. Barrett, C., Tinelli, C.: Satisfiability modulo theories. Springer (2018)
7. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: A string solver with theory-aware

heuristics. In: 2017 Formal Methods in Computer Aided Design (FMCAD). pp.
55–59. IEEE (2017)

8. Berzish, M., Kulczynski, M., Mora, F., Manea, F., Day, J.D., Nowotka, D., Ganesh,
V.: An SMT solver for regular expressions and linear arithmetic over string length.
In: Computer Aided Verification: 33rd International Conference, CAV 2021, Virtual
Event, July 20–23, 2021, Proceedings, Part II. pp. 289–312. Springer (2021)

9. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. pp. 307–321. Springer (2009)

10. Blanchette, J.C., Fleury, M., Lammich, P., Weidenbach, C.: A verified SAT solver
framework with learn, forget, restart, and incrementality. J. Autom. Reason.

https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/978-3-031-10769-6_3

10 K. Lotz, M. Kulczynski, D. Nowotka, D. Poulsen, and A. Schlichtkrull

61(1-4), 333–365 (2018). https://doi.org/10.1007/s10817-018-9455-7, https:
//doi.org/10.1007/s10817-018-9455-7

11. Blanchette, J.C., Fleury, M., Weidenbach, C.: A verified SAT solver framework
with learn, forget, restart, and incrementality. In: Olivetti, N., Tiwari, A. (eds.)
Automated Reasoning - 8th International Joint Conference, IJCAR 2016, Coim-
bra, Portugal, June 27 - July 2, 2016, Proceedings. Lecture Notes in Com-
puter Science, vol. 9706, pp. 25–44. Springer (2016). https://doi.org/10.1007/
978-3-319-40229-1_4, https://doi.org/10.1007/978-3-319-40229-1_4

12. Blanchette, J.C., Fleury, M., Weidenbach, C.: A verified SAT solver frame-
work with learn, forget, restart, and incrementality. In: Sierra, C. (ed.) Pro-
ceedings of the Twenty-Sixth International Joint Conference on Artificial Intel-
ligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017. pp. 4786–4790.
ijcai.org (2017). https://doi.org/10.24963/ijcai.2017/667, https://doi.org/
10.24963/ijcai.2017/667

13. Böhme, S., Weber, T.: Fast LCF-Style proof reconstruction for Z3. In: Kauf-
mann, M., Paulson, L.C. (eds.) Interactive Theorem Proving, First Interna-
tional Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings.
Lecture Notes in Computer Science, vol. 6172, pp. 179–194. Springer (2010).
https://doi.org/10.1007/978-3-642-14052-5_14, https://doi.org/10.1007/
978-3-642-14052-5_14

14. Brzozowski, J.A.: Derivatives of regular expressions. Journal of the ACM (JACM)
11(4), 481–494 (1964)

15. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for path
feasibility of string-manipulating programs with complex operations. Proceedings
of the ACM on Programming Languages 3(POPL), 1–30 (2019)

16. Day, J.D., Ehlers, T., Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: On
solving word equations using sat. In: Reachability Problems: 13th International
Conference, RP 2019, Brussels, Belgium, September 11–13, 2019, Proceedings 13.
pp. 93–106. Springer (2019)

17. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS. pp. 337–340.
Springer (2008)

18. Eldib, H., Wang, C., Schaumont, P.: Formal verification of software countermea-
sures against side-channel attacks. ACM Transactions on Software Engineering and
Methodology (TOSEM) 24(2), 1–24 (2014)

19. Fleury, M.: Optimizing a verified SAT solver. In: Badger, J.M., Rozier, K.Y. (eds.)
NASA Formal Methods - 11th International Symposium, NFM 2019, Houston, TX,
USA, May 7-9, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11460,
pp. 148–165. Springer (2019). https://doi.org/10.1007/978-3-030-20652-9_
10, https://doi.org/10.1007/978-3-030-20652-9_10

20. Fleury, M.: Formalization of logical calculi in Isabelle/HOL. Ph.D. thesis, Saarland
University, Saarbrücken, Germany (2020), https://tel.archives-ouvertes.fr/
tel-02963301

21. Fleury, M., Blanchette, J.C., Lammich, P.: A verified SAT solver with watched
literals using imperative HOL. In: Andronick, J., Felty, A.P. (eds.) Proceedings
of the 7th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018. pp. 158–171. ACM
(2018). https://doi.org/10.1145/3167080, https://doi.org/10.1145/3167080

22. Fleury, M., Schurr, H.: Reconstructing veriT proofs in Isabelle/HOL. In: Reis, G.,
Barbosa, H. (eds.) Proceedings Sixth Workshop on Proof eXchange for Theorem

https://doi.org/10.1007/s10817-018-9455-7
https://doi.org/10.1007/s10817-018-9455-7
https://doi.org/10.1007/s10817-018-9455-7
https://doi.org/10.1007/s10817-018-9455-7
https://doi.org/10.1007/978-3-319-40229-1_4
https://doi.org/10.1007/978-3-319-40229-1_4
https://doi.org/10.1007/978-3-319-40229-1_4
https://doi.org/10.1007/978-3-319-40229-1_4
https://doi.org/10.1007/978-3-319-40229-1_4
https://doi.org/10.24963/ijcai.2017/667
https://doi.org/10.24963/ijcai.2017/667
https://doi.org/10.24963/ijcai.2017/667
https://doi.org/10.24963/ijcai.2017/667
https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1007/978-3-030-20652-9_10
https://doi.org/10.1007/978-3-030-20652-9_10
https://doi.org/10.1007/978-3-030-20652-9_10
https://doi.org/10.1007/978-3-030-20652-9_10
https://doi.org/10.1007/978-3-030-20652-9_10
https://tel.archives-ouvertes.fr/tel-02963301
https://tel.archives-ouvertes.fr/tel-02963301
https://doi.org/10.1145/3167080
https://doi.org/10.1145/3167080
https://doi.org/10.1145/3167080

Verified Verifying: SMT-LIB for Strings in Isabelle 11

Proving, PxTP 2019, Natal, Brazil, August 26, 2019. EPTCS, vol. 301, pp. 36–
50 (2019). https://doi.org/10.4204/EPTCS.301.6, https://doi.org/10.4204/
EPTCS.301.6

23. Fleury, M., Weidenbach, C.: A verified SAT solver framework including opti-
mization and partial valuations. In: Albert, E., Kovács, L. (eds.) LPAR 2020:
23rd International Conference on Logic for Programming, Artificial Intelligence
and Reasoning, Alicante, Spain, May 22-27, 2020. EPiC Series in Computing,
vol. 73, pp. 212–229. EasyChair (2020). https://doi.org/10.29007/96wb, https:
//doi.org/10.29007/96wb

24. Grimm, T., Lettnin, D., Hübner, M.: A survey on formal verification techniques
for safety-critical systems-on-chip. Electronics 7(6), 81 (2018)

25. Hojjat, H., Rümmer, P., Shamakhi, A.: On strings in software model checking.
In: Lin, A.W. (ed.) Programming Languages and Systems. pp. 19–30. Springer
International Publishing, Cham (2019)

26. Holub, v., Starosta, v.: Formalization of Basic Combinatorics on Words. In: Cohen,
L., Kaliszyk, C. (eds.) 12th International Conference on Interactive Theorem Prov-
ing (ITP 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 193,
pp. 22:1–22:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Ger-
many (2021). https://doi.org/10.4230/LIPIcs.ITP.2021.22, https://drops.
dagstuhl.de/opus/volltexte/2021/13917

27. Kan, S., Lin, A.W., Rümmer, P., Schrader, M.: Certistr: a certified string solver.
In: Proceedings of the 11th ACM SIGPLAN International Conference on Certified
Programs and Proofs. pp. 210–224 (2022)

28. Krauss, A., Nipkow, T.: Regular sets and expressions. Archive of Formal Proofs
(May 2010), https://isa-afp.org/entries/Regular-Sets.html, Formal proof
development

29. Krauss, A., Nipkow, T.: Proof pearl: Regular expression equivalence and
relation algebra. Journal of Automated Reasoning 49(1), 95–106 (Mar
2011). https://doi.org/10.1007/s10817-011-9223-4, https://doi.org/10.
1007/s10817-011-9223-4

30. Kulczynski, M., Lotz, K., Nowotka, D., Poulsen, D.B.: Solving string theories in-
volving regular membership predicates using sat. In: Model Checking Software:
28th International Symposium, SPIN 2022, Virtual Event, May 21, 2022, Proceed-
ings. pp. 134–151. Springer (2022)

31. Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: The power of string solv-
ing: simplicity of comparison. In: Proceedings of the IEEE/ACM 1st International
Conference on Automation of Software Test. pp. 85–88 (2020)

32. Lescuyer, S.: Formalizing and Implementing a Reflexive Tactic for Automated De-
duction in Coq. (Formalisation et developpement d’une tactique reflexive pour la
demonstration automatique en coq). Ph.D. thesis, University of Paris-Sud, Orsay,
France (2011), https://tel.archives-ouvertes.fr/tel-00713668

33. Maric, F.: Formal verification of a modern SAT solver by shallow embedding into
Isabelle/HOL. Theor. Comput. Sci. 411(50), 4333–4356 (2010). https://doi.org/
10.1016/j.tcs.2010.09.014, https://doi.org/10.1016/j.tcs.2010.09.014

34. Maric, F., Janicic, P.: Formalization of abstract state transition systems for SAT.
Log. Methods Comput. Sci. 7(3) (2011). https://doi.org/10.2168/LMCS-7(3:
19)2011, https://doi.org/10.2168/LMCS-7(3:19)2011

35. Marić, F.: Formal verification of modern sat solvers. Archive of Formal Proofs
(July 2008), https://isa-afp.org/entries/SATSolverVerification.html, For-
mal proof development

https://doi.org/10.4204/EPTCS.301.6
https://doi.org/10.4204/EPTCS.301.6
https://doi.org/10.4204/EPTCS.301.6
https://doi.org/10.4204/EPTCS.301.6
https://doi.org/10.29007/96wb
https://doi.org/10.29007/96wb
https://doi.org/10.29007/96wb
https://doi.org/10.29007/96wb
https://doi.org/10.4230/LIPIcs.ITP.2021.22
https://doi.org/10.4230/LIPIcs.ITP.2021.22
https://drops.dagstuhl.de/opus/volltexte/2021/13917
https://drops.dagstuhl.de/opus/volltexte/2021/13917
https://isa-afp.org/entries/Regular-Sets.html
https://doi.org/10.1007/s10817-011-9223-4
https://doi.org/10.1007/s10817-011-9223-4
https://doi.org/10.1007/s10817-011-9223-4
https://doi.org/10.1007/s10817-011-9223-4
https://tel.archives-ouvertes.fr/tel-00713668
https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.2168/LMCS-7(3:19)2011
https://doi.org/10.2168/LMCS-7(3:19)2011
https://doi.org/10.2168/LMCS-7(3:19)2011
https://doi.org/10.2168/LMCS-7(3:19)2011
https://doi.org/10.2168/LMCS-7(3:19)2011
https://isa-afp.org/entries/SATSolverVerification.html

12 K. Lotz, M. Kulczynski, D. Nowotka, D. Poulsen, and A. Schlichtkrull

36. Mora, F., Berzish, M., Kulczynski, M., Nowotka, D., Ganesh, V.: Z3str4: A multi-
armed string solver. In: International Symposium on Formal Methods. pp. 389–406.
Springer (2021)

37. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

38. Oe, D., Stump, A., Oliver, C., Clancy, K.: versat: A verified modern SAT solver.
In: Kuncak, V., Rybalchenko, A. (eds.) Verification, Model Checking, and Ab-
stract Interpretation - 13th International Conference, VMCAI 2012, Philadel-
phia, PA, USA, January 22-24, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7148, pp. 363–378. Springer (2012). https://doi.org/10.1007/
978-3-642-27940-9_24, https://doi.org/10.1007/978-3-642-27940-9_24

39. Redelinghuys, G., Visser, W., Geldenhuys, J.: Symbolic execution of programs with
strings. In: Proceedings of the South African Institute for Computer Scientists and
Information Technologists Conference. pp. 139–148. SAICSIT ’12 (2012)

40. Rungta, N.: A billion SMT queries a day (invited paper). In: Shoham, S., Vizel, Y.
(eds.) Computer Aided Verification. pp. 3–18. Springer International Publishing,
Cham (2022)

41. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: 2010 IEEE Symposium on Security and
Privacy. pp. 513–528. IEEE (2010)

42. Schurr, H., Fleury, M., Barbosa, H., Fontaine, P.: Alethe: Towards a generic SMT
proof format (extended abstract). In: Keller, C., Fleury, M. (eds.) Proceedings
Seventh Workshop on Proof eXchange for Theorem Proving, PxTP 2021, Pittsburg,
PA, USA, July 11, 2021. EPTCS, vol. 336, pp. 49–54 (2021). https://doi.org/
10.4204/EPTCS.336.6, https://doi.org/10.4204/EPTCS.336.6

43. Shankar, N., Vaucher, M.: The mechanical verification of a dpll-based satisfiability
solver. In: Haeusler, E.H., del Cerro, L.F. (eds.) Proceedings of the Fifth Logical
and Semantic Frameworks, with Applications Workshop, LSFA 2010, Natal, Brazil,
August 31, 2010. Electronic Notes in Theoretical Computer Science, vol. 269, pp.
3–17. Elsevier (2010). https://doi.org/10.1016/j.entcs.2011.03.002, https:
//doi.org/10.1016/j.entcs.2011.03.002

44. Tinelli, C., Barrett, C., Fontaine, P.: Smt: Theory of strings. http://smtlib.cs.
uiowa.edu/theories-UnicodeStrings.shtml, accessed: 2022-03-03

45. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Theorem Prov-
ing in Higher Order Logics: 21st International Conference, TPHOLs 2008, Mon-
treal, Canada, August 18-21, 2008. Proceedings 21. pp. 33–38. Springer (2008)

46. Wenzel, M., et al.: The Isabelle/Isar reference manual (2004)
47. Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic string

analysis for vulnerability detection. Formal Methods Syst. Des. 44(1), 44–
70 (2014). https://doi.org/10.1007/s10703-013-0189-1, https://doi.org/
10.1007/s10703-013-0189-1

48. Zbrzezny, A.M., Szymoniak, S., Kurkowski, M.: Practical approach in verification
of security systems using satisfiability modulo theories. Logic Journal of the IGPL
30(2), 289–300 (2022)

https://doi.org/10.1007/978-3-642-27940-9_24
https://doi.org/10.1007/978-3-642-27940-9_24
https://doi.org/10.1007/978-3-642-27940-9_24
https://doi.org/10.1007/978-3-642-27940-9_24
https://doi.org/10.1007/978-3-642-27940-9_24
https://doi.org/10.4204/EPTCS.336.6
https://doi.org/10.4204/EPTCS.336.6
https://doi.org/10.4204/EPTCS.336.6
https://doi.org/10.4204/EPTCS.336.6
https://doi.org/10.4204/EPTCS.336.6
https://doi.org/10.1016/j.entcs.2011.03.002
https://doi.org/10.1016/j.entcs.2011.03.002
https://doi.org/10.1016/j.entcs.2011.03.002
https://doi.org/10.1016/j.entcs.2011.03.002
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
https://doi.org/10.1007/s10703-013-0189-1
https://doi.org/10.1007/s10703-013-0189-1
https://doi.org/10.1007/s10703-013-0189-1
https://doi.org/10.1007/s10703-013-0189-1

