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Abstract: Artificial intelligence (AI) and machine learning (ML) can assist in the effective development
of the power system by improving reliability and resilience. The rapid advancement of AI and ML is
fundamentally transforming energy management systems (EMSs) across diverse industries, including
areas such as prediction, fault detection, electricity markets, buildings, and electric vehicles (EVs).
Consequently, to form a complete resource for cognitive energy management techniques, this review
paper integrates findings from more than 200 scientific papers (45 reviews and more than 155 research
studies) addressing the utilization of AI and ML in EMSs and its influence on the energy sector. The
paper additionally investigates the essential features of smart grids, big data, and their integration
with EMS, emphasizing their capacity to improve efficiency and reliability. Despite these advances,
there are still additional challenges that remain, such as concerns regarding the privacy of data,
challenges with integrating different systems, and issues related to scalability. The paper finishes by
analyzing the problems and providing future perspectives on the ongoing development and use of
AI in EMS.

Keywords: artificial intelligence; machine learning; energy management systems; smart grids; power
systems; renewable energy sources (RESs)

1. Introduction
1.1. Overall Insights

Energy systems are transitioning to integrate renewable technologies and improve
efficiency; however, increasing complexities associated with their uncertainties make con-
trolling energy flows challenging [1]. Consequently, a wide range of artificial intelligence
(AI) models can be integrated to have improved energy management systems (EMSs)
considering the increasing usage of renewable energy resources (RESs). In this regard,
scrutinizing a comprehensive overview of these applications will be beneficial (a review of
previous 44 overview papers has been conducted in this section too). A large number of
researchers are presenting research works or overviews to facilitate the use of AI in smart
EMS in the power system sector. In this respect, the total number of publications (year
range of 2005–nearly 2025) in this subject with the related sectors is manifested in Figure 1,
based on the Scopus scientific portal. The publications intended in the proposed statistics
are the manuscript types of journal papers, conference papers, book chapters, books, and
editorial notes. The authors of [2] reviewed 24 machine learning (ML) algorithms, revealing
Bagged Trees, Fine Trees, and Medium Trees as the best-performing algorithms. However,
efficiency was reversed, which became the top efficiency for Bagged Trees and Medium
Trees. Fine Trees had the best tradeoff between efficacy and efficiency. The research con-
ducted in [3] used VOSviewer in order to analyze AI and ML usage in the power sector,
revealing research trends and promising areas that needed to be developed. The study
also shows a sharp increase in patents submitted and presented for the applications of
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AI and ML in energy-related areas. As well, ML models in energy systems are reviewed
in [4] that highlighted their advancements and applications. A taxonomy of models and
their applications is presented, evaluating their accuracy, robustness, precision, and gener-
alization ability. The study concludes that hybrid ML models are effective in RESs EMS
and operation management, particularly solar, wind, and biofuels. On the other hand,
hybrid models contribute to energy efficiency, governance, and sustainability, making them
important for energy systems.
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From the financial perspective, ML is applied to energy economics and finance with
applications, including price forecasting, demand prediction, risk management, trading,
data mining, and infrastructure deployment, on the trend study. Consequently, the study [5]
investigates artificial neural networks (ANNs) and support vector machines (SVM) in the
mentioned areas. A similar study [6] shows the coordination importance in the generation,
storage, and management of renewables within a microgrid cluster. It highlights the
importance of better grid infrastructure, energy storage innovations, as well as approaches
using cloud computing and ML. It lays out important components for a cloud-based
architecture, such as real-time simulations, virtual server links, and cloud-hosted EMS. It
introduces a scalable and self-sufficient architecture, taking advantage of ML methodologies
to forecast power generation and real-time energy management. CO2 reduction is achieved
by the growing market penetration of hybrid energy systems (HESs), which include RES
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like wind and solar energy [7]. The EMS is regarded as important in HES for avoiding
blackouts, and the latest research discusses enhancing the EMS of these systems by using
ML algorithms, including Random Forest (RF), Decision Tree (DT), Gaussian Naive Bayes
(GNB), and K-Nearest Neighbors (KNNs). The results indicate that the DT algorithm is
generally more effective; RF, GNB, and others are reported to perform well too; however,
DT has been found to be the most accurate in terms of predictive performance.

1.2. Methodology and Literature Selection

As well, the overall logic of the literature review selection of this paper is manifested
in Figure 2.
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Keywords are picked to perform research on the topic of EMS in the energy sector.
These are the keywords that were entered in the Online Database Searching step to search
for the literature over different databases (IEEEXplore, Google Scholar, Web of Science, Sci-
enceDirect, Wiley Online Library, MDPI, and Springer Nature). They get the search results
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and they are evaluated. The first consideration is that the results are peer-reviewed. If a
source is not peer-reviewed, it is excluded, and if so, proceeds to the next indicator. If the
source is peer-reviewed and integrates the application of AI in EMS, it goes to the next
step of contribution identification, which determines the highlighted contributions of the
research. If it is non-AI-based, then it goes to be excluded. In the last phase, it brings
together the contributions identified previously and makes an analysis that summarizes
what was investigated in this overview paper.

1.3. Literature in Power Grids

Recent ML strategies for reliability and power energy systems control, specifically
large-scale electric power systems, are reviewed in [8]. The study aims to unite current
advances in the ML-related reliability literature while incorporating system-level manage-
ment aspects through this study and offering use-cases for distribution grid, microgrid,
and multi-energy systems. It makes the case that microgrids will be foundational for
fulfilling worldwide energy needs and that grid decentralization is critical. Therefore, the
need for intelligent and reliable EMS is mandatory to sustain their operation. AI in this
regard provides solutions that are robust and scalable, powered by advanced algorithms.
Accordingly, the comparison between the conventional and AI-based methods for EMS
in microgrids is conducted in [9] looking at centralized, decentralized, and distributed
systems. However, some privacy challenges of data, security, scalability, and explainability
need to be solved. In [10], the recent ML approaches for EMS across residential and in-
dustrial sectors are discussed with the diversity of algorithms used, such as reinforcement
learning (RL), DRL-based, and path integral-based control strategies. It evaluates the role
in future communication technologies, addressing cyber-physical systems and IoT-based
communication sensors, considering ML issues related to emergency measures for integrity
protection, as well as its incorporation into existing control mechanisms. Moreover, Ref. [11]
manifests hybrid methodologies by integrating optimization and ML techniques for cluster-
ing and classification with the perspective, which is trying to identify what challenges each
methodology has so insights can be provided regarding the potential of their combination.

The study in [12] examines the RES energy global adoption, such as solar and wind,
emphasizing both their advantages and limitations. It discusses the growth of these
RES, current trends, and emerging technologies. Given the high increase in the universal
demand for energy, the development of new materials for RES technologies becomes
considerably important. Traditional methods for material discovery are often expensive
and time-consuming, which has led to the rise of ML as a research tool. In this context,
Ref. [13] reviews ML approaches, algorithms, and advancements in material property
prediction and developing energy-related materials. Lithium-ion batteries in ESSs, EVs,
and portable electronics have challenges, such as overheating and aging, as they have
high energy density. Battery management systems (BMSs) are essential for ensuring safe
operation; however, accurate predictions performed on the state of health (SoH), state of
charge (SoC), and remaining useful life are important too. To address this concern, Ref. [14]
reviews ANN-based methods for predicting battery conditions, highlighting current trends
and gaps in BMS applications. Additionally, physics-informed ML (PIML) techniques are
gaining attention for improving model generalization, adherence to physical laws, and
interpretability. Based on this, Ref. [15] provides an overview of PIML applications in
subsurface EMS, with a study on seismic activities, reservoir simulations, hydrocarbon
production forecasting, and intelligent decision-making.

Considering other applications of AI/ML in EMS, forecasting is among the other
important applications. The supplied/demanded power balance is important in the power
energy dispatches. This balance is maintained through demand response programs, one in
particular called short-term load forecasting (STLF). STLF with the integration of volatility
and uncertainties in load demand by deep learning-based prediction has been consid-
ered for STSF [16], which emphasized accuracy and performance metrics that advance
DL techniques, proposing future research directions related to online incorporation or
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operation, volatility robustness, and feasibility. In [17], a unified EMS is presented for
energy management and interhousehold sharing with the help of ML and blockchain.
Using ML to forecast energy generation and building a bidding system on top of it in order
to distribute this automated power through peer-to-peer (P2P) transactions. It not only
balances supply/demand, but it also supports prosumer-consumer direct energy trading,
which incurs more computational complexity while still having better performance in terms
of balancing charges, workload division, and capital costs.

The study in [18] reviews district heating and cooling networks, smart EMS, and
control strategies through multidisciplinary approaches, considering both heating and
cooling aspects. It proposes an energy migration framework for intercity transportation
to facilitate energy sharing and regional balance. The study also emphasizes the technical
feasibility of ML methods for energy planning and optimization. A district energy network
is modeled using RES, waste heat recovery, and diversified energy storage systems (ESSs).
Future research should focus on addressing technical challenges, establishing benchmarks,
managing energy congestion, and incorporating multicriteria decision-making. The de-
pletion of fossil fuels has triggered an energy crisis, making RES essential. As discussed
in [19], EMS strategies are mostly taken into account for improving power system reliability
and mitigating climate change risks, with EMS as the important component. The study
also manifests the importance of AI in enhancing smart grid technologies and managing
load uncertainties. Another study in [20] reviews 135 publications on offshore wind energy,
turbine control, wind farm wake management, and layout optimization. It examines AI
technology applications, such as fuzzy logic, DL, and RL. Additionally, Ref. [21] reviews
ML-based predictive maintenance in microgrid systems, highlighting how to enhance
efficiency, safety, and sustainability. The study reviews recent techniques, identifies gaps,
and recommends future research directions.

The role of AI in power distribution systems is reviewed in [22] about electrical power
load forecasting, fault detection, and demand response strategies. This study is presented
on selecting appropriate AI models while evaluating the pros and cons of various learn-
ing methods. It also addresses the incentive and price-based demand response program
implementation, taking into account control objectives, input sources, and applications.
DC microgrids are now considered significant due to their adoption, solar PV systems,
and energy storage technology integration, alongside their challenges related to frequency
and reactive power control. Key factors for a stable and reliable DC microgrid include
controlling DC bus voltage, power management, and SoC restoration. Control strategies
for DC microgrids are considered using centralized/decentralized approaches in addition
to distributed, multi-level, as well as hierarchical systems, along with advanced method-
ologies of nonlinear control, robust control, model predictive control (MPC), and AI-based
methods. The study in [23] analyzes these elements by identifying research gaps and the
directions for the need for additional development. Research presented in [24] investigates
PV system utilization, desalination technologies, AI, and ML in water desalination pro-
cesses. It assesses recent advancements, identifies trends, and explores the influence of
AI and ML on PV system performance, maintenance, and monitoring. The significance
of developing virtual power plants (VPPs) is considered in [25], approached from a data-
centric perspective that analyzes energy management across the data lifecycle. This study
reviews advancements in data mining, advanced communication technologies, decision
support methods, security and privacy, RL, P2P sharing, blockchain, and market partic-
ipation. Additionally, it addresses the challenges and opportunities in areas such as IoT,
5G technology, publicly available benchmarks, explainable AI, and federated learning,
providing the necessity for technological data management advancements and support
systems for future VPP initiatives.

The AI-smart grids integration enhances flexibility, facilitates maintenance, and allows
for adaptable energy distribution. Additionally, advancements in hydrogen energy, driven
by data privacy legislation, grid modernization, and incentives, are discussed in [26]. The
study in [27] presents future research related to smart grids and urban EMS, categorizing
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these into physical, cyber, and social energy systems. The global climate crisis and the
depletion of traditional energy sources have led to increased demand for RES. However,
intermittent sources such as wind and solar cannot be fully regulated or pre-planned. To
this end, ML is an emerging technology used to predict and detect faults in RES, thus
reducing operational and maintenance costs. Techniques reviewed in ML are employed for
fault prediction, early detection, and diagnosis, ensuring continuous power supply to loads,
as indicated in [28]. Furthermore, over 10 regular algorithms for modeling and optimizing
RES are discussed in [29], including ANN, LSTM, RNN, genetic algorithms (GAs), and
particle swarm optimization (PSO). The findings are compiled from more than 100 studies
conducted between 2020 and 2022. The review in [30] manifested distributed energy
sources and their integration into utility grids, presenting microgrids as self-sustaining
systems with distributed resources. It evaluates decision-making strategies, methods for
quantifying uncertainty, communication technologies, and future directions for distributed
energy resource integration in microgrids, while also providing insights into real-world
applications.

Advantages of Section 1.3 (Literature in Power Grids): The proposed literature in the
power grids covered overviews of AI and ML applications in energy systems, including
many benefits and drawbacks. One such benefit is that AI and ML models can optimize
energy management via predictive maintenance, load forecasting, and anomaly detection,
leading to improvements in efficiency, reliability, and operational flexibility. The implemen-
tation of these models can lead to data-driven decision-making in real-time and adaptive
control for more advanced energy systems, including superior resources and lower opera-
tional costs. Scalability and application to a specific sector (e.g., microgrid integration, VPPs,
and RES) are possible through hybrid modeling approaches that incorporate optimization
with ML. Emerging technologies such as blockchain for decentralized energy management
and AI for smart grid integration represent a potential step up too.

Disadvantages of Section 1.3 (Literature in Power Grids): However, the studies also
have limitations. Many AI and ML models face challenges with computational costs, high
data demands, and difficulties in handling complex, real-time energy networks. Scalability
remains an issue, especially when moving from small-scale implementations to larger grid
applications. While some models excel in specific domains, such as load management or
renewable energy forecasting, they often struggle with generalizability across different
energy sectors. Furthermore, technologies, like blockchain, come with significant energy
costs that can offset sustainability benefits. Lastly, despite the potential of predictive models,
practical adoption is limited by having a few case studies and the lack of standardized
frameworks, which restrict widespread implementation in real-world energy systems.

1.4. Literature in Smart Buildings

On the side of AI applications in buildings, several aspects, such as financially and
technically, are considered important. Smart building systems are enabled by AI technolo-
gies, which can optimize energy consumption by adjusting lighting, heating, and cooling
in real time based on occupancy and utilization patterns. This reduces energy costs and
environmental impact. AI-driven predictive maintenance can forecast equipment failures
and facilitate timely repairs, minimizing downtime and prolonging the lifespan of building
infrastructure. Additionally, AI-enhanced security systems have advanced surveillance and
threat detection features, ensuring a safer environment for occupants. The AI integration
makes buildings more responsive, adaptable, and efficient, aligning with the demands
of modern urban living and aiding in the development of more resilient and intelligent
cities. Research in [31] reviews ML methods for predicting energy demand in modern
buildings, focusing on their accuracy and efficiency in minimizing energy consumption.
Furthermore, a systematic review in [32] evaluates smarter cities and artificial IoT (AIoT)
solutions aimed at promoting green energy and sustainability. This review investigates
the foundational principles of these cities, their relationships with urbanism paradigms,
green energy transition, data-driven technologies/methodologies, key factors, essential
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AI and AIoT solutions, their role in advancing green environmental practices, and their
implementation challenges. The gained perspectives enhance the potential of AI and AIoT
technologies to improve sustainable urban development practices and further integrate
eco-urbanism with AI- and AIoT-driven urbanism. In addition to simulation tools, building
energy management (BEM) is important too, and these tools are for evaluating building
performance. Accordingly, the review conducted in [33] manifested various modeling
approaches, including white box, black box, and web tool models, in addition to the sim-
ulation scales. The goal is to identify the advantages and weaknesses of the proposed
strategies. The study [34] reviews techniques based on ML and DL for managing building
energy systems and evaluating their effectiveness. The findings indicate that hybrid and
ensemble methods have higher robustness, while DL-based, hybrid, and ensemble-based
models achieve the highest robustness scores. In contrast, ANN, SVM, and individual ML
models demonstrate varying levels of robustness.

Also, an overview of interpretable ML techniques is reviewed in [35] for BEM on
both ante-hoc and post-hoc approaches. The challenges include varying terminologies,
difficulties in comparing the performance of interpretable ML methods, and the limited
interpretability of current techniques. Future research should be more focused on enhanc-
ing the interpretability of black-box models. Improving energy efficiency in the building
sector is important for reducing CO2 gas emissions and fossil fuel consumption. Early
design considerations, energy management, and smart renovations can facilitate this goal.
Various AI and machine learning techniques, including NNs, SVMS, gradient boosting
regressors (GBRs), and clustering methods, can be utilized to forecast and enhance building
energy performance, as reviewed in [36]. On the other side, optimal planning and the
associated methods are necessary to enhance home EMS (HEMs) to meet demand require-
ments [37–39]. Accurate load forecasting and scheduling are also important components of
HEMs. ML techniques have been taken into account for smart HEM and for autonomously
controlling heating and domestic hot water systems. The growing number of homes
equipped with RES is increasing too for optimizing energy usage. AI technologies can
be taken into account to reduce energy usage through improved control systems. Future
research should investigate the role of AI during the construction phase for considering
energy-efficient facility construction systems techniques and control strategies.

Advantages of Section 1.4 (Literature in Buildings): The literature in buildings on
EMS emphasizes the role of AI and ML in optimizing energy usage and enhancing control
strategies within building systems. Key advantages include the predictive capabilities of
ML models for demand forecasting, which allow for adaptive EMS based on real-time data,
thereby reducing waste and lowering costs. These technologies support the automation
of energy controls in modern buildings and smart homes, improving user comfort and
operational efficiency. Furthermore, DL and RL applications enable advanced control
strategies that can respond to dynamic energy pricing and environmental conditions.

Disadvantages of Section 1.4 (Literature in Buildings): Despite these advantages,
there are also some critical limitations that need to be addressed in the building’s energy
management area. High computational requirements and data demands cause these
models difficult to implement in older buildings or in settings with limited infrastructure.
Furthermore, while RL and other black-box approaches excel in adaptability, their lack of
interpretability can hinder their acceptance in consulting and decision-making contexts.
Interoperability challenges are also prevalent, as AI applications often require integration
with diverse building management systems and IoT devices. Lastly, DL models can have
the problem of overfitting in energy systems with limited historical data, which impacts
their reliability in varied operational scenarios.

1.5. Literature in EVs

Finally, considering the AI integration in EVs, AI-powered systems enhance BMS,
expand battery life, and improve safety through autonomous driving and real-time navi-
gation. Additionally, AI supports predictive maintenance, lowers maintenance costs, and
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personalizes the driving experience, resulting in more reliable and user-friendly EVs. The
Internet of Vehicles (IoVs) connects vehicles equipped with sensors to a broader network,
proposed to improve driving comfort, EMS, secure data transmission, and accident pre-
vention. However, it faces challenges related to security and trust management. A survey
in [40] manifests an overview of the IoV and the role of ML in enhancing its security
framework, providing strategies into trust and security improvements. The growing en-
vironmental challenges, such as air pollution, increasing CO2 gas emissions, and global
warming, make the requests for clean energy resources. Hybrid electric vehicles (HEVs)
represent a solution to reduce fossil fuel consumption and address environmental concerns.
In this regard, EMSs are a critical aspect of HEV design, focusing on power distribution
across multiple energy sources. AI, ML, and data-driven intelligent controllers have made
advancements in EMS strategies that can be applicable for HEVs [41]. In this context,
the studies [42,43] review ML and intelligent concepts for prediction, control methods,
EMS, and vehicle-to-everything (V2X) interactions in hydrogen fuel cell vehicles (HFCV).
Additionally, the data-driven control and optimization systems are reviewed, along with
discussions on future trends and sustainability directions. Recent developments in deep
reinforcement learning (DRL) show opportunity for addressing relevant challenges. As
a result, the literature in [44,45] surveys DRL-based EMSs, comparing RL strategies with
dynamic programming control approaches. Simulations demonstrate that RL strategies
can achieve optimal control problems with an infinite horizon, similar to what is attained
through stochastic dynamic programming.

Advantages for Section 1.5 (Literature in EVs): The literature on energy management
in EVs presented the integration of AI and ML to optimize energy usage and enhance
EVs’ performance. The advantages of these approaches include improvements in energy
efficiency, extended driving range, and reduced CO2 emissions. ML algorithms, including
DRL, cause advanced decision-making for real-time power distribution, driving condi-
tions adaptation, and enhancing battery remaining useful life (RUL). Furthermore, these
strategies facilitate the optimization of fuel consumption in hydrogen vehicles and the
coordination of energy flows between power sources in hybrid systems.

Disadvantages for Section 1.5 (Literature in EVs): However, several challenges remain.
The complexity of implementing DL and RL algorithms can lead to high computational
costs, which may limit their application in real-time systems. Additionally, the need for
large training datasets can impact model accuracy, particularly in newer or less-tested
energy systems. Hybrid systems and hydrogen fuel cell technologies also face integration
issues, as their efficiency relies on complex coordination between several power sources,
which can be challenging to manage effectively. Furthermore, the application of AI in EMS
for vehicles requires infrastructure for data collection and real-time implementation.

Therefore, the surveyed review papers are summarized in Table 1.

Table 1. Summary of surveyed papers.

References Power Grids Buildings Electricity Markets EVs

[1] ✓ ✗ ✗ ✗

[2] ✓ ✗ ✗ ✗

[3] ✓ ✗ ✗ ✗

[4] ✓ ✗ ✗ ✗

[5] ✓ ✗ ✓ ✗

[6] ✓ ✗ ✗ ✗

[7] ✓ ✗ ✗ ✗

[8] ✓ ✗ ✗ ✗

[9] ✓ ✗ ✗ ✗

[10] ✓ ✓ ✗ ✗

[11] ✓ ✗ ✗ ✗

[12] ✓ ✗ ✗ ✗

[13] ✓ ✗ ✗ ✓
[14] ✓ ✗ ✗ ✓
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Table 1. Cont.

References Power Grids Buildings Electricity Markets EVs

[15] ✓ ✗ ✗ ✗

[16] ✓ ✗ ✓ ✗

[17] ✓ ✗ ✓ ✗

[18] ✓ ✗ ✗ ✗

[19] ✓ ✗ ✗ ✗

[20] ✓ ✗ ✗ ✗

[21] ✓ ✗ ✗ ✗

[22] ✓ ✗ ✓ ✗

[23] ✓ ✗ ✗ ✗

[24] ✓ ✗ ✓ ✗

[25] ✓ ✗ ✗ ✗

[26] ✓ ✗ ✓ ✗

[27] ✓ ✗ ✗ ✗

[28] ✓ ✗ ✗ ✗

[29] ✓ ✗ ✗ ✗

[30] ✓ ✗ ✗ ✗

[31] ✗ ✓ ✓ ✗

[32] ✗ ✓ ✗ ✗

[33] ✗ ✓ ✗ ✗

[34] ✗ ✓ ✗ ✗

[35] ✗ ✓ ✗ ✗

[36] ✗ ✓ ✗ ✗

[37–39] ✗ ✓ ✓ ✗

[40] ✗ ✗ ✗ ✓
[41] ✗ ✗ ✗ ✓

[42,43] ✗ ✗ ✗ ✓
[44,45] ✓ ✗ ✗ ✗

Proposed ✓ ✓ ✓ ✓

1.6. Objectives and Contributions

Referring to Table 1, the previously published review papers were conducted on power
systems, with some of them dealing with two subjects of power grids-electricity markets,
power grids-EVs, or buildings-electricity markets. This manifests that they could not cover
recent literature of all fields of power grids, buildings, EVs, and electricity markets to
have a complete overview of AI in the EMS of the energy sector. Consequently, based
on the surveyed literature of review papers about EMS in energy systems, this paper is
motivated and aimed to review a wide range of overview studies, more than 200 recent
papers (45 reviews and more than 155 research studies) in EMS of smart grids, microgrids,
EVs, buildings, and their integration while presenting their concepts in the related sections.
Based on this gap, the authors of the proposed review paper identified that it is practical
and worthy of investigation.

In this regard, the main contributions of the paper are summarized as follows:

• Reviewed 200+ papers (45 reviews and more than 155 research studies) on AI/ML in
EMS, forecasting, fault diagnosis, electricity markets, buildings, and electric vehicles
(EVs), considering different types of EVs, such as battery-based, hybrid, plug-in, and
fuel cells.

• Manifested advantages and disadvantages for each literature (Sections 1.3–1.6).
• Presented big data’s important role in improving EMS efficiency and scalability.
• Identified challenges in AI/ML adoption and suggested future research directions.
• Provided a framework for comprehension of AI, ML, and big data in smart grids

and EMS.

1.7. Paper Structure

The paper is structured as follows:
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Sections 1 and 2 provide details about smart grids, EMS, and the importance of big
data within these systems, respectively. AI and ML models are described in Section 3.
Section 4 reviews the strategies used in forecasting, fault detection, the electricity market,
buildings, and EVs, respectively. Moreover, the challenges and future perspectives of
AI-driven EMS are presented in Section 5, and Section 6 discusses future perspectives.
Finally, Section 7 draws the conclusion of the paper.

2. Smart Grids and Energy Management Systems

A smart grid, with intelligent EMS, functions as an intelligent network that integrates
information technology with the existing energy system infrastructure [46]. This inte-
gration allows utilities to gather diverse energy data from the network using intelligent
sensors (such as smart meters, emission monitors, etc.) and rapid communication systems,
facilitating effective demand and supply balancing [47] as conceptualized in Figure 3.
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As well as wind, hydropower, and geothermal energy generation, the production of
green hydrogen (GH2) is also represented, signifying its integration into the grid. The
industrial sectors, situated at the bottom right, emphasize the distribution of energy to a
variety of industrial applications, while the residential and commercial sectors situated in
the bottom center represent the delivery of electricity to residences and businesses. The
significance of EVs in the contemporary energy ecosystem is emphasized by their proximity
to these sectors. Energy-efficient residences that are equipped with advanced technology
are represented by smart homes, which are depicted to the left of EVs. The integration of
solar energy is illustrated by the solar power facilities that are situated in close proximity
to smart homes. The control center is the central element of the image, representing the
location where information technology and power system networks converge to monitor
and control the grid. The smart grid’s efficient and reliable electricity services for both
utilities and consumers are symbolized by the green circular line that connects all of these
elements, ensuring a smooth flow of energy and communication.

The smart network has significant potential as the electricity grid becomes more
complex and overloaded on a daily basis. The present energy demands are being challenged
by the aging infrastructure [48]. Power outages are a significant concern during peak load
hours, as demand frequently exceeds the supply capacity of the grid. Power infrastructures
encounter a variety of issues at various levels, such as generation, transmission, and
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distribution [49]. At present, the majority of power facilities generate electricity using fossil
fuels, which brings economic and environmental challenges to the power system [50,51]. In
this regard, an analysis of the economic and environmental effects of smart grids has been
conducted in [52], and they have presented their findings on variations in cost estimation
in this field. The research recognized a shared component in the majority of definitions:
the integration of digital processing and communication into the grid, which facilitates the
maintenance of information management control and continuous data flow. Additionally,
they observed that the analysis gap associated with uncertainties in environmental impacts
and cost estimates could potentially produce more precise results. The optimal solution to
the numerous issues encountered by power grids is the transformation of the electricity
network into a smart grid, which is achieved by integrating the latest technologies with
advanced equipment. Smart grids are designed to mitigate the environmental consequences
of conventional power facilities by encouraging the utilization of renewable energy. The
benefits of smart grid technology in assuring high energy efficiency, continuity of energy
flow, and the security and stability of the power system are highlighted in the discussion
of the development process [53,54]. The power grid is advanced by selecting the most
suitable and reliable models from a variety of models that have been proposed for smart
grids. The automation of the distribution network is important for the balance of supply
and demand [55], and smart grid technology facilitates this process. This contribution eases
load shedding during peak hours, which leads to a more efficient electrical network. As a
result, smart grid technology is being developed to meet the current energy demands of
the globe in a cost-effective and efficient manner [56–59]. Nevertheless, the implementation
of smart grid technology is a multifaceted endeavor that presents numerous obstacles. To
address this, a number of critical challenges associated with smart grids are described
in [60], including issues related to measurement, sensing, information and communication
technologies, control and automation technologies, energy storage, and power electronics.
Overall, smart grid technology is designed to enhance the advantages for both utilities and
consumers by delivering economic and reliable electricity services through the efficient use
of available resources and advanced tools [61]. Consequently, the energy resources utilized
in smart grids are reviewed in Figure 4.
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Supported by the concept of smart grids and the related energy resources, the ad-
vances and trends of energy processes are considered in four layers of energy generation,
transmission, consumption, and storage that are shown in Figure 5.
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Generation: The process of decarbonizing energy generation includes the integration
of RESs, cogeneration, low-carbon heating, and waste energy regeneration. Noussan
et al. suggested that indicators such as the share of renewable energy, CO2 emissions, and
other pollutants can help compare power generation systems [116]. Bartłomiejczyk [117]
highlights that vehicle movement and solar radiation are so variable they create uncertainty
when assessing solar energy use for urban electric traffic. Biofuels derived from woody
crops, agricultural residues, and waste materials [118] and electrofuels, made through
power-to-gas and power-to-liquid technologies using RES electricity, also show potential as
fossil fuel alternatives, especially for emergency diesel generators or heavy-duty vehicles.
Co-generation systems increase overall efficiency, reduce the variability of renewable
energy output, and create system reliability [119,120]. Combined heat and power (CHP)
units in co-generation systems have a high share of RES, greater efficiency, and reduced
emissions. District heating systems can save in energy by using low-temperature sources
like seawater and groundwater, boosted by heat exchangers to raise temperatures, especially.
Additionally, waste energy can be converted into usable power through regenerative
processes. It was shown that the energy efficiency of urban subway systems, particularly
in smart communities, could be enhanced using regenerative braking [121] by utilizing
energy recovered from connected subway networks.

Transmission: Interconnected transmission networks, as illustrated in Figure 5 (second
circle), highlight the multi-carrier energy systems potential in integrating distributed RES
and enhancing urban energy sustainability. These systems facilitate the conversion and
distribution of various energy forms, such as electricity, gas, heating, and ventilation, to
meet diverse energy needs. According to [122], combining electric grids with district
heating and cooling networks can increase the capacity for wind energy utilization and
the share of urban energy demand met by solar power. The power-to-gas concept is also
considered practical by converting excess renewable electricity into hydrogen gas through
electrolyzers, which can then be injected into the natural gas infrastructure [123]. However,
the operation of these networks must navigate technical and security challenges. For
instance, ref. [124] reviewed ESS and control in mitigating the negative economic impacts
of constraints on gas and power networks in power-to-gas systems. These constraints
include limitations on hydrogen blending in natural gas pipelines and power line capacity.
To address challenges in island wind power systems, particularly prolonged frequency
fluctuations, ref. [125] presented a digital frequency relay control system proposed at
network performance stabilization.
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Consumption: The building, industrial, and transportation sectors are the urban
energy primary consumers. Main strategies for creating low-carbon and zero-emission
buildings include integrating sensors (such as occupancy, temperature, and water flow rate
sensors), actuators (e.g., remotely controlled valves), and intelligent control algorithms, as
well as reducing energy demand through passive design elements of thermal insulation,
thermal mass, window placement, glazing types, and shading [126]. In recent years, the
deployment of distributed energy resources (DERs) and demand response (DR) controls
within energy systems [127,128] has shown an impact in lowering overall energy con-
sumption, costs, and CO2 emissions. By combining DERs with flexible building loads,
peak demand can be reduced, and energy self-sufficiency can be improved. For instance,
Ref. [129] implemented a MPC temperature control system in a building using dynamic
pricing, peak trimming, demand-side management, and the smoothing of RES fluctua-
tions. The industrial sector, when enhanced by Industry 4.0 and smart energy systems,
can achieve high peak load reductions. A review by [130] demonstrated that digitalized
industries can reduce energy consumption by applying flexible shutdowns and using
inventory storage, all while maintaining operational efficiency. Water treatment plants are
also considered important in smart grids due to the energy required for water production
and distribution, particularly in arid regions. RES is increasingly being used for water
desalination and stored in centralized reservoirs, resulting in sustainable urban develop-
ment [131]. A mathematical model for the day-ahead economic dispatch of pumps and air
blowers in wastewater treatment facilities is introduced by [132], ensuring compliance with
particle concentration standards. In the transportation sector, which affects urban energy
consumption and air pollution, cleaner and more efficient solutions are also important for
future development. The transition to EVs is widely seen as a strategy for transportation
decarbonization. According to [133], the smart grid framework can be applied to design fu-
ture ships and port cities by integrating RES, ESS, and shore-side power systems. However,
as noted by [134], the environmental benefits of EVs depend on the energy integration used
to charge their batteries, as shown through life cycle assessments of EVs under current and
future energy scenarios. Intelligent control algorithms are also being developed to optimize
energy efficiency and service quality in transportation. These include systems for travel
assistance [135], smart charging [136], V2G [137], V2B and vehicle-to-home (V2H) [138]
applications.

Storage: The integration of RESs, network regulation, and efficient energy manage-
ment is significantly influenced by ESS. The study [139] demonstrated that the integration
of a CHP facility with thermal storage can result in a twofold increase in cost savings com-
pared to flat pricing and a reduction in electricity and gas costs through storage arbitrage in
DR programs, considering the fact that key characteristics of urban energy storage solutions
include power rate, storage capacity, round-trip efficiency, response dynamics, cost, and
spatial requirements, which are subject to significant variation. Designed to alleviate volt-
age fluctuations in a trolleybus supply system, The research, conducted in [140], introduced
a battery buffer station. In recent years, the rise in EVs and the decreasing costs of electricity
batteries have made them one of the most extensively adopted ESS technologies [141]. Also,
the dynamics of thermal storage in communities are manifested by [142] given heating
and cooling requirements. In cities that are seeking to achieve 100% renewable energy,
hydrogen storage, which is facilitated by electricity-to-gas technologies [143], presents a
considerable alternative for long-term and large-scale energy storage. The overall scheme
of the EMS in smart grids is shown in Figure 6.

The objective of utilities is to mitigate superfluous expenditures by expanding their
capacity to accommodate the perpetually rising demand for electricity. The effective uti-
lization of existing energy resources is a critical approach to accomplishing this. Therefore,
in order to regulate consumer energy consumption, utilities implement demand-side man-
agement (DSM) programs. In addition to augmenting reliability, DSM’s primary objectives
are to reduce electricity costs, improve social and environmental outcomes, and mitigate
network issues. DSM programs comprise a variety of strategies, including energy efficiency
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initiatives, consumer load management (residential and commercial), and demand re-
sponse. The objective of residential load management is to decrease electricity consumption
and redirect peak demand to off-peak hours. Utilities have the ability to directly regulate
residential charges; however, this method frequently generates privacy concerns that can
impede its implementation. Rather than requiring load reductions, these challenges can be
resolved by providing consumers with the option to reduce their electricity expenditures
by managing their demand at various times of the day. In this alternative method, utilities
implement variable pricing in response to fluctuations in demand. A two-way communica-
tion network is established when consumers receive regular updates on electricity prices
via smart devices and modify their consumption accordingly. This converts conventional
DSM into smart DSM, which ensures the efficient use of electricity at the distribution end,
thereby fostering energy conservation. The application of ANN in industrial peak load
management is the subject of [144]. Smart pricing schemes, in conjunction with HEM
systems, also contribute to DSM by optimizing electricity consumption. Also, based on [19],
several tools are being used in the EMS of smart grids and power systems, as denoted in
Table 2. The mentioned tools can be integrated with AI models to proceed with advanced
intelligent analytical abilities in the EMS of smart grids by analyzing the data exported
from them.
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Table 2. Simulation tools used in optimal analytics of smart grids’ EMS.

Simulation Tools Objectives Exemplary Application

MATLAB/SIMULINK
MATLAB is a computational software used in science and engineering
such as modeling battery behavior, analyzing system performance, and
developing control algorithms, including those for BES.

[145–156]

HOMER Pro Simulation software to assess the economics and performance of
microgrids, select ESS, evaluate RES, and optimize microgrids. [157]

MAGNET–Infolytica It facilitates the design and analysis of electromagnetic devices such as
batteries, which assists in effectively optimizing BESS. [158]

GAMS

The optimization modeling language is employed to address intricate
issues in a variety of domains, such as BESS design. It provides
optimization capabilities, flexible model formulation, and integration
with other software tools.

[159]

PSCAD The software is intended for the analysis of the dynamics and stability
of electrical grids in the context of power system simulation. [160–162]

MATLAB/SIMULINK is utilized to develop control algorithms for BESS, analyze
system performance, and model battery behavior [145–156]. HOMER Pro evaluates RES,
optimizes energy interactions of microgrids, selects ESS, and evaluates the economics and
performance of microgrids [157]. MAGNET–Infolytica is dedicated to the optimization of
effective BESS through the design and analysis of electromagnetic devices [158]. GAMS, an
optimization modeling language, addresses intricate issues in a variety of domains, such as
BESS design, by providing flexible model formulation and optimization capabilities [159].
PSCAD is employed to evaluate the stability and dynamics of electrical infrastructure in
power system simulations [160–162].

3. Big Data Importance in EMS

Big data is instrumental in the transformation of smart power systems and their EMS,
providing capabilities and insights to improve grid efficiency, reliability, and sustainabil-
ity. Utilities can perform real-time monitoring and predictive analytics to anticipate and
resolve potential issues before they escalate by leveraging vast amounts of data generated
from diverse sources such as smart meters, sensors, and grid management systems. By
optimizing energy distribution, demand forecasting, and the integration of RESs, advanced
data analytics and ML algorithms minimize carbon footprints and reduce operational costs.
Additionally, big data enables more effective demand response strategies and personalized
energy services through comprehension of consumer behavior and energy consumption
patterns, thereby facilitating improved decision-making. Big data will remain a funda-
mental component in the enhancement of the intelligence and resilience of modern energy
infrastructures as the complexity of power systems increases. Consequently, big data can
be considered in four sectors:

• Energy Provider.
• City and Building Construction Corporations.
• Investors.
• Authorities.

Energy providers and utilities must provide intelligent and appealing energy services
as the energy sector becomes more competitive. By utilizing smart meter and sensor tech-
nologies, weather information, demographic data, and occupant feedback, it is possible to
provide rapid feedback on the value of innovative pricing programs that are contingent
upon customer utilization patterns. Consumer behavior toward energy efficiency can be
altered, and intelligent home automation services can be enabled by user-centered applica-
tions that transform smart meter data into value for building occupants. Energy providers
and utilities can enhance revenue recovery and reduce costs by optimizing data collection
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processes. Numerous environmental and climate assessment procedures (ECAPs) have
been submitted by signatories to the Covenant of Mayors for Climate and Energy [163],
a global initiative of cities and towns dedicated to transparent climate action, outlining
their strategies for achieving long-term CO2 reduction objectives [164,165]. Energy perfor-
mance certificates must be collected by EU countries through the use of a variety of energy
assessment instruments and procedures. Nevertheless, this data is frequently stored in
multiple formats and dispersed databases, which requires a distinctive representation for
cross-country and cross-domain analyses. Advanced energy services can be provided to
specific beneficiaries, such as ESCOs, construction companies, and private proprietors, by
integrating ECAPs and energy performance certificates with other data sources such as
socioeconomic indicators and regulations. For example, insulation material manufacturers
may discover valuable insights regarding the optimal marketing channels for their prod-
ucts. The heterogeneity of energy efficiency initiatives presents a challenge for investors
and financiers in terms of scaling up investments. Nevertheless, the utilization of data for
investment initiatives has the potential to enhance market confidence. Greater investment
flows in energy efficiency can be stimulated by the availability of comparable, multilin-
gual, anonymized historical data that has been collected from key buildings and industry
segments. Initiatives for sustainable energy and climate planning must be spearheaded
by local authorities and other organizations that are responsible for addressing long-term
climate challenges. These entities can assess their carbon footprints and create exhaustive
action plans that include a list of green energy interventions by collecting and integrating
asymmetric data related to their operations and performance. Consequently, the whole
process that big data can be utilized in EMS of power systems is manifested in Figure 7.
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The process is divided into three components, namely, resources, properties, and
consumers (as indicated in Figure 7). These components are connected by a hierarchical
pyramid that shows all of the data processing and management layers. Wind, solar, biomass,
hydroelectric, GH2, and geothermal energy sources comprise the available resources. Asset
condition monitoring, prediction, failure event/risk analytics, and maintenance manage-
ment are all included in the properties. Industry, residential, infrastructure, and EVs
comprise consumers. The pyramid structure emphasizes three critical layers of data man-
agement: data storage, assessment, and computation at the summit; data management,
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integration, privacy protection, and sharing at the midpoint; and data mining, cluster-
ing, and classification at the base. This framework facilitates the optimization of energy
distribution, the promotion of sustainability, and the enhancement of reliability in smart
power systems, and it facilitates efficient data-driven decision-making. The data types
and actions situated within the pyramid are the primary components of this process. It is
partitioned into three primary layers, each of which represents a distinct degree of data
processing and administration complexity. The primary objective of the uppermost stratum
is to accumulate, evaluate, and process data.

Storing is the process of collecting and storing vast quantities of data that are de-
rived from a variety of sources, including smart meters, sensors, and monitoring devices.
Advanced algorithms and techniques are employed by computation to analyze the data,
thereby converting unstructured data into actionable insights for decision-making. Orga-
nizational and operational aspects such as management, collaboration, integration, and
privacy are addressed by the middle layer. Data management can organize and main-
tain data effectively, facilitating its accessibility for various applications. Collaboration
is facilitated by data sharing, which enables the exchange of information between vari-
ous entities and systems. Integration is the process of combining data from a variety of
sources to produce a unified dataset that has a concept behind it. Data privacy preserves
sensitive information from unauthorized access and assures regulatory compliance. To
extract patterns, group similar data, and categorize information for predictive analytics
and deeper insights, the base layer concentrates on mining, clustering, and classification,
which are advanced data analytics techniques. Finally, the whole decision support and big
data-driven EMS of smart grids are manifested in Figure 8.
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As shown in Figure 8, EMS of smart power systems is categorized into four primary areas:

• Generation.
• Transmission.
• Distribution.
• DSM.
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Big data aids in the planning and optimization of generators, the dispatch and econ-
omy of loads, the enhancement of efficiency, and the planning and management of RES
beginning with generation. In the transmission category, big data enables the efficient
and reliable delivery of power by facilitating grid planning, loss identification, asset man-
agement, and defect detection and restoration. Real-time sensing, fault detection and
restoration, health monitoring, and voltage optimization are all advantages of the distribu-
tion category, which improves the performance and resilience of the distribution network.
Lastly, in the DSM category, big data facilitates demand response, load forecasting, load
clustering, pricing, and protection, thereby allowing utilities to more effectively manage
and respond to consumer demand, optimize energy consumption [166], and enhance the
overall reliability of the system.

One of the big data types that is mostly used in power systems is considered geograph-
ical information system (GIS) data, which is an integral part of power system data. Relying
on [167,168], the total amount of collected GIS big data is provided in Table 3.

Table 3. Amount of collected GIS big data of power systems by annual one million metering devices.

Collection 1/(day) 1/(1 h) 1/(0.5 h) 1/(0.25 h)

Records (billion) 0.37 8.75 17.52 35.04
Size (Terabyte) 1.82 730 1460 2920

Spatial and attribute data are the primary components of GIS data, which are used
to describe the geographic characteristics of a particular region. Unique characteristics
distinguish GIS data from other data types. Initially, they include a wide range of spatial
data that illustrates the spatial distribution of these features besides the general data
attribute of geographic features. Then, GIS is an advanced and large-scale system that
employs a variety of data to characterize the environment and resources, resulting in an
immense volume of information. Third, GIS data are not revised in real time; the GIS
database typically has a lengthy update cycle. Herein, smart energy management can be
substantially facilitated by GIS big data. For example, in a smart grid environment, GIS data
layers can establish a correlation between electrical networks and geographical locations.
Database integration is a critical component of energy big data analytics, as energy big
data are collected from various sources using a variety of data acquisition devices. The
data from different platforms and applications is frequently heterogeneous, independent,
and mutually isolated, with varying structures, formats, and quality. Data integration is
essential for the successful completion of numerous big data analysis duties. As a result,
diverse models and methods for database integration have been indicated to resolve these
challenges [169,170].

4. Artificial Intelligence and Machine Learning in EMS of Power Systems

Physical modeling and analysis are the primary methods employed in power sys-
tem investigations. Nevertheless, these conventional approaches are unable to effectively
address the increasing complexity and uncertainty of contemporary systems. As a re-
sult, AI techniques, which are capable of self-learning and necessitate minimal reliance
on mathematical models of physical systems, present optimistic solutions [171]. Large
volumes of data are typically managed by power systems as a result of the integration of a
variety of components, including ESS, communication infrastructures, smart meters, EVs,
and DERs. Traditional computational methods frequently fail to effectively manage and
process this vast amount of data. Consequently, to effectively address these challenges,
AI methodologies are implemented in power systems. Overall, the utilized classes of AI
models in power systems [172] are illustrated in Figure 9.
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AI, at its highest level, covers all technologies and approaches that strive to replicate
human intellect. ML is a major subset of AI that stands out for its capacity to enhance its
performance over time by learning from data without the need for explicit programming.
ML can be classified into three main categories: supervised learning, where models are
trained using labeled data; unsupervised learning, which involves identifying patterns in
unlabeled data; and RL, which concentrates on training agents to make decisions by maxi-
mizing rewards in an environment. In this regard, Figure 10 presents different applications
and optimization fields of AI in power systems.
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As in Figure 10, AI in smart grids has been involved in several sectors, such as
distributing workloads across many data centers to improve efficiency. Further, major
studies have gone into reducing energy use and CO2 emissions from power stations as
well as maximizing the effectiveness of new conservation methods. But there is still an
unexplored potential of IoT sensors and energy-saving strategies with RL. Energy costs are
the largest portion of total production costs in modern industry. As a result, control over
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energy costs is an utmost priority for decision-makers. By employing AI/ML methods,
data can be used to create mathematical models that ensure that machines are activated
only when necessary, decreasing energy consumption. By moving operations to periods
when energy prices are cheap, this method reduces the overall demand for consumption as
well as delivers considerable savings. Moreover, decreasing consumption makes it easier to
avoid operating additional power plants during peak demand periods so energy generation
can remain at lower CO2 emission levels. Therefore, since the importance and applications
of AI/ML models are presented, the mostly used primary AI models and the power system
are described, followed by Figure 11.
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Figure 11. AI models of (a) Neural Networks, (b) Neuro-Fuzzy Logic [173], (c) RL, (d) BiLSTM,
(e) LSTM, and (f) Decision Trees with Random Forest, where Yt, Xt, hT, and h0 are the parameters
of output, input, and hidden states at the index t and the initial hidden state, respectively. For the
Neuro-Fuzzy, [Ai, Bi] is the fuzzy set, Wi considered the network weights, as well as [x, y] and f are
the inputs and outputs, respectively. For the Decision Tree and Random Forest, DN and LF are the
decision nodes and leaf nodes, respectively.

Neural networks that were first introduced in [174] are computational models ap-
peared by the structure and function of the human brain (according to Figure 11). They
are composed of interconnected layers of nodes or neurons that transmit and process infor-
mation. Each neuron receives input, processes it using a weighted sum and an activation
function, and subsequently transmits the output to subsequent layers. The architecture typ-
ically comprises an input layer, one or more concealed layers, and an output layer. Neural
networks learn complex patterns and relationships within data by adjusting the weights
of connections between neurons through a process known as training, which enables the
network to minimize a loss function. Neuro-fuzzy systems [175] are hybrid computational
models that capitalize on the advantages of both neural networks and fuzzy logic. These
systems combine the interpretability and reasoning capabilities of fuzzy logic with the learn-
ing capabilities of neural networks, as shown in Figure 11b. A neural network structure
that maps inputs to outputs is the typical component of a neuro-fuzzy system. The nodes
represent fuzzy sets, and the connections represent rules. The fuzzy sets enable the system
to manage imprecise and uncertain information by designating degrees of membership.
The neural network then modifies these membership functions and rules through a learning
process. This combination allows neuro-fuzzy systems to model complex, nonlinear rela-
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tionships and provide human-readable rules. Their effective applications necessitate both
adaptability and interpretability, such as control systems, decision-making, and pattern
recognition. Regarding LSTM [176] and BiLSTM [177] (Figure 11d,e), the LSTM architec-
ture is composed of memory cells and gating mechanisms including input, output, and
neglect gates, which regulate the flow of information. This enables the network to retain
pertinent information over extended periods of time. LSTMs are notably effective for tasks
such as speech recognition, natural language processing, and time series forecasting due
to this structure. By processing data in both forward and backward orientations, BiLSTM
networks extend the LSTM architecture, thereby capturing context from both past and
future states of the system. This bidirectional approach improves the model’s capacity to
comprehend the context and dependencies in sequential data.

As shown in Figure 11f, decision trees [178] are a form of supervised machine learning
model that is employed for regression and classification tasks. They function by recursively
partitioning the input data into subsets based on feature values, thereby establishing a tree-
like structure of decision nodes and leaf nodes. The predicted outcome is represented by the
leaf nodes, while each decision node represents a feature and a threshold. Decision trees are
intuitive and accessible due to the tree structure, which enables the simple interpretation
and visualization of decision rules. Nevertheless, they are not immune to overfitting,
particularly when dealing with intricate datasets. Conversely, random forests are an
ensemble learning approach that enhances the robustness and precision of decision trees.
A random forest [179] is composed of a series of decision trees, each of which is trained on
a random subset of the training data and a random subset of features. The final output is
determined by aggregating the results, typically through majority voting for classification
or averaging for regression after each tree independently classifies or regresses the input
during the prediction period. This ensemble approach improves the model’s generalization
capabilities and performance on unseen data by reducing overfitting and variance. Random
forests are extensively employed in a variety of sectors, such as finance, healthcare, and
marketing, as a result of their adaptability and precision.

Regarding RL [180–182] (stated in Figure 11c), it is an ML paradigm that emphasizes
the training of agents to make a series of decisions by interacting with an environment. In
real life, an agent acquires the ability to accomplish an objective by executing actions and
receiving feedback in the form of rewards or penalties. The agent’s goal is to maximize
the cumulative reward over time by utilizing known information and investigating the
environment to make optimal decisions. Typically, Markov decision processes are employed
to represent the learning process. In this model, the agent observes the current state, takes
an action, and transitions to a new state, resulting in a reward. RL algorithms, including
DRL, policy gradients, and Q-learning, employ a variety of techniques to approximate
the optimal policy or value function. The capacity to learn from interaction and improve
over time is essential in various disciplines such as robotics, game playing, autonomous
vehicles, and recommendation systems where RL is applied, especially in power systems,
as demonstrated in Figure 12.

Consequently, RL is mostly applied to buildings, markets, and the power grid. The
buildings section emphasizes the role of RL in the optimization of multifarious building
systems to improve occupant comfort and energy efficiency of buildings. This encompasses
comfort illumination, which entails the adjustment of illumination levels to ensure that
they meet comfort standards while simultaneously conserving energy. It is essential to
manage temperature to ensure a comfortable indoor environment by effectively balancing
the heating and cooling burdens. HVAC systems are managed to optimize thermal com-
fort and air quality while reducing energy consumption. The Indoor Air Quality aspect
guarantees that the air within buildings is both safe and pure, taking into account factors
such as ventilation and filtration. Finally, energy efficiency incorporates all strategies and
technologies that are designed to decrease the overall energy consumption of buildings,
enhancing their sustainability.
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The market section includes the economic components of the energy system, where
RL can be instrumental in optimizing market operations. The day-ahead market is a
mechanism that enables market participants to offer and plan their operations by planning
and trading electricity one day in advance. The spot market is a real-time market in
which electricity is purchased and sold in accordance with the current supply and demand
conditions. Nash equilibrium is a concept in game theory that describes a stable state
in which market participants are unable to profit from unilaterally altering their strategy.
RL can be employed to predict market behavior, identify optimal bidding strategies, and
guarantee the stability and efficacy of market operations. Also, the electrical grid is a
manifestation of the technical aspects of grid management, and RL has the potential to
improve grid stability and reliability. The regulation of voltage and frequency is necessary
to guarantee a consistent power supply by ensuring that they remain within permissible
limits. Cybersecurity is essential for safeguarding the infrastructure from cyber threats
and guaranteeing the integrity of data and control systems. The power system’s capacity
to endure and recuperate from short-term disturbances is referred to as transient stability.
The optimal charging and discharging of ESS is contingent upon the administration of
SoC. This ensures the longevity of the batteries and the reliability of the system. OPF is
the process of determining the most efficient method of routing electricity through the
grid to meet demand while minimizing losses and costs. Finally, on the side of dispatch
as an act of operation in buildings, power grids, and its seen effect in the market, it is
concerned with the optimization and management of energy resources in accordance with
supply and demand conditions. The administration of ESS, which is essential for balancing
supply and demand, is referred to as storage, particularly in the context of intermittent RES.
Desalination emphasizes the incorporation of desalination processes, potentially utilizing
surplus power for water purification. Price signals are the process of utilizing market
price signals to make sound decisions regarding the allocation of energy resources as well
as the optimization of costs and efficiency. The footprint manifests endeavor to reduce
environmental and carbon footprints by employing efficient dispatch strategies.

Based on the information provided in Figures 11 and 12, AI/ML models have a similar
initial process (according to Figure 13) and a difference in their application that requires
dynamics or they are data-driven, which are manifested in Figure 14.
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The dataset is partitioned into the following two unequal groups (Figure 13): the
training dataset and the testing dataset, which correspond to the training and testing stages,
respectively. The training dataset is employed to train the selected algorithm during the
training phase. The efficacy of the trained algorithm is evaluated during the testing phase
by utilizing the testing dataset. Supervised, unsupervised, and RL are the three categories
into which ML problems can be classified. There is no single algorithm that can resolve
all ML problems, as the classifications of these problems are of varying complexity and
simplicity, necessitating the development of unique algorithms [183].

In Figure 14, it differentiates between synthetic data and experimental data by be-
ginning with data. Synthetic data are frequently employed when real-world data are
insufficient, and they are produced using established models or simulations. Experimental
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data are the actual observations that are acquired from experiments or real-world ap-
plications, and they serve as a solid foundation for the training of data-driven models.
Techniques such as continuity and smoothness are indispensable for the refinement of
model outputs during the post-processing stage. Smoothness is concerned with the elimina-
tion of noise and irregularities, which leads to more interpretable and reliable results, while
continuity is achieved by ensuring consistency in the predictions. Methods such as transfer
learning are the primary focus of initialization. This method enhances efficiency and perfor-
mance, particularly when dealing with limited data by utilizing pre-trained models from
related tasks. Transfer learning is instrumental in the adaptation of existing knowledge
to new problems, thereby reducing the necessity for extensive data. Dynamics awareness
is a component of optimizer design that presents the significance of comprehending the
fundamental dynamics of the system being modeled. Models can more accurately predict
and perform better by incorporating dynamic principles into the optimizer design, which
allows them to better encapsulate the behavior of complex systems. Invariances and sym-
metries are integrated into the design of architecture. Symmetries assist in the reduction in
complexity and the enhancement of generalization, while invariances guarantee that the
model’s predictions remain consistent under specific transformations. The design of model
architectures that are both efficient and robust is guided by these principles. Finally, the
loss function encompasses conservation laws and ordinary differential equations, partial
differential equations, and stochastic differential equations (ODEs/PDEs/SDEs). The loss
function can enforce physical constraints and conservation principles by incorporating
these mathematical formulations, resulting in models that exhibit realistic behavior and
adhere to known laws of nature.

In conventional power systems, the rotating bulk of synchronous generators serves as
inertia. When the demand for electricity rises, these generators operate at a higher speed,
while when it decreases, they operate at a lower speed. The frequency of the electrical
grid is stabilized by this inertia. Furthermore, traditional systems can be dampened
by regulating the generator’s speed and dissipating energy when it operates at a non-
synchronous speed. Inverters are the primary means by which RES technologies are
typically connected to the grid. These inverters convert the direct current (DC) electricity
produced by renewable sources into alternating current (AC) electricity. Inverters are
unable to have the same level of stability to the power grid as synchronous generators due
to their lack of inertia and damping properties. Additionally, the integration of renewable
energy introduces disturbances and fluctuations in voltage and frequency, which present
substantial challenges for power system control [184–186], as illustrated in Figure 15.

Consequently, it is imperative to implement an effective strategy for managing the in-
tegrity of power systems to facilitate the utilization of RES [187]. Nevertheless, the complex
configuration of renewable power systems and the limited inertia of integrated renewable
systems may render traditional linear or nonlinear control mechanisms ineffective in certain
situations. Robust and adaptive control strategies have been implemented to mitigate the
uncertainties introduced by RE. Robust controllers are intended to accommodate the most
extreme worst-case scenarios, which frequently results in an excessively conservative de-
sign. Conversely, adaptive control methodologies necessitate precise parameter estimations
and system models, which may prove difficult to acquire. AI-based generation-to-demand
control techniques have been implemented to circumvent these constraints. The system’s
generation, transmission, distribution, demand, and energy storage components are all
included in these techniques. The stability of RES-based power systems has been improved
by the increase in the accuracy of fault diagnosis and detection, which is a result of the
effective management of uncertainties by AI algorithms [188,189].
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4.1. Generation

A challenge to the operational stability of power generators is introduced by the
inherent uncertainty of RES. The power output is subject to substantial and unpredictable
fluctuations due to the intermittent and variable nature of resources such as solar and
wind. In the event of a sudden decrease in RES output [190], grid administrators may be
required to promptly implement control measures to bring additional generators online
and maintain a consistent power output. The nonlinear characteristics and noise introduced
by RES generators frequently present a challenge for traditional linear control principles,
such as proportional–integral–differential control (PID) [191,192], leading to unsatisfactory
dynamic performance. AI-based control mechanisms have garnered attention for power
system control [193], particularly for systems with high integration of RES.

One method of guaranteeing the stability of power systems is to directly regulate the
output frequency of RE generators. For example, the excitation current in the field winding
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can be adjusted to manage frequency deviations in the power output of wind turbines and
regulate rotor speed. The magnetic field surrounding the rotor is fortified by increasing
the excitation current, which in turn increases the rotor’s speed to align with the grid
frequency [194]. Nevertheless, a secondary frequency decline in the power system [195]
may result from the recovery of rotor speed when the excitation current is reduced. To
regulate the frequency of wind power, intelligent algorithms [196], dynamic (multi-agent
proximal policy optimization), as well as data-driven [197], and actor-critic RL [195,198]
are implemented with an emphasis on the mechanical and electrical characteristics of
wind turbines and their coupling relationships. Attention mechanisms monitor defects
and noise in the power system, while RL-based algorithms (such as multi-agent proximal
policy optimization and actor-critic) make decisions and send control signals. The electrical
characteristics of wind turbine blades, towers, and drivetrains are influenced by their
properties, which indirectly affect the output frequency. This phenomenon is challenging
to simulate using conventional control methods. Nevertheless, AI-based controllers can
identify and integrate these relationships to precisely regulate wind power frequency by
processing complex high-dimensional state spaces and extracting information [199].

Inverters [200,201] regulate the output power frequency, as photovoltaic solar cells
do not have rotors, as opposed to wind turbines. The transient frequency of inverters is
influenced by a variety of factors, including solar irradiance, which presents a challenge for
conventional controllers due to its uncertainty. To account for these factors when making
decisions and transmitting control signals, AI-based controllers can integrate them into
the state space. AI methods are particularly adept at extracting information from intricate,
high-dimensional data and analyzing the complex relationships between output frequency
and other variables. As a result, control signals for solar photovoltaic devices have been
generated using AI-based controllers, including PSO, random forest regression, attention-
enabled multi-agent DRL [202], and ANN [203], to modulate their output frequency.

Voltage regulation is nearly as essential as frequency regulation in the pursuit of power
system stability [204,205]. The low inertia of power electronic inverters that are employed
to connect RESs to the grid can result in voltage fluctuations as a result of the uncertainty
associated with RESs. RNNs [206], RL [207], and DRL [208] are among the AI-based
techniques that can generate optimal control strategies and implement real-time voltage
regulation, some based on dynamics, and some based on the pre-trained frameworks, to
mitigate the adverse effects of this uncertainty. These methods utilize data from sensors and
monitoring devices, including voltage, current, and power measurements. This information
assists controllers in obtaining a comprehensive understanding of the conditions of devices,
including inverters and wind turbines, to make more informed decisions, generate more
effective control signals, and improve the stability of the renewable power system.

AI algorithms or their combinations are selected to regulate the voltage or frequency,
in terms of system stability, that is generated based on factors such as the scope of the
problem, the complexity of the problem, and the action space. The low-dimensional action
space of heuristic algorithms can render them effective in straightforward scenarios such
as the control of a single wind turbine. Nevertheless, DRL-based control algorithms are
more appropriate for complex systems such as hybrid power generation systems with
larger-scale RES. DRL algorithms, relying on the dynamics of the system, are particularly
adept at learning optimal policies in continuous action spaces and exhibiting resilient
learning capabilities in high-dimensional state and action spaces. Consequently, these
methodologies are well suited to the inherent complexity of large-scale RES-dominant
power systems.

4.2. Transmission and Distribution

Power delivery encompasses two critical phases, namely, transmission and distribu-
tion. Distribution is the process of converting high-voltage power to lower voltages that
are appropriate for end-users such as homes and businesses, while transmission involves
the bulk movement of power over long distances at high voltages. The primary cause



Appl. Sci. 2024, 14, 11112 27 of 41

of voltage and frequency fluctuations in transmission and distribution is the imbalance
between electricity generation and consumption. Voltage reductions occur when demand
exceeds supply, which occurs when RES output decreases from its expected amount. In
contrast, voltage surges may result from low demand and a high-RES penetration output.
The rotation speed of generators is influenced by the balance between generation and
consumption, resulting in frequency variations. To regulate these fluctuations and preserve
the stability of the power grid, a variety of devices are implemented, including capacitor
banks, on-load tap converters, and tap-changing transformers.

To guarantee the stability of RES-dominant power systems [209], voltage and fre-
quency must be maintained throughout the power transmission and distribution. Linear
control principles are employed in conventional control methods to ensure system stability.
Nevertheless, the complexity of power transmission and distribution systems in renewable
power systems is a result of the variability of RESs and the necessity of constructing new
transmission lines to connect remote RESs to the grid. Accurately establishing response
functions for voltage and frequency regulation in these systems is a difficult task. As a
result, neural networks, including attention-based models [210] and their alternatives [211],
are employed to approximate the relationship between the output voltage and frequency
and the condition of the RES-based power system, including wind velocity, solar irradiance,
and ESS integration. Attention mechanisms have also been employed to monitor the tran-
sient states of voltage and frequency in transmission and distribution systems and to adapt
response models [212,213]. Accurate system models are developed through the utilization
of high-quality historical data in these methodologies. Nevertheless, the acquisition of
specific information from the power transmission and distribution system can be difficult,
particularly in low-probability extreme scenarios involving RESs or newly constructed RES
farms where there may not be enough historical data to train neural networks.

To circumvent the necessity for precise system models, model-free control strategies
like DRL-based algorithms have been implemented to regulate voltage and frequency.
These strategies are capable of adapting to system variations and uncertainties by learning
control techniques from environmental interactions and experiences. These individuals are
well-suited to managing intricate systems due to their capacity to learn response models
efficiently. In single-agent DRL [214,215], a single AI-based control device is trained on
historical data to generate control signals (as the masters) for transmission and distribution
devices (as the slaves). In contrast, multi-agent DRL assigns agents with individual reward
functions and coordinates them to obtain improved control results [216–219]. The utiliza-
tion of multiple agents enhances the scalability, representation of system dynamics, and
coordination of distributed decision-making for voltage control [220]. Nevertheless, the
applicability of this multi-agent approach may be diminished as a result of the potential for
privacy concerns to arise during data transmission and the resulting increase in commu-
nication overhead and computation time. The introduction of distributed DRL has been
made to minimize communication overhead by training agents locally without transmit-
ting data to a centralized server. However, privacy concerns persist. Another method to
mitigate privacy concerns is DRL [221], and federated learning (FL) [222], which involves
the training of multiple agents without the direct transmission of raw data. Nevertheless,
this method is still time-consuming. Attention mechanisms can be integrated into DRL
frameworks to expedite agent training; however, these algorithms are not interpretable in
decision-making, which complicates the explanation of the fundamental reasoning and
logic behind control strategies. For example, federated DRL can accomplish decentralized
voltage regulation; however, the data characterization and decision-making mechanisms
are not interpretable.

Model-based algorithms have a precise and efficient method for the development
of control strategies for transmission and distribution; however, they necessitate precise
system models. In contrast, model-free algorithms are more appropriate for complex, large-
scale, or highly uncertain systems that necessitate adaptability and robust approximation
capabilities, despite the fact that they may require additional training time and provide
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limited interpretability. In practice, the selection of an algorithm should be determined by
a thorough assessment of the problem’s unique characteristics and requirements.

4.3. Electricity Demand

The traditional method of regulating voltage and frequency in power systems is
to modulate generators to maintain system stability. Nevertheless, the availability of
conventional power facilities that are capable of participating in frequency and voltage
control will decrease as the proportion of RESs increases. As a result, the stability of RES
power systems are becoming more dependent on flexible load demands, which are able to
be altered or shifted in response to changes in the power system.

Conventional control methods are insufficient for the preservation of power system
stability due to the complexity and diversity of flexible load demands [223]. Rather, AI
techniques are implemented to regulate a variety of flexible burdens. For example, various
AI techniques, including DRL [224,225], and neural networks alternatives [226], have
been suggested as approaches for managing the charging of EVs. These AI-based control
mechanisms strategically manage charging to accomplish load–demand balancing by
analyzing historical and real-time data to capture charging demand and grid load trends.
Furthermore, AI control mechanisms have the capacity to learn and optimize autonomously,
thereby refining their control strategies over time. This improves the power system’s
response capabilities and enhances comprehension of it.

Consequently, to balance power supply/demand, AI techniques such as multi-agent
methods [227], different types of RL [228–230] are also implemented to manage other
flexible load demands, including electric water heaters and HVAC systems. These con-
trol mechanisms, which are AI-based, engage with a variety of RES power systems and
adaptable loads to continuously optimize control strategies.

Demand-side control, which involves requesting that consumers modify their elec-
tricity consumption, has not been extensively implemented due to consumers’ potential
reluctance to engage in demand regulation. To resolve this issue, it is imperative to conduct
additional research on incentive mechanisms to enhance consumer interest in participating
in initiatives related to this dynamic.

Numerous AI-based algorithms exist for managing flexible loads in renewable power
systems, each with its own individual advantages and disadvantages. Heuristic algorithms
are particularly effective in problems with substantial search spaces; however, they may
be inefficient for real-time load requirements. DL-based control algorithms are capable
of effectively managing complex tasks and large-scale data, rendering them appropriate
for flexible load control. Conversely, they may encounter challenges in terms of inade-
quate data accessibility or inadequate explanatory capabilities. DRL algorithms combine
the advantages of DL and RL, providing improved adaptability and flexibility for flexi-
ble load demand control. Real-time learning and decision-making are enabled by these
algorithms, which acquire optimal decision-making strategies through interaction with
the environment without the necessity of extensive labeled training data. Consequently,
dynamically changing demands can be accommodated by DRL techniques, which can also
manage real-time flexible load control duties. However, the training and optimization
of DRL-based algorithms can be resource-intensive and time-consuming, and they may
experience stability or convergence issues when managing complex problems.

4.4. Energy Storage System (ESS)

The integration of ESS into RES-dominant power systems has been identified as a
viable measure for reducing the operational risks associated with the inherent uncertainty
of RESs [231,232]. These systems can ensure the system’s stability by providing virtual
inertia and damping, acting as power supplies during high-demand periods, and storing
surplus energy during off-peak periods. Traditional control principles such as the bang-
bang control principle necessitate precise system models and are unable to effectively
address the cacophony and disturbances in the power system that RE introduces. The
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real-time responsiveness of controllers for ESS can be improved through the use of AI-
based techniques. As an example, adaptive fuzzy neural networks [233,234] have been
implemented to regulate the operation of ESS by serving as a virtual synchronous generator
within the power system. To compensate for the low inertia and inadequate damping
capabilities of renewable power systems, neural networks are employed to adaptively
modify the parameters of the virtual synchronous generator, including the charging and
discharging power of the system. Additionally, RL-based different strategies [235–237]
have been employed to develop and operate power system controllers, which encompass
various forms of ESS.

The establishment of response models is facilitated by the precise prediction of voltage
and frequency fluctuations in renewable power systems by DL algorithms. These models
can be further improved through the use of techniques such as MPC. Nevertheless, the
scale of DL algorithms’ networks may result in latency issues when applied to real-time
control tasks as they necessitate a significant amount of labeled training data and computa-
tional resources. Conversely, DRL-based algorithms offer adaptable and flexible control
for ESS. DRL algorithms are capable of managing the inherent variability and uncertainty
in renewable power systems by learning control strategies through interaction with the
environment. DRL is well-suited for real-time control tasks due to its adaptability, despite
the potential challenges associated with computational demands and training time. Addi-
tionally, Refs. [238–243] considered the chance-constrained models in EMS and control of
power systems, as well as their integration with IoT, ESS, and hubs.

Finally, the presented different fundamental models are compared based on their
robustness, dynamics requirements, cloud-based control abilities, and computational com-
plexity in Table 4 and Figure 16.
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Table 4. Comparative properties of different AI models.

Algorithms Robustness Dynamics Data Handling Cloud-Based Control Computational Complexity
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RF and RL are intermediate with a manageable complexity, whereas ANN is also inter-
mediate but can become complex when used with deep networks. The advanced pro-
cessing requirements of LSTM, BiLSTM, and Neuro-Fuzzy render them more complex. 

4.5. Key Performance Indicators (KPIs) 
KPIs are indispensable metrics that evaluate the efficacy and efficiency of ML models 

in EMS within power systems. These indicators are essential for assessing the effective-
ness of these models in predicting, optimizing, and managing energy consumption and 

Appl. Sci. 2024, 14, x FOR PEER REVIEW 30 of 42 
 

BiLSTM ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
RF ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
DT ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
RL ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 

Neuro-Fuzzy ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
Superior: ✪✪✪, Intermediate: ✪✪✪, Inferior: ✪✪✪. 

 
Figure 16. Correlation of the models’ requirements with their criteria in the EMS of power systems, 
as 3 = ✪✪✪, 2 = ✪✪✪, and 1 = ✪✪✪. 

LSTM and BiLSTM are more robust than ANN and Neuro-Fuzzy in terms of robust-
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RF and RL are intermediate with a manageable complexity, whereas ANN is also inter-
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RF and RL are intermediate with a manageable complexity, whereas ANN is also inter-
mediate but can become complex when used with deep networks. The advanced pro-
cessing requirements of LSTM, BiLSTM, and Neuro-Fuzzy render them more complex. 

4.5. Key Performance Indicators (KPIs) 
KPIs are indispensable metrics that evaluate the efficacy and efficiency of ML models 

in EMS within power systems. These indicators are essential for assessing the effective-
ness of these models in predicting, optimizing, and managing energy consumption and 

Appl. Sci. 2024, 14, x FOR PEER REVIEW 30 of 42 
 

BiLSTM ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
RF ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
DT ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
RL ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 

Neuro-Fuzzy ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
Superior: ✪✪✪, Intermediate: ✪✪✪, Inferior: ✪✪✪. 

 
Figure 16. Correlation of the models’ requirements with their criteria in the EMS of power systems, 
as 3 = ✪✪✪, 2 = ✪✪✪, and 1 = ✪✪✪. 

LSTM and BiLSTM are more robust than ANN and Neuro-Fuzzy in terms of robust-
ness, as they are capable of effectively managing long-term dependencies and sequential 
data. However, they may be less robust in chaotic conditions. DTs are inferior due to their 
propensity to overfit, while RF is intermediate, benefiting from its ensemble approach. 
Continuous learning and adaptation are the hallmarks of RL, which is distinguished by 
its robustness. LSTM, BiLSTM, and RL are superior in terms of dynamics as they are ca-
pable of effectively managing complex temporal and dynamic environments. In contrast, 
RF and DT are inferior as they struggle to handle dynamic data. LSTM and BiLSTM are 
effective with sequential data, while ANN and Neuro-Fuzzy excel with diverse data types 
in data handling. RF is capable of effectively managing structured data, whereas DT and 
RL are less well-suited for direct data processing. In terms of cloud-based control, ANN 
is the most effective, followed by LSTM, BiLSTM, and Neuro-Fuzzy, which are also de-
ployable but have variable resource requirements. The efficiency issues of RF and DT ren-
der them less suited for cloud applications. Finally, in terms of computational complexity, 
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RF and RL are intermediate with a manageable complexity, whereas ANN is also inter-
mediate but can become complex when used with deep networks. The advanced pro-
cessing requirements of LSTM, BiLSTM, and Neuro-Fuzzy render them more complex. 

4.5. Key Performance Indicators (KPIs) 
KPIs are indispensable metrics that evaluate the efficacy and efficiency of ML models 

in EMS within power systems. These indicators are essential for assessing the effective-
ness of these models in predicting, optimizing, and managing energy consumption and 

Appl. Sci. 2024, 14, x FOR PEER REVIEW 30 of 42 
 

BiLSTM ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
RF ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
DT ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
RL ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 

Neuro-Fuzzy ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
Superior: ✪✪✪, Intermediate: ✪✪✪, Inferior: ✪✪✪. 

 
Figure 16. Correlation of the models’ requirements with their criteria in the EMS of power systems, 
as 3 = ✪✪✪, 2 = ✪✪✪, and 1 = ✪✪✪. 

LSTM and BiLSTM are more robust than ANN and Neuro-Fuzzy in terms of robust-
ness, as they are capable of effectively managing long-term dependencies and sequential 
data. However, they may be less robust in chaotic conditions. DTs are inferior due to their 
propensity to overfit, while RF is intermediate, benefiting from its ensemble approach. 
Continuous learning and adaptation are the hallmarks of RL, which is distinguished by 
its robustness. LSTM, BiLSTM, and RL are superior in terms of dynamics as they are ca-
pable of effectively managing complex temporal and dynamic environments. In contrast, 
RF and DT are inferior as they struggle to handle dynamic data. LSTM and BiLSTM are 
effective with sequential data, while ANN and Neuro-Fuzzy excel with diverse data types 
in data handling. RF is capable of effectively managing structured data, whereas DT and 
RL are less well-suited for direct data processing. In terms of cloud-based control, ANN 
is the most effective, followed by LSTM, BiLSTM, and Neuro-Fuzzy, which are also de-
ployable but have variable resource requirements. The efficiency issues of RF and DT ren-
der them less suited for cloud applications. Finally, in terms of computational complexity, 
RF and RL are intermediate with a manageable complexity, whereas ANN is also inter-
mediate but can become complex when used with deep networks. The advanced pro-
cessing requirements of LSTM, BiLSTM, and Neuro-Fuzzy render them more complex. 

4.5. Key Performance Indicators (KPIs) 
KPIs are indispensable metrics that evaluate the efficacy and efficiency of ML models 

in EMS within power systems. These indicators are essential for assessing the effective-
ness of these models in predicting, optimizing, and managing energy consumption and 

Appl. Sci. 2024, 14, x FOR PEER REVIEW 30 of 42 
 

BiLSTM ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
RF ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
DT ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
RL ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 

Neuro-Fuzzy ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
Superior: ✪✪✪, Intermediate: ✪✪✪, Inferior: ✪✪✪. 

 
Figure 16. Correlation of the models’ requirements with their criteria in the EMS of power systems, 
as 3 = ✪✪✪, 2 = ✪✪✪, and 1 = ✪✪✪. 

LSTM and BiLSTM are more robust than ANN and Neuro-Fuzzy in terms of robust-
ness, as they are capable of effectively managing long-term dependencies and sequential 
data. However, they may be less robust in chaotic conditions. DTs are inferior due to their 
propensity to overfit, while RF is intermediate, benefiting from its ensemble approach. 
Continuous learning and adaptation are the hallmarks of RL, which is distinguished by 
its robustness. LSTM, BiLSTM, and RL are superior in terms of dynamics as they are ca-
pable of effectively managing complex temporal and dynamic environments. In contrast, 
RF and DT are inferior as they struggle to handle dynamic data. LSTM and BiLSTM are 
effective with sequential data, while ANN and Neuro-Fuzzy excel with diverse data types 
in data handling. RF is capable of effectively managing structured data, whereas DT and 
RL are less well-suited for direct data processing. In terms of cloud-based control, ANN 
is the most effective, followed by LSTM, BiLSTM, and Neuro-Fuzzy, which are also de-
ployable but have variable resource requirements. The efficiency issues of RF and DT ren-
der them less suited for cloud applications. Finally, in terms of computational complexity, 
RF and RL are intermediate with a manageable complexity, whereas ANN is also inter-
mediate but can become complex when used with deep networks. The advanced pro-
cessing requirements of LSTM, BiLSTM, and Neuro-Fuzzy render them more complex. 

4.5. Key Performance Indicators (KPIs) 
KPIs are indispensable metrics that evaluate the efficacy and efficiency of ML models 

in EMS within power systems. These indicators are essential for assessing the effective-
ness of these models in predicting, optimizing, and managing energy consumption and 

Appl. Sci. 2024, 14, x FOR PEER REVIEW 30 of 42 
 

BiLSTM ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
RF ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
DT ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
RL ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 

Neuro-Fuzzy ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
Superior: ✪✪✪, Intermediate: ✪✪✪, Inferior: ✪✪✪. 

 
Figure 16. Correlation of the models’ requirements with their criteria in the EMS of power systems, 
as 3 = ✪✪✪, 2 = ✪✪✪, and 1 = ✪✪✪. 

LSTM and BiLSTM are more robust than ANN and Neuro-Fuzzy in terms of robust-
ness, as they are capable of effectively managing long-term dependencies and sequential 
data. However, they may be less robust in chaotic conditions. DTs are inferior due to their 
propensity to overfit, while RF is intermediate, benefiting from its ensemble approach. 
Continuous learning and adaptation are the hallmarks of RL, which is distinguished by 
its robustness. LSTM, BiLSTM, and RL are superior in terms of dynamics as they are ca-
pable of effectively managing complex temporal and dynamic environments. In contrast, 
RF and DT are inferior as they struggle to handle dynamic data. LSTM and BiLSTM are 
effective with sequential data, while ANN and Neuro-Fuzzy excel with diverse data types 
in data handling. RF is capable of effectively managing structured data, whereas DT and 
RL are less well-suited for direct data processing. In terms of cloud-based control, ANN 
is the most effective, followed by LSTM, BiLSTM, and Neuro-Fuzzy, which are also de-
ployable but have variable resource requirements. The efficiency issues of RF and DT ren-
der them less suited for cloud applications. Finally, in terms of computational complexity, 
RF and RL are intermediate with a manageable complexity, whereas ANN is also inter-
mediate but can become complex when used with deep networks. The advanced pro-
cessing requirements of LSTM, BiLSTM, and Neuro-Fuzzy render them more complex. 

4.5. Key Performance Indicators (KPIs) 
KPIs are indispensable metrics that evaluate the efficacy and efficiency of ML models 

in EMS within power systems. These indicators are essential for assessing the effective-
ness of these models in predicting, optimizing, and managing energy consumption and 

Appl. Sci. 2024, 14, x FOR PEER REVIEW 30 of 42 
 

BiLSTM ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
RF ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
DT ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
RL ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 

Neuro-Fuzzy ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
Superior: ✪✪✪, Intermediate: ✪✪✪, Inferior: ✪✪✪. 

 
Figure 16. Correlation of the models’ requirements with their criteria in the EMS of power systems, 
as 3 = ✪✪✪, 2 = ✪✪✪, and 1 = ✪✪✪. 

LSTM and BiLSTM are more robust than ANN and Neuro-Fuzzy in terms of robust-
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RL are less well-suited for direct data processing. In terms of cloud-based control, ANN 
is the most effective, followed by LSTM, BiLSTM, and Neuro-Fuzzy, which are also de-
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der them less suited for cloud applications. Finally, in terms of computational complexity, 
RF and RL are intermediate with a manageable complexity, whereas ANN is also inter-
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RL are less well-suited for direct data processing. In terms of cloud-based control, ANN 
is the most effective, followed by LSTM, BiLSTM, and Neuro-Fuzzy, which are also de-
ployable but have variable resource requirements. The efficiency issues of RF and DT ren-
der them less suited for cloud applications. Finally, in terms of computational complexity, 
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in data handling. RF is capable of effectively managing structured data, whereas DT and 
RL are less well-suited for direct data processing. In terms of cloud-based control, ANN 
is the most effective, followed by LSTM, BiLSTM, and Neuro-Fuzzy, which are also de-
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der them less suited for cloud applications. Finally, in terms of computational complexity, 
RF and RL are intermediate with a manageable complexity, whereas ANN is also inter-
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is the most effective, followed by LSTM, BiLSTM, and Neuro-Fuzzy, which are also de-
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der them less suited for cloud applications. Finally, in terms of computational complexity, 
RF and RL are intermediate with a manageable complexity, whereas ANN is also inter-
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effective with sequential data, while ANN and Neuro-Fuzzy excel with diverse data types 
in data handling. RF is capable of effectively managing structured data, whereas DT and 
RL are less well-suited for direct data processing. In terms of cloud-based control, ANN 
is the most effective, followed by LSTM, BiLSTM, and Neuro-Fuzzy, which are also de-
ployable but have variable resource requirements. The efficiency issues of RF and DT ren-
der them less suited for cloud applications. Finally, in terms of computational complexity, 
RF and RL are intermediate with a manageable complexity, whereas ANN is also inter-
mediate but can become complex when used with deep networks. The advanced pro-
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ness, as they are capable of effectively managing long-term dependencies and sequential 
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mediate but can become complex when used with deep networks. The advanced pro-
cessing requirements of LSTM, BiLSTM, and Neuro-Fuzzy render them more complex. 

4.5. Key Performance Indicators (KPIs) 
KPIs are indispensable metrics that evaluate the efficacy and efficiency of ML models 

in EMS within power systems. These indicators are essential for assessing the effective-
ness of these models in predicting, optimizing, and managing energy consumption and 

Appl. Sci. 2024, 14, x FOR PEER REVIEW 30 of 42 
 

BiLSTM ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
RF ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
DT ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
RL ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 

Neuro-Fuzzy ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ ✪✪✪ 
Superior: ✪✪✪, Intermediate: ✪✪✪, Inferior: ✪✪✪. 

 
Figure 16. Correlation of the models’ requirements with their criteria in the EMS of power systems, 
as 3 = ✪✪✪, 2 = ✪✪✪, and 1 = ✪✪✪. 

LSTM and BiLSTM are more robust than ANN and Neuro-Fuzzy in terms of robust-
ness, as they are capable of effectively managing long-term dependencies and sequential 
data. However, they may be less robust in chaotic conditions. DTs are inferior due to their 
propensity to overfit, while RF is intermediate, benefiting from its ensemble approach. 
Continuous learning and adaptation are the hallmarks of RL, which is distinguished by 
its robustness. LSTM, BiLSTM, and RL are superior in terms of dynamics as they are ca-
pable of effectively managing complex temporal and dynamic environments. In contrast, 
RF and DT are inferior as they struggle to handle dynamic data. LSTM and BiLSTM are 
effective with sequential data, while ANN and Neuro-Fuzzy excel with diverse data types 
in data handling. RF is capable of effectively managing structured data, whereas DT and 
RL are less well-suited for direct data processing. In terms of cloud-based control, ANN 
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LSTM and BiLSTM are more robust than ANN and Neuro-Fuzzy in terms of robust-
ness, as they are capable of effectively managing long-term dependencies and sequential
data. However, they may be less robust in chaotic conditions. DTs are inferior due to their
propensity to overfit, while RF is intermediate, benefiting from its ensemble approach.
Continuous learning and adaptation are the hallmarks of RL, which is distinguished by its
robustness. LSTM, BiLSTM, and RL are superior in terms of dynamics as they are capable
of effectively managing complex temporal and dynamic environments. In contrast, RF and
DT are inferior as they struggle to handle dynamic data. LSTM and BiLSTM are effective
with sequential data, while ANN and Neuro-Fuzzy excel with diverse data types in data
handling. RF is capable of effectively managing structured data, whereas DT and RL are
less well-suited for direct data processing. In terms of cloud-based control, ANN is the
most effective, followed by LSTM, BiLSTM, and Neuro-Fuzzy, which are also deployable
but have variable resource requirements. The efficiency issues of RF and DT render them
less suited for cloud applications. Finally, in terms of computational complexity, RF and RL
are intermediate with a manageable complexity, whereas ANN is also intermediate but can
become complex when used with deep networks. The advanced processing requirements
of LSTM, BiLSTM, and Neuro-Fuzzy render them more complex.

4.5. Key Performance Indicators (KPIs)

KPIs are indispensable metrics that evaluate the efficacy and efficiency of ML models
in EMS within power systems. These indicators are essential for assessing the effectiveness
of these models in predicting, optimizing, and managing energy consumption and distri-
bution. For example, the predictive performance of models utilized in demand forecasting
is evaluated using metrics such as precision, recall, accuracy, and F1-score. Operational
efficiency can be assessed by comparing the ratio of energy output to input, which assists
in identifying areas where energy usage can be optimized. The power supply is guaranteed
to remain stable and uninterrupted by reliability indicators, including system availability
and failure rates. Moreover, KPIs that are associated with cost, such as cost savings from
optimized energy use, present tangible financial benefits. By consistently monitoring these
KPIs, stakeholders can make informed decisions to improve the performance of EMS, result-
ing in more sustainable and cost-effective energy management. KPIs, including minimum
absolute error (MAE), mean square error (MSE), root mean square error (RMSE), mean
absolute percentage error (MAPE), root mean square percentage error (RMSPE), F1-score,
accuracy, recall, precision, computational complexity, and ranked probability score (RPS),
are essential for assessing the performance of ML models in EMS. The average magnitude
of prediction errors is quantified by the MAE, which has a clear indication of accuracy.
RMSE and MSE accentuate larger errors as a result of their squared nature. RMSE is more
interpretable as it is expressed in the same units as the target variable. MAPE and RMSPE
are percentages that convey prediction errors, providing information on the relative size
of errors. The F1-score is a critical metric for classification tasks within EMS as it balances
precision and recall, indicating the model’s ability to identify true positives. Accuracy is a
metric that quantifies the percentage of correct predictions, whereas recall and precision are
concerned with the totality and accuracy of positive predictions, respectively. The model’s
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efficacy in terms of time and resources is evaluated by computational complexity, which
ensures the feasibility of real-time applications. In ambiguous scenarios, the RPS enhances
decision-making by assessing the accuracy of probabilistic predictions. Consequently, the
mentioned KPIs are mathematically defined in [244–247].

5. Challenges Ahead

Integrating AI into EMS can enhance the efficiency, reliability, and sustainability of
energy systems. However, the process is not without challenges. Implementing AI in
domains such as smart grids, distribution networks, EVs, buildings, and fault detection
requires intricate interactions between technology, infrastructure, data, and human factors.
One key challenge is data quality and availability, as energy systems often have incomplete
or noisy data, though improved sensor technology and IoT devices can address this issue.
The complexity of energy systems with multiple stakeholders and diverse energy sources
also poses a challenge, which can be tackled by advanced AI algorithms like multi-agent
systems or deep learning techniques. Moreover, integrating AI with legacy energy infras-
tructures demands the development of adaptive interfaces and middleware. Cybersecurity
is another concern as AI introduces new vulnerabilities requiring secure AI models and
robust cybersecurity frameworks. Lastly, AI’s computational demands, especially for deep
learning, can be limiting in real-time applications, a problem that can be mitigated by more
efficient algorithms, cloud computing, and edge computing technologies. Addressing these
challenges is essential to fully harness the potential of AI in energy management and ensure
efficient as well as secure operations in real-world systems.

6. Future Perspectives

The future prospects of AI in this industry are vast, including decentralized energy
management and improved decision support systems, all of which aim to create more
efficient, durable, and environmentally friendly energy systems capable of meeting modern
demands and supporting the global shift towards RESs. AI will facilitate decentralized EMS,
enabling efficient and resilient energy distribution through microgrids and DERs. It will also
drive real-time optimization, balancing supply and demand more effectively while reducing
energy waste in smart grids and buildings. AI-based predictive maintenance and fault
detection will reduce downtime and maintenance costs by forecasting equipment failures
before they occur, significantly enhancing the reliability of energy systems. Furthermore, AI
will be key in managing the variability of RESs, ensuring stable and efficient grid integration.
Smart buildings and cities will benefit from AI-driven EMS that autonomously manages
energy consumption and climate control, contributing to urban sustainability. Regarding
EVs, AI will optimize performance by managing operating conditions and predicting
degradation, which further promotes their adoption. Human-AI collaboration will evolve
with AI handling complex optimization tasks while human operators focus on strategic
decision-making. As AI technologies become more sophisticated and affordable, global
adoption will scale, fostering a more sustainable and efficient energy sector. Finally, AI-
enhanced decision support systems will empower operators with more informed decisions
on energy production, distribution, and consumption, driving better decision-making
in EMS.

7. Conclusions

The proposed review study has conducted an analysis of the important impact of AI
and ML on the development of new EMS. Through a comprehensive analysis of more than
240 publications, this research has presented an in-depth review of the incorporation of AI
and ML in many areas of EMS. These areas include forecasting, fault detection, electricity
markets, optimizing buildings, and enhancing EV technology. Incorporating big data into
EMS is important for improving the efficiency, reliability, and scalability of these systems.
Nevertheless, this paper also highlights some of the challenges that still exist, including the
necessity for advanced algorithms, the intricacy of data administration, and the need for
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defined protocols. These challenges highlight the need for ongoing study and improvement
in this sector. The future of AI and ML in EMS has potential with the ability to develop
EMS methods through innovative advancements. The study presents a future-oriented
viewpoint, proposing that addressing the existing constraints could result in a more green
energy system driven by cutting-edge AI and ML technologies.
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