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Post-Processing in the Material-Point Method

Søren Andersen∗ and Lars Andersen
Department of Civil Engineering

Aalborg University, Aalborg, Denmark
e–mail: sa@civil.aau.dk

Abstract The material-point method (MPM) is a numerical method for dynamic or static analysis of solids
using a discretization in time and space. The method has shown to be successful in modelling physical prob-
lems involving large deformations, which are difficult to model with traditional numerical tools such as the
finite element method. In the material-point method, a set ofmaterial points is utilized to track the problem
in time and space, while a computational background grid is utilized to obtain spatial derivatives relevant to
the physical problem. Currently, the research within the material-point method focusses on establishing its
accuracy and robustness. For easy evaluation of results, a good visualization of the deformation pattern as
well as an accurate way to obtain the stresses are essential.This article introduces new ideas to improve the
postprocessing of results obtained by the material-point method. The first idea involves associating a vol-
ume with each material point and displaying the deformationof this volume. In the discretization process,
the physical domain is divided into a number of smaller volumes each represented by a simple shape; here
quadrilaterals are chosen for the presented two-dimensional problems. At the centroid of each of these sub
domains, a material point is defined. The deformation gradient tensor associated with the material point is
used to display deformation of the sub domain. This type of visualization is shown to dramatically improve
visualization of large strain problems. It is noted, that this idea is also relevant for other point based meth-
ods, such as smoothed particle hydrodynamics, where the history dependent variables are tracked by a set
of particles. The second idea introduced in the article involves the fact that while the stresses may oscillate
in an unphysical fashion at the individual material points,a physically realistic stress field may often be
obtained at the grid nodes. Further, a new way of remapping the stresses via the grid nodes is introduced to
obtain more meaningful stress fields in the postprocessing.The new ideas are shown to improve the visual
presentation of results from material-point method simulations and hence the understanding of the underly-
ing physical problems to which the method is applied. Further, the way the stresses can be extracted reveals
some pitfalls for the method and suggests a place to direct future research.

Keywords: Material-point method; Numerical analysis; large deformations; point-based methods

1 Introduction

When evaluating results obtained by a numerical simulationfor continuum in dynamical prob-
lems, three types of visualizations are of interest: 1. Movements and deformations, 2. velocities,
3. stresses and strains.

For the material-point method(MPM), it is straightforwardto visualize movement of relatively
rigid bodies. This can be done most simple by displaying the position of the individual material
points using small dots. Visualization of this type is presented amongst others by Sulsky and co-
workers (1; 2; 3) and by Cummins and Brackbill (4). By only displaying positions of the points,
no direct visualization of deformation is obtained. The challenge arises when the deformations
become significant.

For problems involving large deformations, it is useful to compare finite-element-based methods
to particle-based methods which assign material properties to a set of points or particles, such
as the material-point method. In general, the finite elementsoftware is at a much more advanced
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stage than the software for particle based methods. A treatment of various ways to postprocess
results from a finite element solution is found in the work of Babuška and Miller (5; 6; 7). In finite
element methods, a direct visualization of the deformationof the material is obtained as the finite
element mesh directly tracks the deformation, and finite element software typically displays the
deformation using the position of the nodes along with an isoparametric tracking of the element
boundaries. At the same time, the distortion of the finite element mesh is known to degenerate
the accuracy of the solution. A way to maintain accuracy of the finite element mesh is to perform
remeshing during a simulation. This remeshing replaces thedistorted elements with new, undis-
torted elements. Hence, the very direct way of visualizing local deformations by displaying the
distorted mesh becomes impossible. Another issue is how to perform remeshing and mapping of
material properties for complex material models.

The advantage of the particle-based methods is that no mesh distortion occurs, as the state variables
is not directly associated with a mesh, but associated with aset of particles or material points.
Technically, the material-point method can be thought of asan Arbitrary Lagrangian Eulerian
formulation, where the mesh is reset at each tine step.

For the material-point method, a challenge is how to displaythe deformation, as only the coor-
dinates of each material point directly enter the algorithm. Similarly, with only a coordinate its
not immediately obvious how to visualize other field quantities such as stresses. A simple way to
visualize field quantities involves associating a volume with each material point, with the material
point located at the centroid of each volume. This volume canthen be translated around according
to the position of the material point as obtained by the numerical solution. By having a finite sized
volume associated with each material point it is for instance possible to assign a colour to each vol-
ume, where the colour represents a physical quantity. An example is a colour scale for a particular
component of the stress tensor when a colour plot shows the variation of that stress component.
It could also show the velocity components or other data of interest, or it could even be useful to
just assign different colours to the material points to easier see the deformation pattern. This type
of visualization is among others utilized by Andersen and Andersen (8) to visualize evolution of
landslides.

In this article, it is demonstrated that it is easy to extend this type of visualization to directly
show the deformations. This is obtained by introducing the deformation gradient tensor as a state
variable for the material points. The technique of trackingthe deformation tensor is firstly intro-
duced by Guilkey and Weiss (9). The application of the deformation gradient tensor to display the
deformations seems to have been developed independently both by Andersen (10) and by Choud-
hury et al. (11). A material point is assigned an initial configuration. Here, each material points
is discretized as an initially rectangular quadrilateral to model two-dimensional problems. The
deformation of each material point is visualized by calculating the deformed configuration of the
quadrilateral using the deformation gradient tensor. Thistype of visualization is shown to give a
much better visualization of the deformations.

For the purpose of displaying the velocities, two types of visualizations are of interest; vector plots
and colour plots. A vector plot is made by associating a length scale with the velocity, the velocity
components associated with the material point then defines the length and direction of the vector.
The vector plot has the advantage that it is possible to visualize all components in the velocity
vector. The colour plot on the other hand needs to either chose one of the velocity components or
the speed of the particle as it can only plot scalar fields can be plotted in this manner. In general,
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vector plots are good at visualizing the direction of the velocity or other first order tensors while
the colour plots makes it easier to see the magnitude of individual components.

Another issue that requires attention is the stresses and the strains. Here, its useful to note the
difference of the material-point method to a finite element formulation. In the finite element for-
mulation both the stresses and the strains are obtained in the post-processing, most often obtained
by interpolation and extrapolation of quantities obtainedat Gauss points. In the material-point
method on the other hand, the stresses are tracked at the material points themselves. It has been
reported by several sources that the stresses are often seento be inaccurate when displayed di-
rectly using the material points. This is reported by Shin (12) and by Andersen and Andersen (13)
among others. Especially, for problems involving large deformations the stresses show wild oscil-
lations. The stress oscillation is often so extreme that it is a surprise that the general physics (for
instance the deformation pattern) is accurately described. In the initial articles on the MPM (1; 2),
it was reported that the method was meshless in the sense thatall history dependent variables are
only carried by the material points. However, as shown here,this may not be so simple. Thus, it
is possible to extract the physically realistic stresses from very unrealistic and oscillatory stress
fields at the material points by mapping to the grid nodes and back to the material points in the
postprocessing. This is very useful for illustration purposes, but it also suggest that the way the
method handles stresses should be closer examined in subsequent work.

On the other hand, the strains are not part of the material-point method computational scheme,
only the strain increments associated with a particular time step are. Therefore, the total strains
may be extracted in the post-processing. In the formulationpresented here, where the deformation-
gradient tensor is tracked for each material point, the mostnatural way to extract the strains is to
calculate them from the deformation gradient tensor. For linear elastic materials, another way is to
calculate them from the stresses using the flexibility tensor. The two ways of extracting the strains
will generally yield different results.

Firstly, the MPM-calculation scheme is presented in Section 2. A review of material point visu-
alizations along with a suggestion of a new way of visualizing the deformation is presented in
Section 3.

The latter part of the article discusses and illustrate various postprocessing tools which are illus-
trated using two example problems. Section 4 defines the two example problems. Section 5 dis-
cusses ways to visualize movements and deformations, whileSection 6 discusses ways to visualize
the velocities. Section 7 discusses how the strain field and the stress field can be visualized and
reports a remarkable feature of the stress field, namely thatrealistic stresses are only found using
postprocessing via the grid nodes. Further, discussions ofstress invariants as well as elasto-plastic
stress and strain measures are included. Finally, Section 8presents the conclusions.

2 The computational scheme in the material-point method

2.1 Governing equations

The governing equation of the material-point method is the balance of momentum, given by

ρ
dv

dt
= ∇ · σσσ + ρb, (1)

3



whereρ = ρ(x, t) is the current density,v = v(x, t) is the spatial velocity,σσσ = σσσ(x, t) is the
Cauchy stress tensor andb = b(x, t) is the specific body force. The spatial coordinate is denoted
x andt is the time.

Equation (1) is cast in weak form by multiplication by an arbitrary test function,w, and integration
over the domain,Ω, yielding

∫

Ω

ρw ·
dv

dt
dV =

∫

Ω

w · ∇ · σσσ dV +

∫

Ω

ρw · b dV. (2)

Using Green’s divergence theorem, Eq. (2) can be reformulated as
∫

Ω

ρw ·
dv

dt
dV = −

∫

Ω

σσσ : ∇w dV +

∫

∂Ωτ

w · τττ dS +

∫

Ω

ρw · b dV, (3)

whereτττ is the surface traction vector and∂Ωτ is the part of the boundary with known traction.
Next, the framework of the generalized interpolation material-point method (14) is utilized to
discretize Eq. (3).

The domain is represented by a finite set of material volumes.The initial domainΩ0 is divided into
a set of non-overlapping subdomainsΩ0

p, wherep = 1, 2, ..., Np andNp is the number of material
volumes. At the centroid of each subdomain, a material pointwith the coordinatesxp is defined.
For clarity,Ω0

p denotes the initial domain while the volume of this domain isdenotedV 0
p . Hence,

given an initial density fieldρ0(x), the initial volume and the mass associated with material point
p is given by

V 0
p =

∫

Ω0
p

dV (4)

and

mp =

∫

Ω0
p

ρ0(x) dV, (5)

respectively, whereas

ρ0p =
mp

V 0
p

(6)

is introduced as the density of material pointp in the initial configuration.

The velocity and stress associated with a material point aredefined as volume-weighted quantities,
i.e.

vp =
1

V 0
p

∫

Ω0
p

v0(x)dV (7)

and

σσσp =
1

V 0
p

∫

Ω0
p

σσσ0(x)dV. (8)

Similarly, external body forces are defined by

bp =
1

V 0
p

∫

Ω0
p

b(x)dV. (9)

Although associated with the material volumes, the quantities defined by Eqs. (4) to (9) will, in
accordance with existing MPM articles, be referred to as material-point quantities.
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In order to obtain a discrete spatial representation, particle characteristic functions,χp, associated
with the material points are defined. The particle characteristic functions are defined such that they
are a partition of unity in the reference configuration, i.e.

Np
∑

p=1

χ0
p(x) = 1 ∀ x ∈ Ω0. (10)

Further, the particle characteristic functions are normalized with respect to the initial volume, i.e.
∫

Ω0

χp(x, t)dV = V 0
p . (11)

In this article, constant particle characteristic functions are employed defined by

χ0
p(x) =

{

1 if x ∈ Ωp,
0 otherwise

(12)

Further, it is noted that the original MPM formulation (1) isobtained by settingχp = δ(x − xp),
whereδ is the Dirac delta function.

The material point quantities defined in Eqs. (5) to (9) are used to approximate the fields for
the momentum, the body forces and stresses in the balance of momentum, respectively. Field
quantities are represented as sums over the material points, i.e.

f(x) =

Np
∑

p=1

fpχp(x). (13)

For instance, the first term in the balance of momentum is represented by

ρ
dv

dt
∼=

Np
∑

p=1

ρp
dvp

dt
χp(x) =

Np
∑

p=1

mp

Vp

dvp

dt
χp(x). (14)

Using the material-points representation in the balance ofmomentum yields

Np
∑

p=1

mp

Vp

∫

Ωp

w ·
dvp

dt
χp dV =

∫

∂Ωτ

w · τττ dS −

Np
∑

p=1

σσσp :

∫

Ωp

∂w

∂x
χp dV

+

Np
∑

p=1

mpbp

Vp

∫

Ωp

wχp dV, (15)

whereVp is the current volume of the material point.

In the implementation employed here, the current volume will be calculated using the determinant
of the deformation gradient tensor associated with the material point. Section 3 shows how the
deformation gradient tensor is calculated for each material point. The term on the left hand side
of Eqs. (15) represents the rate of change of momentum. On theright hand side the first term
represents the surface tractions, the second term represents internal forces due to stress gradients
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while the last term represents external body forces. Further, it is noted that the physical quantities
are evaluated at each material point.

Now, approximations for the field of test functions are made in terms of the background grid. The
geometry of the grid is defined byNn nodes, using the indexi = 1, ..., Nn exclusively to identify
the nodes. Between the nodes, the test functions are represented continuously by means of nodal
shape functions by

w(x) ∼=

Nn
∑

i=1

wiNi(x), (16)

while the gradients of the test function are represented by

∂w(x)

∂x
∼=

Nn
∑

i=1

wi
∂Ni(x)

∂x
. (17)

As for the particle characteristic function, the nodal shape functions are required to be a partition
of unity, i.e.

Nn
∑

i=1

Ni(x) = 1 ∀ x, x ∈ Ωc, (18)

whereΩc is the computational domain.

Employing Eqs. (16) and (17), the balance of momentum can be written as

Nn
∑

i=1

wi ·





Np
∑

p=1

mpd
vp

dt

1

Vp

∫

Ωp

⋂
Ωi

NiχpdV



 =

Nn
∑

i=1

wi ·

(

∫

∂Ωτττ

⋂
Ωi

NiτττdS)

)

−

Nn
∑

i=1

wi ·





Np
∑

p=1

∫

Ωp

⋂
Ωi

σσσp ·
∂Ni

∂x
χpdV



+

Nn
∑

i=1

wi ·





Np
∑

p=1

mpbp
1

Vp

∫

Ωp

⋂
Ωi

NiχpdV



 , (19)

whereΩi is the domain whereNi is nonzero.

Now, the weighting and the gradient weighting function are introduced as

N̄ip =
1

Vp

∫

Ωp

⋂
Ωi

NiχpdV (20)

and
∂N̄ip

∂x
=

1

Vp

∫

Ωp

⋂
Ωi

∂Ni

∂x
χpdV. (21)

Utilizing that the test functionswi are arbitrary, the system of equations need to be satisfied atall
grid nodes. Employing Eqs. (20) and (21) in Eq. (19) yields

Np
∑

p=1

mp
dvp

dt
N̄ip =

∫

∂Ω0
τ

NiτττdS −

Np
∑

p=1

σσσpVp
∂N̄ip

∂x
+

Np
∑

p=1

mpbpN̄ip. (22)

Rewriting the balance of momentum yields

mi
dvi

dt
= f inti + f exti , (23)
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where

mi
dvi

dt
=

Np
∑

p=1

mp
dvp

dt
N̄ip (24)

is the nodal momentum rate of change,

f inti = −

Np
∑

p=1

σσσpVp
∂N̄ip

∂x
(25)

is the internal force and

f exti =

∫

∂Ωτ

NiτττdS +

Np
∑

p=1

mpbpN̄ip (26)

is the external force. The GIMP formulation leads to a systemof equations almost identical to
the MPM equations, only in the GIMP formulation the governing equation is assembled using the
weighting functionN̄ip(xp, t) instead ofNi(xp, t) which is used in the MPM.

The question for the GIMP based implementations is how to obtain the integrals of Eq. (20) and
Eq. (21). As noted by Bardengagen and Kober (14), if the evaluation of these integrals were to
take the deformation of the material point domains into account, it would not be possible to obtain
them analytically. In this implementation, approximate evaluation of Eq. (20) and Eq. (21) are
obtained as proposed by Ma et al. (15) by performing a bi-linear integration over a rectangular
domain associated with the material point. Hence, the particle characteristic function is assembled
as

χp = χx
p(x)χ

y
p(y), (27)

wherex, y are the two components of the material point position,x. In the initial configuration,
the size of an equivalent rectangle, which is used to form theGIMP functions, is determined by
the discretization and denotedl0p = (l0,xp , l0,yp )T . At a later time, the lengths used to determine the
GIMP integrals are given by

lxp = l0,xp (det(Fp))
1/2 and lyp = l0,yp (det(Fp))

1/2 , (28)

whereFp is the deformation gradient tensor associated with the material point. Section 3 presents
an algorithm for obtaining and tracking the deformation gradient tensor at the material points. Us-
ing a bi-linear particle characteristic function has the advantage that the weighting functions can be
obtained as bi-linear products of the one-dimensional weighting function for which an analytical
solution is presented by Bardenhagen and Kober (14). Employing Eqs.(27,28) is computationally
very fast. Alternatively, as described by Bardenhagen and Kober (14) and as shown by Andersen
(10), numerical integration of the weighting and the gradient weighting function can be performed.

2.2 Explicit time-integration approach

The basic idea is to solve the balance of momentum on the grid and then use the information to
update the quantities associated with the material points.The mass and momentum at grid nodei
are found by

mk
i =

Np
∑

p=1

mpN̄ip (29)
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and

mk
i v

k
i =

Np
∑

p=1

vk
pmpN̄ip, (30)

respectively. The indexk denotes thekth. time step.

The position and the velocity updates for the material points are given by

xk+1
p = xk

p +∆t

Nn
∑

i=1

N̄ip
mk

i v
k
i +

1
2
∆t(f int,ki + f

ext,k
i )

mk
i

(31)

and

vk+1
p = vk

p +∆t
Nn
∑

i=1

N̄ip
(f int,ki + f

ext,k
i )

mk
i

. (32)

A simple MPM/GIMP algorithm using explicit time-integration can be given as:

1. Initialisation of material properties at the material points at timet = 0 (k = 0).

2. At each time step:

• A background computational grid is generated(in this implementation, the same grid is
generated/reset at each time step),

• the shape/weighting and the gradient shape/weighting functions are determined,

• masses and velocities at the grid nodes is found,

• stresses and strain increments are determined,

• internal and external forces are calculated,

• the position and the velocity of the material points are found,

• other relevant variables associated with the material points are updated,

• time is incremented.

3 Classical material point visualizations and suggested improvement using the deformation
gradient tensor

Most of the articles which apply the material-point method display the material points simply as
points, i.e. small dots. Time dependent problems are illustrated by letting the points move though
space over time.

A logical extension of the visualization can be obtained by tracking deformation of the volumes
associated with the individual material points. The geometric volume (three-dimensional model)
or area (two-dimensional model) associated with a materialpoint is given the notion “voxel”. In
the reference configuration, the voxel is defined such thatV 0

p corresponds to the size of the voxel.
The voxel notion is introduced by Steffen et al. (16). The deformation of each voxel can be tracked
by introducing a deformation-gradient tensor, which needsto be tracked through the simulation.
Obtaining the deformation gradient tensor is easy, since grid velocities are calculated at each time
step as part of the method.
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For this type of visualization to be useful, a voxel shape suited to displaying deformation needs to
be chosen. For instance, a circle-shaped voxel is not appropriate for displaying shear deformations.
However, a discretization, where the domain is divided intorectangular voxels is useful, and this
type of discretization is easy to implement. In order to display the deformed state, the location of
corners of a voxel is calculated using the deformation gradient.

A simple way to implement the tracking is presented. A deformation gradient is initially associated
with each material point in the initial configuration.

F0
p =

∂xp

∂x0

=
1

Vp

∫

∂Ω0
p

F(x)dV (33)

In the initial configuration, the deformation gradient tensor is prescribed. Typically, and unde-
formed material state will be prescribed, i.e.F0 = I, whereI is the identity tensor. An explicit
forward difference updating scheme is employed to update the deformation gradient tensor,

Fk+1 = ∆Fk+1Fk, (34)

whereFk+1 is the deformation gradient at timestepk + 1, Fk is the deformation gradient at
timestepk and∆Fk+1 is the deformation taking place between the time steps. Expressing the
time derivative of the deformation gradient as∂F/∂t = ∂v/∂x0, ∆Fk+1 can be expressed as

∆Fk+1 = I+∆t
∂vk

∂x0
. (35)

Using the nodal shape functions, the change in deformation gradient at an arbitrary pointy can be
evaluated as

∆Fk+1(y) = I+∆t

Nn
∑

i=1

vk
i

∂Nk
i (x)

∂x

∣

∣

∣

∣

x=y

. (36)

For the material point, the increment of the deformation gradient is then calculated as

∆Fk+1
p = I+∆t

Nn
∑

i=1

vk
i

∂Nip

∂x
. (37)

This way of integrating the deformation gradient, using thegrid velocities, is also employed by
Guilkey and Weiss (9) and Love and Sulsky (17).

Employing the deformation gradient to track the deformation of the voxel associated with the
material point presumes that there is a uniform deformationwithin the voxel. This concept is
illustrated in Figure 1.

The tracking of the deformation gradient tensor can be applied to provide a better visualization
of problems involving large strains. Considering a voxel associated with a material point, initially
located atxp, the coordinate for a corner in the initial configuration canbe written as

x0
C = x0

p + dx0, (38)

wherex0
C is the location of the corner anddx0 is the line segment between the material point and

the corner. At an arbitrary time, the location of the corner is given as

xC = xp + dx. (39)
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ΩΩ0

x1
x1

x2x2

ξ01

ξ02
ξ1

ξ2F(t)

Fig. 1. Tracking the voxel associated with a material point through the deformation gradient tensor,F. The local
coordinates(ξ1, ξ2)T determine the deformation of the voxel.

Using the deformation gradient, defined at the material point, the line segment can be calculated
by

dx = Fdx0, (40)

wheredx0 is the deformed line segment andF is the deformation-gradient tensor defined in the
local coordinate system(ξ1, ξ2)T by

Flocal =
∂ξξξ

∂ξξξ0
. (41)

Using the chain rule, the deformation gradient tensor in theglobal coordinate system becomes

F =
∂x

∂ξξξ

∂ξξξ

∂ξξξ0
∂ξξξ0

∂x0
, (42)

where the coordinate-systems are defined on Figure 1.

In the examples presented later, the initial local axes are chosen along the global coordinate system.
Hence, in this case

∂x

∂ξξξ
= I and

∂x0

∂ξξξ0
= I (43)

When the local voxel coordinates are coincident with the global coordinate system, the deforma-
tion gradient tensor reduces to

F =
∂ξξξ

∂ξξξ0
. (44)

4 Definition of example problems

In order to examine the different techniques of visualization, it is advantageous to have a few
simple examples. Virtually any example involving a material subjected to large deformations may
be appropriate. Two simple problems are chosen.

Firstly, the the example of colliding discs, initially presented by Sulsky et al. (1), is revisited. The
configuration of the problem is shown in Figure 2.

In the work by Sulsky, the example is employed to show that MPMis able to model dynamic
problems in an easy way. The contact between the discs is handled automatically by the MPM
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Material properties for both discs:

x1,c =

(

0.2
0.2

)

, v1 =

(

1
1

)

x2,c =

(

0.8
0.8

)

, v2 =

(

−1
−1

)

ρ0 = 20, E = 105, ν = 0.3

x1

x2

x1,c

x2,c

Fig. 2. The colliding discs problem

algorithm presented above. Some of the material points fromthe two discs will eventually interpo-
late to the same grid nodes. When the two discs interpolate tothe same grid nodes, the two discs
share the same velocity field and strain gradients will develop during the collision. This results in
a stress wave in each disc which eventually will cause bounceoff when an elastic material model
used for the discs. However, as shown later, this way of automatically handling contact does not
extend well to other types of colliding bodies. For instance, two blocks colliding would tend to
stick to each other. Hence, York et al. (18) suggested to model colliding bodies using a separate
set of grid nodes for each body, and to handle the interactionusing a contact law where no tension
stresses are allowed to take place upon the end of impact. These ideas have later been extended by
Bardenhagen and co-workers (19; 20) to handle frictional contact between colliding bodies. For
this example, the intrinsic MPM contact approach by means ofa shared velocity field, also called
“no-slip” contact works fine. In some analysis of large deformations presented the following, the
example is modified slightly by modelling the two discs as Tresca materials with cohesionc = 5.

A second example, the collapse of a soil column, is introduced in order to study the effects of the
proposed large-strain formulation as well as to study stress distributions obtained by the MPM.
Figure 3 shows the initial configuration of the collapsing soil column. A rectangular block of soil
is placed on a frictional surface.

The experiment, typically performed by kids in a sandbox, offilling a bucket with fine grained,
dry sand and placing the bucket carefully with the open side on flat ground and quickly lifting the
bucket is similar to which should happen, only in the soil column example, plane strain is assumed.
The soil column will collapse, as it is not supported on its sides.

The soil is modeled as a frictional material by employing theMohr-Coulomb material model.
In the Mohr-Coulomb model a yield function,f , is defined. The yield function determines the
response based on a yield criterion, wheref < 0 implies elastic response, whilef = 0 leads to
elasto-plastic response. The Mohr-Coulomb yield functionis defined in terms of principle stresses
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4m
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Computational domain

Soil

Frictional boundary

Fig. 3. The collapsing soil column problem.

by

f =
1

2
(σ3 − σ1) +

1

2
(σ1 + σ3) sinϕ− c cosϕ, (45)

whereϕ is the angle of friction andc is the cohesion. The principal stresses are considered positive
in tension andσ1 ≤ σ2 ≤ σ3. The second principal stress is assumed not to influence the strength
provided by the Mohr-Coulomb criterion.

The stress rate is given in terms of the elastic strain increment, i.e.

σ̇σσ = C : (ε̇εε− ε̇εεp), (46)

whereε̇εε is the total strain rate,̇εεεp is the plastic rate andC is the elastic constitutive tensor. The
plastic strain increment is found using the relation

ε̇εεp = λ̇
∂g

∂σσσ
, (47)

whereλ̇ a positive scaling factor andg is the plastic potential function given by

g =
1

2
(σ3 − σ1) +

1

2
(σ1 + σ3) sinψ. (48)

Hereψ is the angle of dilatation of the soil. In the numerical solution, finite stress increments are
considered. The stress increment is calculated by firstly calculating an elastic predictor stress. This
elastic predictor stress may be outside the yield surface. An efficient return of the stresses back to
the yield surface is obtained by the algorithm proposed by Clausen et al. (21).

The soil is described using the following set of material properties:

E = 20MPa, ν = 0.25, ρ0 = 103kg/m3, c = 1kPa, φ = 40◦ and ψ = 0◦. (49)
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A frictional coefficientµ = 0.6 is prescribed at the lower boundary.

An initial K0-stress state is specified with the vertical normal stress given by

σ0yy = −dgρ0, (50)

whereg = 9.8m/s2 is the acceleration of gravity andd is the distance from the top soil surface.
The initial horizontal normal stresses are given by

σ0xx = σ0zz = −dgρ0K0, (51)

where the earth pressure coefficient is given byK0 = 1−sinϕ. It is noted that this definition ofK0

is not consistent with the chosen Poisson ratio, which suggest a lowerK0. The reason is that the
soil behaves one way when depositing, during which the lateral earth pressures are developed and
in another way when subjected to loading, in this case the stress relieve and subsequent collapse.
The chosen Poisson ratio represents a realistic ratio for the elastic behaviour of a dense sand.
Finally, σ0xy = 0 is prescribed for all material points. At the bottom of the modelled domain, a
frictional boundary condition is specified, given in terms of a coefficient of frictionµ. Obviously,
as the soil is not supported in the horizontal direction, thestresses cannot be sustained and a plastic
collapse will occur.

A simple way of implementing a frictional boundary condition is suggested. The resulting force,
as calculated from the right-hand side of Eq. (23), is decomposed into a normal component,fn,
and a tangential component,ft. The normal force is considered positive if it is directed outward
from the boundary. Friction is only present in the case of compressive normal force, i.e. when
fn > 0, and separation is allowed otherwise. In addition to the internal and external forces, a
frictional force is introduced, given by

ft ≤ µfn, (52)

whereµ is the coefficient of friction. Two estimates of the velocityat the end of the time step
are calculated: The velocity without any friction and the velocity with full friction. The velocity
without any friction is solved from Eq. (23) as

ṽi,k+1

t = vi,kt +
∆t

mi
(f i,intt + f i,extt ) (53)

and the estimated velocity in the case of full friction is given by

v̂i,k+1

t = vi,kt +
∆t

mi
(f i,intt + f i,extt + f i,frict ), (54)

where the frictional force is given byf i,frict = −sign(vi,kt )µfn. In the case of̃vi,k+1

t v̂i,k+1

t > 0,
full friction is present and the resulting force is given by the force term of Eq. (54). Otherwise, the
friction stops the material and the resulting force presentin the node is given by

f i,rest = −
miv

i,k
t

∆t
. (55)

The algorithm presented is simpler than the algorithm presented by Wieckowski et al. (22) and
avoids the need to specify any penalty parameters. However,it will be demonstrated in the follow-
ing that useful results are obtained.
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t = 0.1 t = 0.148 t = 0.196

Fig. 4. Position of material points as a function of time. Thediscs collide and then bounce off.

5 Visualization of movements and deformations

Firstly, the classical MPM visualization, where the positions of the particles are displayed as points
is shown. The position of the material points are shown as a function of time in Figure 4 for the
colliding discs problem.

5.1 Using the deformation gradient tensor to track the deformation

Another type of visualization is to associate a rectangle with each material, where the size of the
rectangle is given by the discretization and the material point is placed in the centre of it. The
visualization is then to let the rectangle move though spaceover time. Using this, it is possible to
display physical quantities by associating a colour scale with a selected material property. Visu-
alization, where the initial size of the rectangle simply translates through time with the material
point in the centre are presented by Andersen and Andersen (8). A better visualization can by ob-
tained by letting the rectangle deform as given by the deformation gradient tensor. Figure 5 shows
the final configuration of the collapse of the plastic discs with a voxels that are only translated
governed by the position of the material points, and voxels that are updated using the deformation
gradient tensor. As is seen from Figure 5, the use of the deformation gradient tensor significantly
improves the visual appearance of the discs. The remainder of the figures of this article are all
employing this visualization technique.

5.2 Using conceptual colouring schemes for easier visualization of deformation

In order to show how the discs deform, representative colouration may be employed. For instance,
the discs may be striped or checkered for a better visualization. Stripes may run along thex-
axis, they-axis, or they have a rotation relative to the grid. In order illustrate representation of
deformation, the example is modified slightly. The two discsare now modeled as a Tresca material
with a cohesion ofc = 5. Figure 6 shows the initial and the final configuration of the discs using
different ways to colour the material for visualization purposes. It is observed that when a plastic
material-model is employed, the discs will stick to each-other upon impact. Further, it is noted that
adding a colouring scheme solely for visualization purposes is able to give a better visualization
of the deformation than just using a uniform colour for each disc.
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Fig. 5. Final configuration for the collapse of the plastic discs. Left: Voxels are defined by rectangles with size defined
by the initial discretization and position governed by the material point. Right: The deformation gradient tensor is
applied to find the deformed voxels.

5.3 Using colour scale plots to illustrate deformation pattern and field quantities

In bodies that are subject to large local deformations, it isoften useful to visualize the magnitude of
the movements and deformations. In order to show this, the example of the colliding soil column is
explored. The dynamic simulation is performed with a time step of∆t = 0.001s. The simulation
is performed until the soil has reached a state of vanishing velocities. For the present model the
time of the collapse ist = 2.5s. The model consists of 4050 material points. Firstly, a colour plot
of the deformation pattern for the collapse is shown in Figure 7 In the figure, another phenomena
is observed, namely that the deformations degenerate some of the voxels near the bottom so much
that they obtain string-like shapes. In relation to the collapse of the soil column, the displacement
of the individual material points can be tracked using the simple relation

up(t) = xp(t)− x0
p, (56)

wherex0
p is the initial position of the material point. Figure 8 showsthe two components of the

displacement vector as well as the magnitude of displacement. The soil column collapses around
a relatively fixed core. A model with a lower coefficient of friction on the boundary may provide
another picture. Especially, if the friction of the lower boundary is smaller than the internal friction
of the soil, another pattern will appear where the soil wouldslide, or almost flow along the friction
boundary.

5.4 Perspectives of the new way of visualizing the deformation

As shown in Figure 5, the tracking of the deformation gradient tensor is able to significantly im-
prove the visualization of deformation. As applied, the tracking of the deformed voxels is applied
solely as a postprocessing tool. In other words, the original MPM formulation is not altered. Hence,
it can easily be incorporated in any MPM codes by tracking thedeformation gradient tensor and
calculating the deformed voxel configuration. The deformation gradient tensor is updated at each
time-step. If output is only needed at some of the time steps,the deformed voxel configuration
only needs to be calculated at these time-steps. Also, this type of visualization can without any
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t = 0 t = 0.35

Fig. 6. Initial and final configuration of voxels of the two plastic discs using different colouring schemes for visualization
purposes
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Fig. 7. Deformation pattern of the collapsing soil column.
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Fig. 8. Measures of displacement for the collapsing soil column.

problems be applied to other particle-based methods, such as smoothed particle hydrodynamics,
where the typical visualizations also include plots of points, similar to Figure 4 (23; 24; 25). Visu-
alizations, where the voxels are updated by the deformationgradient tensor, provides a very useful
tool, as it makes it easy to see the deformation pattern. It isnoted that visualization of deforma-
tions is automatically included in the finite-element method, as the deformation of nodes relatively
to each other along with element boundaries provides a visualization similar to that of the figures
which track the deformation of the voxels. The better description of the deformation obtained us-
ing this may also be able to suggest if there is anything wrongwith the model, for instance if
the discretization is too coarse to capture the deformationpattern — something which is harder,
given only the position of material points. In the case of thecollapsing soil column, some of the
voxels got so distorted that they obtained string-like shapes, suggesting that a moderation would
be beneficial here. For instance, those material points subjected to large shear deformation could
be split into new ones. Further, the visualization verified that the overall deformation pattern looks
realistic.

However, it should be explored in subsequent articles how toapply the knowledge obtained by
this tracking to improve the MPM/GIMP models more directly,hence not only as a postprocessing
tool. Possible ways to utilize the knowledge of the deformedconfiguration and the deformation
gradient tensor include:

1. Apply the the knowledge of the deformed configuration of material points to dynamically
update the discretization using splitting of material points into new ones, for instance where
the largest strains are observed;

2. Provide a more accurate way to interpolate between the material-points and the mesh. The
presented update scheme for the deformation gradient tensor and tracking deformed voxels
provides knowledge of the deformed configuration of the material points, making evaluating
of GIMP weighting functions over the deformed configurationpossible.

6 Visualizing of velocities

The visualization of velocity is closely linked to the visualization of the deformation. For visual-
ization of velocities, two types of plots are of interest – vector plots and colour plots. Vector plots

18



6 8 10 12 14 16 18
0

2

4

6

8

(a)

6 8 10 12 14 16 18
0

2

4

6

8

(b)

6 8 10 12 14 16 18
0

2

4

6

8

(c)

 

 

2 4 6

Fig. 9. Velocity and speed of the collapsing soil column, 1.15seconds into the collapse. (a) Vector plot of the velocities
using all the material points. (b) Vector plot of the velocitis using only a 1/16th of the material points – 1 of 4 in each
direction. (c) The speed of the material points using a largestrain representation and a color scale.

are useful to show in which direction the material is moving,but it may not be the most appropriate
in order to visualize the magnitude of the deformation. Figure 9 shows the two ways of visualizing
the velocity or the speed using both a vector plot and a colourplot. Further, it is demonstrated how
the visual appearance of the vector plot can be improved by only including some of the material
points. Clearly, it is hard to get a good view of a fine model if all the material points are included.
Hence, for this simulation and simulations involving more material points, only some of the mate-
rial points should be included in the visualization. It is also observed that the colour plot is much
easier to get an idea of the magnitude of the speed.

7 Visualization of stresses and strains

Stresses and strains are both second order tensor fields which are generally harder to visualize di-
rectly than scalar and vector fields. It is possible to represent a stress tensor in two dimensions in a
way similar to the vector plots of the velocity field. For two dimensional problems, there are three
independent components of the stress tensor, but there exist an orientation of a cartesian coordinate
system in which the shear stress vanishes and only two normalstresses exists. Orientation of this
coordinate system is known as the principal directions and the normal stress components are the
principal stresses. The principal stresses are also used toformulate the governing equations for the
material model for the soil in the collapsing soil column as shown in Section 4. A plot of the prin-
cipal stresses or the principal strains along with the corresponding directions can be performed by
showing the principal stresses as crosses, where the lengthof the sides of the crosses are associated
with stress scale and the orientation by the orientation of the crosses. This kind of plot is amongst
many others utilized by the Finite Element Software Plaxis (26). An experienced user will also be
able to give an idea of potential shear by comparing the magnitude of the principal stresses. The
alternative is to use colour plots to display either component of the tensors or invariants associated
with the tensors and will be employed in the following. The stresses and strains will be dealt with
separately in the following subsections. Further, visualization of quantities of specific relevance
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for elasto-plastic problems are dealt with in Subsection 7.4.

7.1 New method for visualization of the stresses

As shown by Andersen and Andersen (13) for the classical problem of a cantilevered beam, al-
though the stresses at the individual material points may oscillate in a physically incorrect fashion,
these physically unrealistic oscillations are not observed if the stresses are transferred to and dis-
played by the grid-nodes. This suggest that unlike the claims in the first MPM articles, it is not
only the material points which carry information about the physics. If a spatially fixed mesh is
employed, much of the interesting physics is tied to the gridnodes, where the equation of motion
is resolved. This constitutes a theoretical problem for thematerial-point method, as it claims that
the mesh is in essence unimportant as no state variables are associated with it.

Leaving this aside, it is demonstrated here how a simple mapping of the stresses from the material
points to the grid nodes and back to the material points can extract the physical part of the stress in
cases, where the stress field tracked by the individual material points is significantly degenerated.

Firstly, grid node stress tensors are defined by

σσσi =

Np
∑

p=1

σσσpΦipmp

mi
, (57)

whereσσσi is the stress tensor, associated with grid nodei,σσσp is the stress tensor of material pointp,
Φip is the interpolation function, in this implementation the GIMP weighting functions, whilemi

andmp are the nodal and material point masses, respectively. Using the nodal stresses, a smoothed
material point stress tensor is defined as

σσσsmooth
p =

Nn
∑

i=1

σσσiΦip. (58)

The extraction of a smoothed stress field is performed only asa postprocessing operation. Hence,
it can be applied only to the time steps, where data is stored,which is typically only a small part
of the total number of time steps in an explicit MPM/GIMP model. The result of this type of
postprocessing is shown in the following example.

Figure 10 and 11 show the dynamical evolution of the verticalnormal stress as obtained at the
individual material points and calculated by Eq. (58), respectively. It is clearly seen that the vi-
sualization using mapping via the grid nodes provides a realistic evolution of the vertical normal
stresses while the visualization based on the individual material-point stresses yields a very noisy
stress field.

In the final configuration of the collapsed, it is possible to recognize the corners of the column
from the initial configuration due to the presence of a small cohesion. It is clearly observed that
the stress field at the individual points are very oscillatory to an extent, where it should not yield
the correct behaviour, but a physically realistic result isnevertheless obtained. Also, it is observed
that using the simple postprocessing of the stresses using the mapping via the grid nodes, a phys-
ically realistic variation of the vertical normal stress isobtained. As Eq. (58) is only applied as a
postprocessing tool, the question arises as to why the deformation is captured so well, when the
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Fig. 10. Vertical normal stresses at the individual material points.
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Fig. 11. Vertical normal stress visualization using Eq. (58).
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stresses at the individual material points are unrealistic. Here, it must be observed that the collaps-
ing soil column is a very homogeneous problem in both the stresses and the deformation pattern.
Firstly, the deformation pattern is simple despite the large strains — it is basically a square trans-
forming into a triangle. Secondly, the physical stress fieldis simple; initially, all the sides of the
square will experience a stress relief governed by the plastic collapse, and the soil will eventually
become stable, with the largest normal stresses under the middle, where the overburden pressure
is largest. This suggest that for homogenous problems the method works well in capturing very
large deformations and it is possible to extract a realisticstress field using an appropriate postpro-
cessing. But the very inhomogeneous and inaccurate stresses at the individual material points is a
large cause of concern in respect to problems, where a smoothing over element sizes may not be
appropriate.

7.2 Visualization of stress invariants

As shown from Figure 11, the vertical normal stress component of the stress tensor has a much
smoother and physically plausible spatial variation for the stress field calculated using Eq. (58).
In addition to displaying stress components of the stress tensor, it is useful to to display invariants
of the stress tensor. For elasto-plastic problems such as the collapsing soil column, invariants of
interest are

1. Principal stresses,σ1, σ2, σ3, and the orientation of the principal stresses

2. The mean stress,p

3. The deviatoric stress,q

For the current implementation of two-dimensional plane strain model, the principal stresses are
found by

σ1,3 =
σxx + σyy

2
±

√

(

σxx − σyy
2

)2

+ σ2xy, (59)

whereσ1,3 is the first and third principal stress (dependent on the signin the equation), and
σxx, σyy, σxy are the in-plane cartesian stresses. The intermediate principal stress is the out-of-
plane stress, which is also tracked using the constitutive model. The angle,θ, between the cartesian
coordinate system used to describe the stress state and the principal stresses is given by

tan 2θ =
σxx − σyy

2σxy
(60)

Additionally, the mean stress,p, and the deviatoric stress,q, are defined by

p =
σxx + σyy + σzz

3
and (61)

q =

√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

2
. (62)

Noting the differences between the stresses at the materialpoints, and the stresses extracted using
Eq. (58), there are different way ways of extracting invariants also:
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Fig. 13. Rotation (in degrees) of in-plane principal stresses compared to the horizontal and vertical axis, shown as a
colour plot with and without the suggested smoothing method. The given solution is the shortest possible rotation,
negative or positive, which is within 45 degrees.

1. Invariants associated with the material point stresses directly

2. Invariants calculated from the stresses found using Eq. (58)

The invariants could also be calculated using the material point stresses, and then be smoothed
using an operation similar to the operation performed usingEqs. (57),(58). This will provide the
same result as the second of the above methods.

First, visualization the of principal stresses is considered. A plot often used in finite element anal-
ysis of two-dimensional problems is to display the principal stresses as crosses which shows the
orientation of the principle stresses and where the length of the lines that make the cross defines
the magnitude according to to a user chosen stress length scale. Figure 12 shows the principal
stresses calculated using a nodal smoothing. The figure usesa different amount of the material
points to visualize the principle stress fields, to show thatoften, for such plots, its advantageous to
only use some of the material points. In order to compare the principal stresses with and without
nodal smoothing, the rotation of the principal stress axes compared to thex− y-axis,θ, is shown
using a colour plot in Figure 13. Next, the mean and the deviatoric stress tensors are shown for the
two methods of extracting invariants in Figure 14. As seen, the smoothing process suggested also
improves the description of the stress invariants.
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Fig. 14. Mean stress,p, and deviatoric stress,q, at the end of the soil-column collapse directly evaluated from the
material point stresses and using a smoothing using the gridnodes.

7.3 Measures of total strain

In the material-point method computational scheme, the total strains do not enter the computa-
tional scheme. This leaves a freedom to how the strains are calculated and visualized. The total
strain can be extracted from the MPM-computational scheme by either of the following methods

1. Integrating the strain increments over time in the MPM time integration;

2. Extraction using the deformation gradient tensor.

Direct integration of the strain increments is suggested bySulsky et al. (2). Alternatively, the
deformation gradient tensor is used to calculate the desired strain measure, such as the Green
strain tensor or the engineering strain tensor or the logarithmic strain tensor. As the deformation
gradient tensor is tracked as part of the current scheme for visualization of deformation, the latter
is the natural choice here.

As the deformation patterns shown in Figure 7 and the left illustration in Figure 5 are physically
realistically, all total strain measures extracted from the deformation gradient tensor will also be
realistic. For small deformations, the so-called small-strain tensor or engineering strain tensor is
most often used as strain measure.

Using the deformation gradient tensor, the engineering stress tensor can be calculated from

εεεp =
1

2

(

FT
p + Fp

)

− I. (63)
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Fig. 15. Engineering strain components, extracted using the deformation gradient tensor, when the two discs are com-
ponents, due to the symmetry of the problem, the vertical andthe horizontal normal strain are the same for this problem.

The components of the engineering strain tensor, calculated using the deformation gradient tensor,
are shown for the two discs in Figure 15. The engineering strain tensor in Eq. (63) can also poten-
tially be employed for linear elastic problems to calculatestresses as an alternative to the material
point stresses. It is observed, that in doing so, no visible differences has been observed between
stresses calculated using the engineering strains from Eq.(63) and the stresses at the material
points.

For larger deformations, the engineering strain tensor performs poorly and other strain measures
are often employed. For moderately large strains, the Greenstrain tensor is defined by

Ep =
1

2

(

FT
pFp − I

)

(64)

For very large strains, the best strain measure is the logarithmic strain, or Hencky strain tensor,
defined by

Eln
p = ln(Up), (65)

whereUp =
(

FT
pFp

)
1

2 is the right material stretch tensor associated with material point p, and
ln() denotes the natural logarithm of a second order tensor. The natural logarithm is here calculated
using the explicit formula presented by Jog (27).

In order to compare the three different strain measures for aproblem subjected to very large strains,
the collapsed soil column is considered. Figure 16 shows a colour plot of the strain components
of the three strain tensors, where a colour axis is defined from extreme values within each plot. It
is observed that for extreme strains, as observed for some ofthe material points, the Green strain
tensor components get very large values. On the contrary, the logarithmic strain tensor components
variy smoothly and within a limited range. The development of strain through the collapse of
the soil column in three material points are illustrated in Figure 17 for the horizontal normal
component of the three different strain tensors and for a fewselected material points. As seen
from Figure 17, for small strains (Point C), the three strainmeasures are almost identical. For
large strains, the Green strain tensor components become very large, while the logarithmic strain
tensor components are smaller.
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Fig. 16. Shear strain components of the engineering strain,the Green strain and the logarithmic strain tensors respec-
tively. The strain tensors are extracted as part of postprocessing using the deformation gradient for each material point.
The color scale above each plot is defined from extreme valuesfrom each plot. As seen, the logarithmic strain tensor
is very good at capturing the deformation pattern while the two other colour scales are a degenerated by a few severely
distorted material points.
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Fig. 17. Horizontal normal strain for the collapse of the soil column using the different strain measures. For small strain
(point C), the three curves are almost coincident. For extreme strain (Point B) the logarithmic strain maintains a limited
value while the engineering strain and the Green strain accelerates. For large strains (point A), the logarithmic strain
and the engineering strain are very similar while the green strain component is larger.
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Fig. 18. Relative yield function (Eq. (66)) at the end of the collapse of the soil column, using the direct material point
stresses and the stresses calculated using Eq. (58) respectively.

7.4 Elasto-plastic stress and strain measures

An important class of problems to analyse and understand is elasto-plastic problems. The collapse
of the soil column is a good example of a plastic collapse, andso is the collision of the two discs,
when the discs are modelled as Tresca material.

In the collapse of the soil column, the elastic stresses cannot be sustained, and plastic strains will
develop in the material. As observed from Figure 10, the direct material-point stresses exhibit wild
oscillations but stresses at the grid nodes has a smooth variation and have a physically realistic
magnitude. An important observation is that when the deformation gradient is used to display
the deformed voxels, the consistent deformation pattern observed in Figure 7 can be seen as a
verification that a realistic deformation gradient tensor is calculated. This is related to the nature
of the elasto-plastic collapse, which for the collapsing soil column is modelled. In accordance with
Andersen and Andersen (8), a relative yield function is defined by

frel =
1
2
(σ1 − σ3)

1

2
(σ1 + σ3)− c · cos(ϕ)

(66)

Using this definition,frel = 1 corresponds to yielding whilefrel = 0 corresponds to a hydrostatic
stress state. Figure 18 shows the relative yield function inthe final configuration of the collapsing
soil column problem, using the direct material point stresses and the stresses from Eq (58) to
calculatefrel.

As seen from Figure 18, the relative yield function in the final configuration is between 0.4 in
the interior of the collapsed column and close to 1 near the surface when using the mapping of
stresses from Eq. (58). When using the direct material pointstresses, the relative yield function is
fluctuating between zero and unity.

In order to have a better estimation of the deformation for elasto-plastic problems, it is useful to
perform an analysis, where the deformation gradient tensoris split into an elastic part and a plastic
part defined by

Fp = Fe
pF

pl
p , (67)

WhereFe
p andFpl

p is the elastic and the plastic part of the deformation gradient tensor associated
with material pointp, respectively. This multiplicative decomposition is firstsuggested by Lee
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(28). A review of the applications of the multiplicative decomposition including thermoelasticity,
elastoplasticity and biomechanics is given by Lubarda (29).

Whereas the total deformation gradient tensor is a unique function of deformation relative to the
reference state, the decomposition of Eq. (67) is not unique. The intermediate configuration de-
fined by Eq. (67) is conceptually introduced by a virtual destressing to the reference stress. Often,
the destressed reference state will be a stress-free state.However, for the collapsing column, the
reference stress is the dept increasing initial stress-state, while it for the two discs are zero stresses.
The intermediate configuration is not uniquely determined,as arbitrary local material rotations can
be superposed to intermediate configuration, preserving the reference stress state. An approach to
circumvent this is taken along with a suggestion of Lubarda (29) namely by introducing the addi-
tional requirement that the elastic unloading takes place without rotation.

In order to implement the composite decomposition into classical incremental plasticity theories
such as the Mohr-Coulomb model, the following relationshipis employed

dǫǫǫep =
1

2

(

(dFe
p)

T + dFe
p

)

− I, (68)

wheredǫǫǫep is the increment of elastic engineering strain associated with material pointp, anddFe
p

is the increment of the elastic part of the deformation gradient tensor. According to the requirement
that the elastic unloading takes place without rotation, the elastic part of the deformation gradient
tensor is symmetric and Eq. (68) can be reformulated as

dFe
p = dǫǫǫep + I, (69)

anddǫǫǫep can be extracted from the return mapping scheme of the constitutive model, where

dǫǫǫp = dǫǫǫep + dǫǫǫplp (70)

In the MPM computational scheme, the infinitesimal quantities in Eq. (70) is replaced by small,
finite quantities that depend of the time step, IE:

∆ǫǫǫp = ∆ǫǫǫep +∆ǫǫǫplp (71)

and
∆Fe

p = ∆ǫǫǫep + I, (72)

The elastic deformation gradient tensor is updated using

Fe,k+1
p = ∆Fe

pF
e,k
p (73)

and for the plastic part is calculated using Eq. (67) as

Fpl,k+1
p =

(

Fe,k+1
p

)

−1

Fk+1
p (74)

For the collapse of the two discs, the components of the deformation gradient tensors are shown
in Figure 19. The elasto-plastic decomposition can also be employed in order to find an estimate
of the stresses as part of postprocessing rather than just visualize the stresses at the individual
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Fig. 19. Multiplicative decomposition of the deformation gradient tensor into an elastic and a plastic part illustrated for
the collapse of plastic discs.
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Fig. 20. Vertical normal stresses at the end of the collapse of the soil column, visualized in three different ways.

material points. In that case, first the elastic engineeringstrain is extracted from the elastic part of
the deformation gradient tensor using

εεεe = Fe − I, (75)

whereεεεe is the elastic part of the engineering strain tensor relative to the chosen reference (initial)
state. Givenεεεe, the stress change relative to the reference state can then for linear elastic behaviour
be calculated as

∆σσσ = E : εεεe, (76)

where∆σσσ is stress change, andE is the fourth order elasticity tensor. The total stress at the current
state is then

σσσ = σσσinitial +∆σσσ (77)

Hence, for elasto-plastic problems, the stresses at the current state can be visualized using post-
processing in three different ways; The material-point stresses, the stresses smoothed via the grid
nodes, and the stresses calculated using elastic part of thedeformation gradient tensor. Figure 20
shows the stresses in the final configuration of the collapsedsoil column, using the three visual-
ization techniques. It is observed that the extraction of stresses using Eqs. (75) and (76) improves
the visualization of the stress field in this case, but that the most physically plausible stress field is
most likely similar to the one calculated using Eq. (58).

8 Conclusion

The need to easily verify results visually is of great importance in the application numerical meth-
ods. The most established method for numerical modeling is the finite-element method in which
a direct visualization of the deformation is obtained. On the contrary, the initial visualizations
using the material-point method displayed the physical problem as a collection of points moving
around in space in the dynamic simulation. In this article, anew approach to visualizing the defor-
mations is presented for particle based method and exemplified using the material point method.
The visualizing technique consists of a three steps. Firstly, a volume is associated with each of
the material points. Here, initially rectangular quadrilaterals are chosen to display deformations
for two-dimensional problems. The quadrilaterals has the advantage that they are suited for dis-
playing shear unlike if circles were chosen. Secondly, the deformation gradient tensor relatively
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to the reference configuration is introduced as a state variable for the particles/points and updated
though the dynamic calculation. Finally, the deformation gradient tensor is applied to the initial
configuration to calculate a deformed state of each the quadrilateral associated with particle/point
and then displayed. It is noted that the applied technique for visualization can also be applied to
other particle based methods, for instance to Smoothed Particle Hydrodynamics. Using this type
of visualization technique it is possible to get a much better visualization of the deformation. The
visualization provides an easy way to evaluate the quality of the results, just such as in the finite
element method where it is straightforward to see if a mesh isentangled. Several perspectives of
the visualization technique are mentioned. Firstly, in thecase of the extreme deformations, it may
be possible to introduce a way to split material points into new ones if they become too distorted.
The combination of the volume weighted GIMP approach and thetracking of the deformation will
provide the framework for splitting. Secondly, the tracking of the deformed configuration makes
it possible to increase the accuracy or consistency when dealing with large deformations. It may
also be possible to obtain a better evaluation of the GIMP weighting functions when the domains
occupied by the material points become distorted.

A particular useful the postprocessing tools presented involves extraction of the physical part
of the stresses. It is observed and reported, that stresses at the individual material points often
oscillates in a very unphysical fashion but that the deformation pattern in most cases is realistic.
A simple postprocessing by mapping the stresses to the grid nodes and back to the material points
provides a way to extract a physical part of the stress field, and also suggest why the displacements
generally seems correct despite the very oscillatory stresses. It also pinpoints the limitation of the
material-point method in its current form.
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