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Post-Processing in the Material-Point Method

Sgren Anderseri and Lars Andersen
Department of Civil Engineering
Aalborg University, Aalborg, Denmark
e—mail: sa@civil.aau.dk

Abstract The material-point method (MPM) is a numerical method fanayic or static analysis of solids
using a discretization in time and space. The method hasrstole successful in modelling physical prob-
lems involving large deformations, which are difficult to debwith traditional numerical tools such as the
finite element method. In the material-point method, a setatkerial points is utilized to track the problem
in time and space, while a computational background gridilized to obtain spatial derivatives relevant to
the physical problem. Currently, the research within théemial-point method focusses on establishing its
accuracy and robustness. For easy evaluation of resultmdgsualization of the deformation pattern as
well as an accurate way to obtain the stresses are ess&himahrticle introduces new ideas to improve the
postprocessing of results obtained by the material-po&thod. The first idea involves associating a vol-
ume with each material point and displaying the deformaibthis volume. In the discretization process,
the physical domain is divided into a number of smaller vadégreach represented by a simple shape; here
guadrilaterals are chosen for the presented two-dimeawoblems. At the centroid of each of these sub
domains, a material point is defined. The deformation gradensor associated with the material point is
used to display deformation of the sub domain. This type sifiaiization is shown to dramatically improve
visualization of large strain problems. It is noted, thas fdea is also relevant for other point based meth-
ods, such as smoothed particle hydrodynamics, where tt@hidependent variables are tracked by a set
of particles. The second idea introduced in the articlelire®the fact that while the stresses may oscillate
in an unphysical fashion at the individual material poitghysically realistic stress field may often be
obtained at the grid nodes. Further, a new way of remappmmgttiesses via the grid nodes is introduced to
obtain more meaningful stress fields in the postproces3imgnew ideas are shown to improve the visual
presentation of results from material-point method sitioites and hence the understanding of the underly-
ing physical problems to which the method is applied. Furtiwe way the stresses can be extracted reveals
some pitfalls for the method and suggests a place to diraantfuesearch.

Keywords: Material-point method; Numerical analysisgadeformations; point-based methods

1 Introduction

When evaluating results obtained by a numerical simulatwrcontinuum in dynamical prob-
lems, three types of visualizations are of interest: 1. No#ets and deformations, 2. velocities,
3. stresses and strains.

For the material-point method(MPM), it is straightforwaial visualize movement of relatively
rigid bodies. This can be done most simple by displaying th&tipn of the individual material
points using small dots. Visualization of this type is préed amongst others by Sulsky and co-
workers (1; 2; 3) and by Cummins and Brackbill (4). By onlygdés/ing positions of the points,
no direct visualization of deformation is obtained. Thellgheye arises when the deformations
become significant.

For problems involving large deformations, it is useful tompare finite-element-based methods
to particle-based methods which assign material propgettiea set of points or particles, such
as the material-point method. In general, the finite elersefitvare is at a much more advanced



stage than the software for particle based methods. A tegdtof various ways to postprocess
results from a finite element solution is found in the work abBSka and Miller (5; 6; 7). In finite
element methods, a direct visualization of the deformatibithe material is obtained as the finite
element mesh directly tracks the deformation, and finitenetg software typically displays the
deformation using the position of the nodes along with apasametric tracking of the element
boundaries. At the same time, the distortion of the finitenglet mesh is known to degenerate
the accuracy of the solution. A way to maintain accuracy effthite element mesh is to perform
remeshing during a simulation. This remeshing replacesligterted elements with new, undis-
torted elements. Hence, the very direct way of visualiziogal deformations by displaying the
distorted mesh becomes impossible. Another issue is howrformn remeshing and mapping of
material properties for complex material models.

The advantage of the particle-based methods is that no nsshtidn occurs, as the state variables
is not directly associated with a mesh, but associated wihtaf particles or material points.
Technically, the material-point method can be thought ofiasArbitrary Lagrangian Eulerian
formulation, where the mesh is reset at each tine step.

For the material-point method, a challenge is how to dispiteydeformation, as only the coor-
dinates of each material point directly enter the algoriti8imilarly, with only a coordinate its
not immediately obvious how to visualize other field quagditsuch as stresses. A simple way to
visualize field quantities involves associating a volumthwiach material point, with the material
point located at the centroid of each volume. This volumethan be translated around according
to the position of the material point as obtained by the nigaksolution. By having a finite sized
volume associated with each material point it is for instapossible to assign a colour to each vol-
ume, where the colour represents a physical quantity. Amplais a colour scale for a particular
component of the stress tensor when a colour plot shows tletiva of that stress component.
It could also show the velocity components or other datatef@st, or it could even be useful to
just assign different colours to the material points to &asee the deformation pattern. This type
of visualization is among others utilized by Andersen andliémsen (8) to visualize evolution of
landslides.

In this article, it is demonstrated that it is easy to extemd type of visualization to directly
show the deformations. This is obtained by introducing thi@gnation gradient tensor as a state
variable for the material points. The technique of trackimg deformation tensor is firstly intro-
duced by Guilkey and Weiss (9). The application of the defdirom gradient tensor to display the
deformations seems to have been developed independetiiypypéndersen (10) and by Choud-
hury et al. (11). A material point is assigned an initial cgafation. Here, each material points
is discretized as an initially rectangular quadrilatemlmodel two-dimensional problems. The
deformation of each material point is visualized by caltntathe deformed configuration of the
guadrilateral using the deformation gradient tensor. Type of visualization is shown to give a
much better visualization of the deformations.

For the purpose of displaying the velocities, two types efiglizations are of interest; vector plots
and colour plots. A vector plot is made by associating a lkesgale with the velocity, the velocity
components associated with the material point then defireelehgth and direction of the vector.
The vector plot has the advantage that it is possible to Wiuall components in the velocity
vector. The colour plot on the other hand needs to eitherechne of the velocity components or
the speed of the particle as it can only plot scalar fields eapldtted in this manner. In general,



vector plots are good at visualizing the direction of theoe#y or other first order tensors while
the colour plots makes it easier to see the magnitude ofichdiy components.

Another issue that requires attention is the stresses andtthins. Here, its useful to note the
difference of the material-point method to a finite elememtfulation. In the finite element for-
mulation both the stresses and the strains are obtained polt-processing, most often obtained
by interpolation and extrapolation of quantities obtair@dsauss points. In the material-point
method on the other hand, the stresses are tracked at thdahpténts themselves. It has been
reported by several sources that the stresses are oftertacsbeninaccurate when displayed di-
rectly using the material points. This is reported by Sh) @nd by Andersen and Andersen (13)
among others. Especially, for problems involving largeodafations the stresses show wild oscil-
lations. The stress oscillation is often so extreme that & surprise that the general physics (for
instance the deformation pattern) is accurately descrilpetthe initial articles on the MPM (1; 2),

it was reported that the method was meshless in the sensallthitory dependent variables are
only carried by the material points. However, as shown héig,may not be so simple. Thus, it
is possible to extract the physically realistic stressemfwery unrealistic and oscillatory stress
fields at the material points by mapping to the grid nodes aul Ibo the material points in the
postprocessing. This is very useful for illustration pugs, but it also suggest that the way the
method handles stresses should be closer examined in selseeprk.

On the other hand, the strains are not part of the material-poethod computational scheme,

only the strain increments associated with a particulae tgtep are. Therefore, the total strains
may be extracted in the post-processing. In the formulgtresented here, where the deformation-
gradient tensor is tracked for each material point, the masitral way to extract the strains is to

calculate them from the deformation gradient tensor. Fradi elastic materials, another way is to
calculate them from the stresses using the flexibility teriBoe two ways of extracting the strains

will generally yield different results.

Firstly, the MPM-calculation scheme is presented in SecBioA review of material point visu-
alizations along with a suggestion of a new way of visuatjzihe deformation is presented in
Section 3.

The latter part of the article discusses and illustrateovaripostprocessing tools which are illus-
trated using two example problems. Section 4 defines the xample problems. Section 5 dis-
cusses ways to visualize movements and deformations, #bdgon 6 discusses ways to visualize
the velocities. Section 7 discusses how the strain field badtress field can be visualized and
reports a remarkable feature of the stress field, namely¢iadistic stresses are only found using
postprocessing via the grid nodes. Further, discussioaseds invariants as well as elasto-plastic
stress and strain measures are included. Finally, Sectiwesgnts the conclusions.

2 The computational scheme in the material-point method

2.1 Governing equations

The governing equation of the material-point method is #iladce of momentum, given by

dv

poy =V -0 +pb, (1)



wherep = p(x,t) is the current density = v(x,t) is the spatial velocityg = o(x, 1) is the
Cauchy stress tensor abd= b(x, t) is the specific body force. The spatial coordinate is denoted
x andt is the time.

Equation (1) is cast in weak form by multiplication by an &mdiy test functionw, and integration
over the domains?, yielding

/pw-d—vdV:/w~V-adV—l—/pw-de. (2)
Q dt Q Q
Using Green'’s divergence theorem, Eq. (2) can be reforedlas
d
/pw-—vdvz—/o:dev+ w-'rdS—i-/pw-de, ©)
Q dt Q o9, Q

wherer is the surface traction vector a2, is the part of the boundary with known traction.
Next, the framework of the generalized interpolation matgroint method (14) is utilized to
discretize Eq. (3).

The domain is represented by a finite set of material voluifies initial domair2? is divided into

a set of non-overlapping subdomamg, wherep = 1,2, ..., N, and N, is the number of material
volumes. At the centroid of each subdomain, a material pwitht the coordinates,, is defined.
For clarity, Qg denotes the initial domain while the volume of this domaidésuotedvlf. Hence,
given an initial density fielg® (x), the initial volume and the mass associated with materititpo
p is given by

W=/dv @
0O
P
and
My :/ P2 (x) dV, (5)
o
respectively, whereas
0o_ My

is introduced as the density of material pgirit the initial configuration.

The velocity and stress associated with a material poirdefiaed as volume-weighted quantities,
ie.

1 0
= — av 7
v W@VM ™
and )
= 0(x)aV. 8
o, @@awv ®)
Similarly, external body forces are defined by
1
b, = — b(x)dV. 9
pwéﬁwv ©)

Although associated with the material volumes, the quastiiefined by Egs. (4) to (9) will, in
accordance with existing MPM articles, be referred to aenwdtpoint quantities.
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In order to obtain a discrete spatial representation, gartharacteristic functions,, associated
with the material points are defined. The particle char@tiefunctions are defined such that they
are a partition of unity in the reference configuration, i.e.

p
D Xh(x) =1V x € Q. (10)
Further, the particle characteristic functions are noized| with respect to the initial volume, i.e.

/Q ) Xp(x,)dV = V. (11)

In this article, constant particle characteristic furneti@are employed defined by

1 if xe,,
Xp( x) = {0 otherwise (12)

Further, it is noted that the original MPM formulation (1)dbtained by setting, = 6(x — x,),
where/ is the Dirac delta function.

The material point quantities defined in Egs. (5) to (9) aredu® approximate the fields for
the momentum, the body forces and stresses in the balanc®mentum, respectively. Field
guantities are represented as sums over the material pioints

NP
X) =) fyxp(x). (13)
p=1
For instance, the first term in the balance of momentum iesgmted by
I? NP
dvp my dvy,
o =) —2=»P . 14
pdt Z Pp v, di Xp(x) (14)

Using the material-points representation in the balangaarhentum yields

Np

my dvp /
— . dV = w-TdS — o dv
I; Vo /Qp Y 00, Z P Qp 3X o

il myb
+y —E / wx, dV, (15)
p=1 ‘/b QP

whereV/, is the current volume of the material point.

In the implementation employed here, the current volumebeilcalculated using the determinant
of the deformation gradient tensor associated with the ma&ggoint. Section 3 shows how the
deformation gradient tensor is calculated for each mdtpdint. The term on the left hand side
of Egs. (15) represents the rate of change of momentum. Orighehand side the first term
represents the surface tractions, the second term repgeatarnal forces due to stress gradients



while the last term represents external body forces. Furithie noted that the physical quantities
are evaluated at each material point.

Now, approximations for the field of test functions are madeims of the background grid. The
geometry of the grid is defined hy,, nodes, using the index= 1, ..., N,, exclusively to identify
the nodes. Between the nodes, the test functions are remdaenntlnuously by means of nodal
shape functions by

Ny,
x) 2> wilN(x), (16)
=1
while the gradients of the test function are represented by
OW(x) A ONi(x)
— = > wi o (17)

i=1

As for the patrticle characteristic function, the nodal sh&mctions are required to be a partition
of unity, i.e.

D Ni(x)=1Vx, x € Q, (18)

wheref2. is the computational domain.
Employing Egs. (16) and (17), the balance of momentum canrlitewvas

Nn Ny
ZZ;W (Zmp @V, N, Xp V) ZZ;W </8SITOQZ~ T S))

_sz Z/ng - ax XpdV —|—Zwl Zmp pv/n NixpdV |, (19)

where(); is the domain wheréV; is nonzero.
Now, the weighting and the gradient weighting function ateaduced as

— 1
p Qpnﬂi
and _
ON, 1 ON;

= . 21
aX ‘/b QpﬂQ' aX Xpdv ( )

Utilizing that the test functionsv; are arbitrary, the system of equations need to be satisfigtl at
grid nodes. Employing Egs. (20) and (21) in Eq. (19) yields

Yoo dv Al ON; N
P A _ p V.
g M —L Ny /ago N;TdS E o,Vp % + E mybyNip. (22)
p=1 T p=1 p=1
Rewriting the balance of momentum yields
dv; ,
i— = £t fert 23
mit = £ 4 £, (23)



where

dv, <& g
V; _ Vp v
mzﬂ = ZmpENZp (24)
p=1
is the nodal momentum rate of change,
Np _
£ =->"a,V, 8Xp (25)
p=1
is the internal force and N
p
fieajt = / NZTdS + Z mpprip (26)
a0 st

is the external force. The GIMP formulation leads to a systéraquations almost identical to
the MPM equations, only in the GIMP formulation the govegneyuation is assembled using the
weighting functionV;,,(x,, t) instead ofV;(x,, t) which is used in the MPM.

The question for the GIMP based implementations is how tainktibe integrals of Eq. (20) and
Eq. (21). As noted by Bardengagen and Kober (14), if the etiin of these integrals were to
take the deformation of the material point domains into aatat would not be possible to obtain
them analytically. In this implementation, approximataleation of Eq. (20) and Eqg. (21) are
obtained as proposed by Ma et al. (15) by performing a balirietegration over a rectangular
domain associated with the material point. Hence, theghartharacteristic function is assembled
as

Xp = Xp(@)X5(y), (27)
wherez, y are the two components of the material point positionin the initial configuration,
the size of an equivalent rectangle, which is used to form@HdP functions, is determined by

the discretization and denotéi= (10", 15)T . At a later time, the lengths used to determine the
GIMP integrals are given by

12 =107 (det(Fp)/?  and 1Y =109 (det(F,))"/?, (28)

whereF,, is the deformation gradient tensor associated with thenahf®int. Section 3 presents
an algorithm for obtaining and tracking the deformationdigat tensor at the material points. Us-
ing a bi-linear particle characteristic function has thesadage that the weighting functions can be
obtained as bi-linear products of the one-dimensional k&g function for which an analytical
solution is presented by Bardenhagen and Kober (14). Enrmgdygs.(27,28) is computationally
very fast. Alternatively, as described by Bardenhagen amioeK (14) and as shown by Andersen
(10), numerical integration of the weighting and the gratiigeighting function can be performed.

2.2 Explicit time-integration approach

The basic idea is to solve the balance of momentum on the gddlaen use the information to
update the quantities associated with the material poits.mass and momentum at grid nade
are found by

mf =Y mpNy, (29)



and
vf = Zv];mp]vip, (30)

respectively. The indek denotes théth. time step.
The position and the velocity updates for the material [goame given by

Nn, kok | 1 int,k ext,k

k+1 _ k 7
xht = xb 4+ At Z; Ny " (31)
and N
no f?'nt,k fgxt,k
VA NS o AU Sl N (32)

X m;
=1 ?

A simple MPM/GIMP algorithm using explicit time-integrati can be given as:

1. Initialisation of material properties at the materiainte at timet = 0 (k = 0).
2. At each time step:

e A background computational grid is generated(in this imp@atation, the same grid is
generated/reset at each time step),

o the shape/weighting and the gradient shape/weightingifurecare determined,
e masses and velocities at the grid nodes is found,

e stresses and strain increments are determined,

e internal and external forces are calculated,

¢ the position and the velocity of the material points are thun

e other relevant variables associated with the materialtp@ire updated,

e time is incremented.

3 Classical material point visualizations and suggested iprovement using the deformation
gradient tensor

Most of the articles which apply the material-point methdspthy the material points simply as
points, i.e. small dots. Time dependent problems are iifitesti by letting the points move though
space over time.

A logical extension of the visualization can be obtaineddagking deformation of the volumes
associated with the individual material points. The geomeblume (three-dimensional model)
or area (two-dimensional model) associated with a matpaait is given the notion “voxel”. In
the reference configuration, the voxel is defined such‘t]j)actorresponds to the size of the voxel.
The voxel notion is introduced by Steffen et al. (16). Theodwfation of each voxel can be tracked
by introducing a deformation-gradient tensor, which needse tracked through the simulation.
Obtaining the deformation gradient tensor is easy, sinickvgtocities are calculated at each time
step as part of the method.



For this type of visualization to be useful, a voxel shapéesliio displaying deformation needs to
be chosen. For instance, a circle-shaped voxel is not apatefor displaying shear deformations.
However, a discretization, where the domain is divided meictangular voxels is useful, and this
type of discretization is easy to implement. In order to Bigghe deformed state, the location of
corners of a voxel is calculated using the deformation gratdi

A simple way to implement the tracking is presented. A defiian gradient is initially associated
with each material point in the initial configuration.
_ 0%, 1

FO = = F(x)dV 33
p 8X0 ‘/p agg (X) ( )

In the initial configuration, the deformation gradient tens prescribed. Typically, and unde-
formed material state will be prescribed, i) = I, wherel is the identity tensor. An explicit
forward difference updating scheme is employed to upda&@fiormation gradient tensor,

Fk+1 — AFkJrle, (34)

where F¥+1 is the deformation gradient at timestép+ 1, F* is the deformation gradient at
timestepk and AF**! is the deformation taking place between the time steps.dsspg the
time derivative of the deformation gradient@E /ot = ov/9x°, AF*+! can be expressed as
k
AR 14 A2V (35)
0x0
Using the nodal shape functions, the change in deformatiadignt at an arbitrary point can be
evaluated as

N,
% ONF(x)
AFF (y) =T+ A y—
(v) =T+ t; el (36)
For the material point, the increment of the deformatiordgmat is then calculated as
N,
“ L ON;

k+1 _ k p

AF¥ _I+Athi T (37)

This way of integrating the deformation gradient, using ghiel velocities, is also employed by
Guilkey and Weiss (9) and Love and Sulsky (17).

Employing the deformation gradient to track the defornmatid the voxel associated with the
material point presumes that there is a uniform deformatiithin the voxel. This concept is
illustrated in Figure 1.

The tracking of the deformation gradient tensor can be agplb provide a better visualization
of problems involving large strains. Considering a voxaloa$ated with a material point, initially
located atx,, the coordinate for a corner in the initial configuration tanwritten as

X% = Xg + dx, (38)

wherex% is the location of the corner antk” is the line segment between the material point and
the corner. At an arbitrary time, the location of the corsegiven as

Xc = Xp + dx. (39)

9
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Fig. 1. Tracking the voxel associated with a material pombtigh the deformation gradient tens#y, The local
coordinateg¢:, &) determine the deformation of the voxel.

Using the deformation gradient, defined at the materialtpthe line segment can be calculated
by

dx = Fdx°, (40)
wheredx? is the deformed line segment afitis the deformation-gradient tensor defined in the
local coordinate systerfs;, &2)7 by

23
Flocal - > A1
Using the chain rule, the deformation gradient tensor irglbbal coordinate system becomes
ox 0¢ 0¢°
F=——F— 42
o0& 0€0 oxV’ (42)

where the coordinate-systems are defined on Figure 1.

In the examples presented later, the initial local axeslaween along the global coordinate system.

Hence, in this case
ox 8X0
— =1 and — =1 (43)
29 9o
When the local voxel coordinates are coincident with théala@oordinate system, the deforma-
tion gradient tensor reduces to
%3

= 560 (44)

4 Definition of example problems

In order to examine the different techniques of visual@atiit is advantageous to have a few
simple examples. Virtually any example involving a matesizbjected to large deformations may
be appropriate. Two simple problems are chosen.

Firstly, the the example of colliding discs, initially perged by Sulsky et al. (1), is revisited. The
configuration of the problem is shown in Figure 2.

In the work by Sulsky, the example is employed to show that MiBMble to model dynamic
problems in an easy way. The contact between the discs iddthadtomatically by the MPM

10



Material properties for both discs:

po=20, E=10°, v=0.3

Xl1,c

Fig. 2. The colliding discs problem

algorithm presented above. Some of the material points fhentwo discs will eventually interpo-
late to the same grid nodes. When the two discs interpolateetsame grid nodes, the two discs
share the same velocity field and strain gradients will dgveluring the collision. This results in
a stress wave in each disc which eventually will cause booffaghen an elastic material model
used for the discs. However, as shown later, this way of aatically handling contact does not
extend well to other types of colliding bodies. For instartee blocks colliding would tend to
stick to each other. Hence, York et al. (18) suggested to hmadiéding bodies using a separate
set of grid nodes for each body, and to handle the interaatiorg a contact law where no tension
stresses are allowed to take place upon the end of impacteTitieas have later been extended by
Bardenhagen and co-workers (19; 20) to handle frictionatami between colliding bodies. For
this example, the intrinsic MPM contact approach by mearsgifared velocity field, also called
“no-slip” contact works fine. In some analysis of large defations presented the following, the
example is modified slightly by modelling the two discs ass€eematerials with cohesian= 5.

A second example, the collapse of a soil column, is introducerder to study the effects of the
proposed large-strain formulation as well as to study stdéstributions obtained by the MPM.
Figure 3 shows the initial configuration of the collapsing solumn. A rectangular block of soil
is placed on a frictional surface.

The experiment, typically performed by kids in a sandboxfilbfhg a bucket with fine grained,
dry sand and placing the bucket carefully with the open sidlad ground and quickly lifting the
bucket is similar to which should happen, only in the soibooh example, plane strain is assumed.
The soil column will collapse, as it is not supported on itesi

The soil is modeled as a frictional material by employing Mehr-Coulomb material model.
In the Mohr-Coulomb model a yield functiorf, is defined. The yield function determines the
response based on a yield criterion, whére: 0 implies elastic response, whije= 0 leads to
elasto-plastic response. The Mohr-Coulomb yield funcisoefined in terms of principle stresses

11



Computational domain

4m

Soil
8m

/

Frictional boundary

Fig. 3. The collapsing soil column problem.

by
1 1 .
f:5(03—01)+§(01—|—03)smgp—ccosgp, (45)
wherey is the angle of friction and s the cohesion. The principal stresses are consideretiveosi

in tension andr; < g9 < 03. The second principal stress is assumed not to influencertegth
provided by the Mohr-Coulomb criterion.

The stress rate is given in terms of the elastic strain inergni.e.
oc=C: (e —¢€P), (46)

whereé is the total strain rateg? is the plastic rate an@ is the elastic constitutive tensor. The
plastic strain increment is found using the relation

P\
€ %0 47

where) a positive scaling factor anglis the plastic potential function given by

g= %(03 —o1) + %(01 + o3) sin . (48)

Herev is the angle of dilatation of the soil. In the numerical s finite stress increments are
considered. The stress increment is calculated by firskiyilzting an elastic predictor stress. This
elastic predictor stress may be outside the yield surfaneefficient return of the stresses back to
the yield surface is obtained by the algorithm proposed lay€#n et al. (21).

The soil is described using the following set of materialgenties:

E =20MPa, v =025 po=10°kg/m> c¢=1kPa, ¢ =40° and 1 =0°. (49)
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A frictional coefficient, = 0.6 is prescribed at the lower boundary.
An initial Ky-stress state is specified with the vertical normal stressngby

oy, = —dgp°, (50)
whereg = 9.8m/s2 is the acceleration of gravity antlis the distance from the top soil surface.
The initial horizontal normal stresses are given by

0
xT

oy = 02, = —dgp" Ko, (51)

where the earth pressure coefficient is giverifdy= 1—sin . It is noted that this definition ok

is not consistent with the chosen Poisson ratio, which sstggéowerK. The reason is that the
soil behaves one way when depositing, during which thedagarth pressures are developed and
in another way when subjected to loading, in this case tlesstelieve and subsequent collapse.
The chosen Poisson ratio represents a realistic ratio forelastic behaviour of a dense sand.
Finally, agy = 0 is prescribed for all material points. At the bottom of thedalled domain, a
frictional boundary condition is specified, given in ternisaaoefficient of frictionu. Obviously,

as the soil is not supported in the horizontal direction stivesses cannot be sustained and a plastic
collapse will occur.

A simple way of implementing a frictional boundary conditis suggested. The resulting force,
as calculated from the right-hand side of Eq. (23), is deasagd into a normal component,,
and a tangential component, The normal force is considered positive if it is directedvard
from the boundary. Friction is only present in the case of m@ssive normal force, i.e. when
fn > 0, and separation is allowed otherwise. In addition to therirdl and external forces, a
frictional force is introduced, given by

Jo < wfn, (52)

where is the coefficient of friction. Two estimates of the veloc#ythe end of the time step
are calculated: The velocity without any friction and théoegy with full friction. The velocity
without any friction is solved from Eq. (23) as

6z,k+1 _ vz,k + E(ftz,mt + ftz,ext) (53)

1

and the estimated velocity in the case of full friction isegivby

| o AL i
@;,kJrl _ Ui’k + E(ftl,mt + ftl,ext 4+ ftnyT'ZC)’ (54)
T
where the frictional force is given by /" = —sign(vi"*)puf,. In the case ofii* 151! > 0,

full friction is present and the resulting force is given b force term of Eg. (54). Otherwise, the
friction stops the material and the resulting force pregettie node is given by

. ——

ures T t ) 55

The algorithm presented is simpler than the algorithm prteseby Wieckowski et al. (22) and
avoids the need to specify any penalty parameters. Howiewél, be demonstrated in the follow-
ing that useful results are obtained.
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Fig. 4. Position of material points as a function of time. Ties collide and then bounce off.

5 Visualization of movements and deformations

Firstly, the classical MPM visualization, where the pasit of the particles are displayed as points
is shown. The position of the material points are shown asetiion of time in Figure 4 for the
colliding discs problem.

5.1 Using the deformation gradient tensor to track the detfation

Another type of visualization is to associate a rectangkh wach material, where the size of the
rectangle is given by the discretization and the materiaitps placed in the centre of it. The
visualization is then to let the rectangle move though sp&ee time. Using this, it is possible to
display physical quantities by associating a colour scatk & selected material property. Visu-
alization, where the initial size of the rectangle simplrslates through time with the material
point in the centre are presented by Andersen and Ander3eA [ftter visualization can by ob-
tained by letting the rectangle deform as given by the deftion gradient tensor. Figure 5 shows
the final configuration of the collapse of the plastic discthvei voxels that are only translated
governed by the position of the material points, and voxeds are updated using the deformation
gradient tensor. As is seen from Figure 5, the use of the aheftion gradient tensor significantly
improves the visual appearance of the discs. The remairfdéedigures of this article are all
employing this visualization technique.

5.2 Using conceptual colouring schemes for easier visatidin of deformation

In order to show how the discs deform, representative cat@m may be employed. For instance,
the discs may be striped or checkered for a better visuglizaStripes may run along the-
axis, they-axis, or they have a rotation relative to the grid. In ordeistrate representation of
deformation, the example is modified slightly. The two diaesnow modeled as a Tresca material
with a cohesion ot = 5. Figure 6 shows the initial and the final configuration of tiees using
different ways to colour the material for visualization poses. It is observed that when a plastic
material-model is employed, the discs will stick to eadheotupon impact. Further, it is noted that
adding a colouring scheme solely for visualization purgdseable to give a better visualization
of the deformation than just using a uniform colour for eat.d
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Fig. 5. Final configuration for the collapse of the plastisadi. Left: Voxels are defined by rectangles with size defined
by the initial discretization and position governed by thatenial point. Right: The deformation gradient tensor is
applied to find the deformed voxels.

5.3 Using colour scale plots to illustrate deformation jeatt and field quantities

In bodies that are subject to large local deformations aftiesn useful to visualize the magnitude of
the movements and deformations. In order to show this, tameple of the colliding soil column is
explored. The dynamic simulation is performed with a timepstf At = 0.001s. The simulation
is performed until the soil has reached a state of vanishatgcities. For the present model the
time of the collapse is = 2.5s. The model consists of 4050 material points. Firstly, a gofaot
of the deformation pattern for the collapse is shown in Féguin the figure, another phenomena
is observed, namely that the deformations degenerate sbiine woxels near the bottom so much
that they obtain string-like shapes. In relation to theagmde of the soil column, the displacement
of the individual material points can be tracked using tinepdé relation

u,(t) = x,(t) — xp, (56)
wherexg is the initial position of the material point. Figure 8 shothie two components of the
displacement vector as well as the magnitude of displacerfibe soil column collapses around
a relatively fixed core. A model with a lower coefficient ofclibn on the boundary may provide
another picture. Especially, if the friction of the lowerdmalary is smaller than the internal friction
of the soil, another pattern will appear where the soil walilde, or almost flow along the friction
boundary.

5.4 Perspectives of the new way of visualizing the defoonati

As shown in Figure 5, the tracking of the deformation grattensor is able to significantly im-
prove the visualization of deformation. As applied, thekiag of the deformed voxels is applied
solely as a postprocessing tool. In other words, the ori¢tiRM formulation is not altered. Hence,
it can easily be incorporated in any MPM codes by trackingdif@rmation gradient tensor and
calculating the deformed voxel configuration. The deforamagradient tensor is updated at each
time-step. If output is only needed at some of the time stigsdeformed voxel configuration
only needs to be calculated at these time-steps. Also, thes af visualization can without any
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Fig. 6. Initial and final configuration of voxels of the two pti discs using different colouring schemes for visuaira
purposes
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Fig. 7. Deformation pattern of the collapsing soil column.
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Fig. 8. Measures of displacement for the collapsing soilcwl.

problems be applied to other particle-based methods, ssismaothed particle hydrodynamics,
where the typical visualizations also include plots of pgisimilar to Figure 4 (23; 24; 25). Visu-
alizations, where the voxels are updated by the deformatiadient tensor, provides a very useful
tool, as it makes it easy to see the deformation pattern.noied that visualization of deforma-
tions is automatically included in the finite-element methas the deformation of nodes relatively
to each other along with element boundaries provides algstian similar to that of the figures
which track the deformation of the voxels. The better desiom of the deformation obtained us-
ing this may also be able to suggest if there is anything wneitly the model, for instance if
the discretization is too coarse to capture the deformataitern — something which is harder,
given only the position of material points. In the case of¢h#apsing soil column, some of the
voxels got so distorted that they obtained string-like sisaguggesting that a moderation would
be beneficial here. For instance, those material pointestdy to large shear deformation could
be split into new ones. Further, the visualization verifieat the overall deformation pattern looks
realistic.

However, it should be explored in subsequent articles hoapfaly the knowledge obtained by
this tracking to improve the MPM/GIMP models more direckignce not only as a postprocessing
tool. Possible ways to utilize the knowledge of the deforroedfiguration and the deformation
gradient tensor include:

1. Apply the the knowledge of the deformed configuration otarial points to dynamically
update the discretization using splitting of material p®into new ones, for instance where
the largest strains are observed,;

2. Provide a more accurate way to interpolate between therrmbpoints and the mesh. The
presented update scheme for the deformation gradientrtansiotracking deformed voxels
provides knowledge of the deformed configuration of the miegtpoints, making evaluating
of GIMP weighting functions over the deformed configuratpmssible.

6 Visualizing of velocities

The visualization of velocity is closely linked to the viszation of the deformation. For visual-
ization of velocities, two types of plots are of interest -etee plots and colour plots. Vector plots
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Fig. 9. Velocity and speed of the collapsing soil column5&egconds into the collapse. (a) Vector plot of the velogitie
using all the material points. (b) Vector plot of the veleiising only a 1/16th of the material points — 1 of 4 in each
direction. (c) The speed of the material points using a latggn representation and a color scale.

are useful to show in which direction the material is movimg,it may not be the most appropriate
in order to visualize the magnitude of the deformation. Fegishows the two ways of visualizing
the velocity or the speed using both a vector plot and a caitmir Further, it is demonstrated how
the visual appearance of the vector plot can be improved lyinduding some of the material
points. Clearly, it is hard to get a good view of a fine modelliftee material points are included.
Hence, for this simulation and simulations involving moraterial points, only some of the mate-
rial points should be included in the visualization. It is@abbserved that the colour plot is much
easier to get an idea of the magnitude of the speed.

7 Visualization of stresses and strains

Stresses and strains are both second order tensor fieldls areigenerally harder to visualize di-
rectly than scalar and vector fields. It is possible to remmea stress tensor in two dimensions in a
way similar to the vector plots of the velocity field. For twiogtnsional problems, there are three
independent components of the stress tensor, but theteaaxasientation of a cartesian coordinate
system in which the shear stress vanishes and only two natneslses exists. Orientation of this
coordinate system is known as the principal directions aechbrmal stress components are the
principal stresses. The principal stresses are also ugedhalate the governing equations for the
material model for the soil in the collapsing soil column bBewn in Section 4. A plot of the prin-
cipal stresses or the principal strains along with the epwoading directions can be performed by
showing the principal stresses as crosses, where the lefidjth sides of the crosses are associated
with stress scale and the orientation by the orientatiom®fttosses. This kind of plot is amongst
many others utilized by the Finite Element Software Pla&)(An experienced user will also be
able to give an idea of potential shear by comparing the nhadmiof the principal stresses. The
alternative is to use colour plots to display either compbéthe tensors or invariants associated
with the tensors and will be employed in the following. Theesses and strains will be dealt with
separately in the following subsections. Further, visgion of quantities of specific relevance

19



for elasto-plastic problems are dealt with in Subsectid@n 7.

7.1 New method for visualization of the stresses

As shown by Andersen and Andersen (13) for the classicall@mlof a cantilevered beam, al-
though the stresses at the individual material points meylate in a physically incorrect fashion,
these physically unrealistic oscillations are not obsgiif¢he stresses are transferred to and dis-
played by the grid-nodes. This suggest that unlike the daimthe first MPM articles, it is not
only the material points which carry information about thg/gics. If a spatially fixed mesh is
employed, much of the interesting physics is tied to the gddes, where the equation of motion
is resolved. This constitutes a theoretical problem fomtiaerial-point method, as it claims that
the mesh is in essence unimportant as no state variablessareiated with it.

Leaving this aside, it is demonstrated here how a simple mgpy the stresses from the material
points to the grid nodes and back to the material points caraathe physical part of the stress in
cases, where the stress field tracked by the individual mapeints is significantly degenerated.

Firstly, grid node stress tensors are defined by

al opPipmyp
7=y O, 7
p=1

whereo; is the stress tensor, associated with grid ngds, is the stress tensor of material point
P, is the interpolation function, in this implementation thtMP weighting functions, whilen;
andm,, are the nodal and material point masses, respectivelyglisennodal stresses, a smoothed
material point stress tensor is defined as

Nn

oy =" 0P, (58)

i=1
The extraction of a smoothed stress field is performed only@sstprocessing operation. Hence,
it can be applied only to the time steps, where data is stavhith is typically only a small part

of the total number of time steps in an explicit MPM/GIMP mbdghe result of this type of
postprocessing is shown in the following example.

Figure 10 and 11 show the dynamical evolution of the verticainal stress as obtained at the
individual material points and calculated by Eq. (58), exdjyely. It is clearly seen that the vi-
sualization using mapping via the grid nodes provides ast@agvolution of the vertical normal
stresses while the visualization based on the individudérig-point stresses yields a very noisy
stress field.

In the final configuration of the collapsed, it is possible éoagnize the corners of the column
from the initial configuration due to the presence of a smattlesion. It is clearly observed that
the stress field at the individual points are very oscillatoran extent, where it should not yield
the correct behaviour, but a physically realistic resuitagertheless obtained. Also, it is observed
that using the simple postprocessing of the stresses usngapping via the grid nodes, a phys-
ically realistic variation of the vertical normal stressistained. As Eq. (58) is only applied as a
postprocessing tool, the question arises as to why therdatan is captured so well, when the

20



[m] [m]
10t 10t

t=0s t=0.5s
5 5
0 N N
0 5 5 20 [m]
[m] [m]
10t 10t
t=1s t=1.5s
5 L
0
0 5
[m] [m]
10¢ 10¢
t=2s t=2.5s
5 L
0
0

-140 -120 -100 -80 -60 -40 -20

' w7

Fig. 10. Vertical normal stresses at the individual matgrénts.
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Fig. 11. Vertical normal stress visualization using Eq.)(58
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stresses at the individual material points are unrealisiiize, it must be observed that the collaps-
ing soil column is a very homogeneous problem in both thessére and the deformation pattern.
Firstly, the deformation pattern is simple despite thedastyains — it is basically a square trans-
forming into a triangle. Secondly, the physical stress figldimple; initially, all the sides of the
square will experience a stress relief governed by theiplesiapse, and the soil will eventually
become stable, with the largest normal stresses under tf#lanivhere the overburden pressure
is largest. This suggest that for homogenous problems thiatevorks well in capturing very
large deformations and it is possible to extract a realgtiess field using an appropriate postpro-
cessing. But the very inhomogeneous and inaccurate sirasiee individual material points is a
large cause of concern in respect to problems, where a singattier element sizes may not be
appropriate.

7.2 \Visualization of stress invariants

As shown from Figure 11, the vertical normal stress compboéthe stress tensor has a much
smoother and physically plausible spatial variation fa $tress field calculated using Eq. (58).
In addition to displaying stress components of the stresoteit is useful to to display invariants
of the stress tensor. For elasto-plastic problems sucheasdllapsing soil column, invariants of
interest are

1. Principal stresses;, 09, o3, and the orientation of the principal stresses
2. The mean stress,

3. The deviatoric stress,

For the current implementation of two-dimensional plamaistmodel, the principal stresses are

found by
2
013 = Ozx —2|—Uyy 4 \/(Uq;a: 5 Uyl/) + U%y, (59)

where o 3 is the first and third principal stress (dependent on the Bigthe equation), and
Ozz, Oyy, Ozy @re the in-plane cartesian stresses. The intermediateigalrstress is the out-of-
plane stress, which is also tracked using the constitutivéah The angle], between the cartesian
coordinate system used to describe the stress state andrbipal stresses is given by

tan 260 = % (60)
zy

Additionally, the mean stresg, and the deviatoric stresg, are defined by

_ Ogzg + oyy + 022
B 3

and (61)

(62)

\/(0'1 —09)? 4 (02 — 03)%2 + (01 — 03)?
5 .

Noting the differences between the stresses at the mapeiias, and the stresses extracted using
Eq. (58), there are different way ways of extracting invatsaalso:
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Fig. 12. Cross-plots of the principal stresses calculagitigithe smoothed stress field from Eqg. (58). A black colour is
utilized for compressive principal stresses and a red catoemployed for tensile principal stresses.
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Fig. 13. Rotation (in degrees) of in-plane principal stesssompared to the horizontal and vertical axis, shown as a
colour plot with and without the suggested smoothing metfidae given solution is the shortest possible rotation,
negative or positive, which is within 45 degrees.

1. Invariants associated with the material point stresgestty

2. Invariants calculated from the stresses found usingd8]j. (

The invariants could also be calculated using the matedadtstresses, and then be smoothed
using an operation similar to the operation performed ugiqg. (57),(58). This will provide the
same result as the second of the above methods.

First, visualization the of principal stresses is congde® plot often used in finite element anal-
ysis of two-dimensional problems is to display the printigtaesses as crosses which shows the
orientation of the principle stresses and where the lenfjtheolines that make the cross defines
the magnitude according to to a user chosen stress lengt §égure 12 shows the principal
stresses calculated using a nodal smoothing. The figureaudéferent amount of the material
points to visualize the principle stress fields, to show dffi&n, for such plots, its advantageous to
only use some of the material points. In order to compare timeipal stresses with and without
nodal smoothing, the rotation of the principal stress axespared to the: — y-axis, 6, is shown
using a colour plot in Figure 13. Next, the mean and the desi@stress tensors are shown for the
two methods of extracting invariants in Figure 14. As sele@ simoothing process suggested also
improves the description of the stress invariants.
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Fig. 14. Mean stresg;, and deviatoric stresg, at the end of the soil-column collapse directly evaluateuinfthe
material point stresses and using a smoothing using thengdds.

7.3 Measures of total strain

In the material-point method computational scheme, thal gitains do not enter the computa-
tional scheme. This leaves a freedom to how the strains #alated and visualized. The total
strain can be extracted from the MPM-computational scheyraither of the following methods

1. Integrating the strain increments over time in the MPMgtiimtegration;

2. Extraction using the deformation gradient tensor.

Direct integration of the strain increments is suggestedshigky et al. (2). Alternatively, the
deformation gradient tensor is used to calculate the dksitgin measure, such as the Green
strain tensor or the engineering strain tensor or the ldgait strain tensor. As the deformation
gradient tensor is tracked as part of the current schemeadoalzation of deformation, the latter
is the natural choice here.

As the deformation patterns shown in Figure 7 and the lefstthation in Figure 5 are physically
realistically, all total strain measures extracted from deformation gradient tensor will also be
realistic. For small deformations, the so-called smakisttensor or engineering strain tensor is
most often used as strain measure.

Using the deformation gradient tensor, the engineerirgssttensor can be calculated from

ep == (F +F,) — L (63)

DN | =
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Fig. 15. Engineering strain components, extracted usiagl#iormation gradient tensor, when the two discs are com-
ponents, due to the symmetry of the problem, the verticatlamtiorizontal normal strain are the same for this problem.

The components of the engineering strain tensor, calaulaimg the deformation gradient tensor,
are shown for the two discs in Figure 15. The engineeringrstessor in Eq. (63) can also poten-
tially be employed for linear elastic problems to calculsiresses as an alternative to the material
point stresses. It is observed, that in doing so, no visiliferdnces has been observed between
stresses calculated using the engineering strains fron{@J.and the stresses at the material
points.

For larger deformations, the engineering strain tensdiop@as poorly and other strain measures
are often employed. For moderately large strains, the Gsam tensor is defined by

1
E, =3 (FIF, - 1) (64)

For very large strains, the best strain measure is the tbgaig strain, or Hencky strain tensor,
defined by

E} =In(U,), (65)

1
whereU, = (F.F,)” is the right material stretch tensor associated with meitgoint p, and
In() denotes the natural logarithm of a second order tensor. dtueai logarithm is here calculated
using the explicit formula presented by Jog (27).

In order to compare the three different strain measuresgoolalem subjected to very large strains,
the collapsed soil column is considered. Figure 16 showdaucelot of the strain components
of the three strain tensors, where a colour axis is defined &xtreme values within each plot. It
is observed that for extreme strains, as observed for sonte ahaterial points, the Green strain
tensor components get very large values. On the contrarjpgfarithmic strain tensor components
variy smoothly and within a limited range. The developmehstoain through the collapse of
the soil column in three material points are illustrated igufe 17 for the horizontal normal
component of the three different strain tensors and for adelected material points. As seen
from Figure 17, for small strains (Point C), the three stn@ieasures are almost identical. For
large strains, the Green strain tensor components becomdavge, while the logarithmic strain
tensor components are smaller.
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Fig. 17. Horizontal normal strain for the collapse of thd solumn using the different strain measures. For smalirstra
(point C), the three curves are almost coincident. For exgrstrain (Point B) the logarithmic strain maintains a ledit
value while the engineering strain and the Green strainl@@tes. For large strains (point A), the logarithmic strai
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Fig. 18. Relative yield function (Eq. (66)) at the end of tlilapse of the soil column, using the direct material point
stresses and the stresses calculated using Eq. (58) iigspect

7.4 Elasto-plastic stress and strain measures

An important class of problems to analyse and understarddsgoeplastic problems. The collapse
of the soil column is a good example of a plastic collapse,sanid the collision of the two discs,
when the discs are modelled as Tresca material.

In the collapse of the soil column, the elastic stressesatamsustained, and plastic strains will
develop in the material. As observed from Figure 10, thectimeaterial-point stresses exhibit wild
oscillations but stresses at the grid nodes has a smoottivariand have a physically realistic
magnitude. An important observation is that when the defdion gradient is used to display
the deformed voxels, the consistent deformation pattesemied in Figure 7 can be seen as a
verification that a realistic deformation gradient tensocalculated. This is related to the nature
of the elasto-plastic collapse, which for the collapsingjgm@umn is modelled. In accordance with
Andersen and Andersen (8), a relative yield function is aéefiby

3(o1 — 03)
frel =71 2

3(01 +03) — ¢ cos(p) (©9

Using this definition f,..; = 1 corresponds to yielding whilg..; = 0 corresponds to a hydrostatic
stress state. Figure 18 shows the relative yield functidherfinal configuration of the collapsing
soil column problem, using the direct material point stessand the stresses from Eq (58) to
calculatef,.;.

As seen from Figure 18, the relative yield function in the fibanfiguration is between 0.4 in

the interior of the collapsed column and close to 1 near tinflacel when using the mapping of
stresses from Eg. (58). When using the direct material mbiesses, the relative yield function is
fluctuating between zero and unity.

In order to have a better estimation of the deformation fastel-plastic problems, it is useful to
perform an analysis, where the deformation gradient teissplit into an elastic part and a plastic
part defined by

F, = FSF? (67)

pp>

WhereF; anngl is the elastic and the plastic part of the deformation gradiensor associated
with material pointp, respectively. This multiplicative decomposition is fisstggested by Lee
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(28). A review of the applications of the multiplicative deaposition including thermoelasticity,
elastoplasticity and biomechanics is given by Lubarda.(29)

Whereas the total deformation gradient tensor is a unignetifon of deformation relative to the
reference state, the decomposition of Eq. (67) is not unidbe intermediate configuration de-
fined by Eq. (67) is conceptually introduced by a virtual desding to the reference stress. Often,
the destressed reference state will be a stress-free datever, for the collapsing column, the
reference stress is the dept increasing initial strege;stéuile it for the two discs are zero stresses.
The intermediate configuration is not uniquely determirschrbitrary local material rotations can
be superposed to intermediate configuration, preservimgetference stress state. An approach to
circumvent this is taken along with a suggestion of Lubag®) famely by introducing the addi-
tional requirement that the elastic unloading takes plaitieowt rotation.

In order to implement the composite decomposition intositad incremental plasticity theories
such as the Mohr-Coulomb model, the following relationshipmployed

e ]‘ e e
dey = - ((dF)" + dFe) -1, (68)

wherede;, is the increment of elastic engineering strain associatédmaterial pointp, anddF;,

is the increment of the elastic part of the deformation gratiensor. According to the requirement
that the elastic unloading takes place without rotatioa,afastic part of the deformation gradient
tensor is symmetric and Eq. (68) can be reformulated as

dF,, = de, + 1, (69)
andde;, can be extracted from the return mapping scheme of the tathsti model, where

de, = de;, + deb (70)

In the MPM computational scheme, the infinitesimal quagdiin Eq. (70) is replaced by small,
finite quantities that depend of the time step, IE:

A€, = A€ + Ael) (71)

and
AF; = Aej; + 1, (72)

The elastic deformation gradient tensor is updated using
K+l k
F; = AF F, (73)
and for the plastic part is calculated using Eqg. (67) as
-1
Lk+1 _ k1 k+1
FrbAtl — (F;; ) F* (74)
For the collapse of the two discs, the components of the deftion gradient tensors are shown

in Figure 19. The elasto-plastic decomposition can alsonfy@i@yed in order to find an estimate
of the stresses as part of postprocessing rather than gisilidie the stresses at the individual

29



B . B . B .
—0.]:\ 0 01 2\l -, 1
0.5 \\ 0.5 \\ 0.5 \ §
N N\
0 Pt 0 —.ill 0 o
0 0.5 1 0 0.5 1 0 0.5 1
1 1 1
B .
—0.]§\ 0 01 —2\ -2 \
0.5 \\\\ 0.5 \ 0.5 \
0 Fiz 0 FTZ 0 12
0 0.5 1 0 0.5 1 0 0.5 1
1 1
1
0.5 0.5 &
o o Fo
0 1 0 0.5 1
1 1
0.5 0.5 &i
o o P
0 1 0 0.5 1

Fig. 19. Multiplicative decomposition of the deformatioragdient tensor into an elastic and a plastic part illustrébe
the collapse of plastic discs.
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Fig. 20. Vertical normal stresses at the end of the collapsieecsoil column, visualized in three different ways.

material points. In that case, first the elastic engineestragjn is extracted from the elastic part of
the deformation gradient tensor using

e =F°—1, (75)

wheree€ is the elastic part of the engineering strain tensor raddtivhe chosen reference (initial)
state. Giver*®, the stress change relative to the reference state canahkmefar elastic behaviour
be calculated as

Ao =E : e°, (76)

whereAg is stress change, aitlis the fourth order elasticity tensor. The total stressattrrent
state is then o
o= o_zmtml + Ao (77)

Hence, for elasto-plastic problems, the stresses at thierdwstate can be visualized using post-
processing in three different ways; The material-poirésges, the stresses smoothed via the grid
nodes, and the stresses calculated using elastic part dethemation gradient tensor. Figure 20
shows the stresses in the final configuration of the collagsédcolumn, using the three visual-
ization technigues. It is observed that the extractionrefssies using Egs. (75) and (76) improves
the visualization of the stress field in this case, but thattlost physically plausible stress field is
most likely similar to the one calculated using Eq. (58).

8 Conclusion

The need to easily verify results visually is of great impade in the application numerical meth-
ods. The most established method for numerical modelinigeidinite-element method in which
a direct visualization of the deformation is obtained. Oa tontrary, the initial visualizations
using the material-point method displayed the physicablem as a collection of points moving
around in space in the dynamic simulation. In this articleew approach to visualizing the defor-
mations is presented for particle based method and exeeupliing the material point method.
The visualizing technique consists of a three steps. Firatvolume is associated with each of
the material points. Here, initially rectangular quadeftals are chosen to display deformations
for two-dimensional problems. The quadrilaterals has theaatage that they are suited for dis-
playing shear unlike if circles were chosen. Secondly, t#ferhation gradient tensor relatively
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to the reference configuration is introduced as a statehtarfar the particles/points and updated
though the dynamic calculation. Finally, the deformatioadient tensor is applied to the initial
configuration to calculate a deformed state of each the dasatal associated with particle/point
and then displayed. It is noted that the applied techniqueifmalization can also be applied to
other particle based methods, for instance to Smoothedtartydrodynamics. Using this type
of visualization technique it is possible to get a much betigualization of the deformation. The
visualization provides an easy way to evaluate the quafith@ results, just such as in the finite
element method where it is straightforward to see if a megmtangled. Several perspectives of
the visualization technique are mentioned. Firstly, indhse of the extreme deformations, it may
be possible to introduce a way to split material points irew ones if they become too distorted.
The combination of the volume weighted GIMP approach andréeking of the deformation will
provide the framework for splitting. Secondly, the trackiof the deformed configuration makes
it possible to increase the accuracy or consistency whelimgeaith large deformations. It may
also be possible to obtain a better evaluation of the GIMRyt&ig functions when the domains
occupied by the material points become distorted.

A particular useful the postprocessing tools presentediieg extraction of the physical part
of the stresses. It is observed and reported, that stresshe mdividual material points often
oscillates in a very unphysical fashion but that the defdimnagpattern in most cases is realistic.
A simple postprocessing by mapping the stresses to the gddsiand back to the material points
provides a way to extract a physical part of the stress field gdso suggest why the displacements
generally seems correct despite the very oscillatory stgedt also pinpoints the limitation of the
material-point method in its current form.
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