

Aalborg Universitet

Machine learning for identifying botnet network traffic

Stevanovic, Matija; Pedersen, Jens Myrup

Publication date:
2013

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Stevanovic, M., & Pedersen, J. M. (2013). Machine learning for identifying botnet network traffic.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 30, 2024

https://vbn.aau.dk/en/publications/12d2f5d1-eba2-45f7-bc2a-cc7487941bd7

Machine learning for identifying botnet network
traffic

(Technical report)

Matija Stevanovic and Jens Myrup Pedersen
Networking and Security Section, Department of Electronic Systems

Aalborg University, DK-9220 Aalborg East, Denmark
Email: {mst, jens}@es.aau.dk

Abstract—During the last decade, a great scientific effort
has been invested in the development of methods that could
provide efficient and effective detection of botnets. As a result,
various detection methods based on diverse technical principles
and various aspects of botnet phenomena have been defined. Due
to promise of non-invasive and resilient detection, botnet detection
based on network traffic analysis has drawn a special attention
of the research community. Furthermore, many authors have
turned their attention to the use of machine learning algorithms
as the mean of inferring botnet-related knowledge from the
monitored traffic. This paper presents a review of contemporary
botnet detection methods that use machine learning as a tool of
identifying botnet-related traffic. The main goal of the paper is to
provide a comprehensive overview on the field by summarizing
current scientific efforts. The contribution of the paper is three-
fold. First, the paper provides a detailed insight on the existing
detection methods by investigating which bot-related heuristic
were assumed by the detection systems and how different machine
learning techniques were adapted in order to capture botnet-
related knowledge. Second, the paper compares the existing de-
tection methods by outlining their characteristics, performances,
and limitations. Special attention is placed on the practice
of experimenting with the methods and the methodologies of
performance evaluation. Third, the study indicates limitations
and challenges of using machine learning for identifying botnet
traffic and outlines possibilities for the future development of
machine learning-based botnet detection systems.

Keywords—Botnet, Botnet detection, State of the art, Traffic
analysis, Machine learning

I. INTRODUCTION

The growing reliance on the Internet has introduced nu-
merous challenges to the protection of the privacy, integrity
and security of user data. During the last two decades, the
use of the Internet and Internet-based applications has expe-
rienced a tremendous expansion to the point at which they
have become an integral part of our lives, supporting a wide
range of services, such as banking, commerce, healthcare,
public administration and education. Although convenient, the
use of Internet-based services poses a number of security
challenges. The main security threat and the main carrier of
malicious activities on the Internet is malicious software, also
known as malware. Malware implements a variety of malicious
and illegal activities that disrupt the use of a compromised
computer and jeopardize the security of the user’s data. In
parallel with the development and expansion of Internet-based
services, malware has also undergone a tremendous develop-

ment, improving it’s mechanisms of propagation, malicious
activity, and resilience to take-down efforts.

The latest incarnation of malware is the notorious bot
malware. Bot malware is a state of the art malware class
that successfully integrates advanced malicious techniques
used by other contemporary malware classes, such as viruses,
trojans, rootkits, worms, etc [1], [2]. Furthermore, bot malware
has one strength comparing to other malware classes. The
advantage of bot malware is an ability to communicate with an
attacker through a specially deployed Command and Control
(C&C) communication channel [3]–[5]. Once loaded onto a
client computer the bot malware compromises the vulnerable
machine and, using the C&C channel, puts it under the remote
control of the attacker. The attacker is popularly referred
to as the Botmaster or Botherder, while compromised hosts
are known as Bots or Zombies [6]. Using a deployed C&C
channel botmaster can remotely control the behaviour of the
bot malware, making the operation of the bot more flexible
and adaptable to the botmaster’s needs. A Botnet is a usually
large collection of computers that are infected with the specific
bot malware.

Controlled and coordinated by the botmaster, botnets rep-
resent a collaborative and highly distributed platform for the
implementation of a wide range of malicious and illegal
activities. Botnets may range in size from a couple of hundred
to several million bots [7], [8]. In addition, botnets can span
over home, corporate and educational networks, while covering
numerous autonomous systems operated by different Internet
Service Providers (ISPs). Estimations of a number of bot-
infected computers globally differ greatly, where some recent
cyber-security studies [1], [9] claim that more than 16% of
computers connected to the Internet have are infected with
some kind of bot malware, thus being actively or passively
involved in the malicious activities of botnets. Since botnets
include such a large number of bots, they have enormous
bandwidth and computational power at their disposal. However
the power of botnets is not only determined by the sheer size
of botnets but also by malicious activities they implement.
Some of the malicious activities botnets implement are send-
ing SPAM e-mails, launching Distributed Denial of Service
(DDoS) attacks, malware and adware distribution, click fraud,
the distribution of illegal content, collecting of confidential
information and attacks on industrial control systems and other
critical infrastructure [1], [10], [11]. On this basis it can be
concluded that botnets are rightfully regarded as the most

powerful tool for implementing cyber-attacks today [12].

In order to successfully mitigate security threats posed
by botnets, innovative and sophisticated neutralization mech-
anisms are required. The neutralization of botnets is realized
through a set of techniques that detect the existence of botnets,
analyse their behaviour, and implement appropriate defence
measures [1], [10], [13]. The techniques involve technical,
legal, sociological and often political aspects, defining the neu-
tralization of botnets as an interdisciplinary and often complex
undertaking. Botnet detection is one of the most important
neutralization techniques as it provides an initial indication of
the existence of compromised computers. Botnet detection is,
in fact, the main prerequisite of all other neutralization actions.
Furthermore, botnet detection is an intriguing research topic
that attracts a lot of attention within the scientific commu-
nity. As a result, many experimental detection methods have
been reported in the literature over the last decade [9], [10],
[14], [15]. These detection methods are based on numerous
technical principles and assumptions about the behaviour of
bots and about the patterns of network traffic produced by
botnets. However, one of the most prominent classes of botnet
detection methods is the class based on identifying network
traffic produced by botnets. In addition to relying on traffic
analysis for botnet detection, many contemporary approaches
use machine learning techniques as a mean of identifying
suspicious traffic.

The main assumption of the machine learning-based meth-
ods is that botnets create distinguishable patterns within the
network traffic and that these patterns could be efficiently
detected using machine learning algorithms (MLAs). The
detection based on network traffic analysis by MLAs promises
a flexible detection that does not require traffic to exhibit
any anomalous characteristics. This class of detection methods
does not require prior knowledge of botnet traffic patterns, but
infers the knowledge solely from the available observations.
Various detection methods have been developed using an array
of MLAs deployed in diverse setups. These methods target
different types of botnets by assuming varying botnet-related
heuristics. Furthermore, the detection methods have not been
evaluated using identical evaluation and testing methodologies.
The great number of diverse detection solutions has introduced
a need for a comprehensive approach to summarizing and
comparing existing scientific efforts [9].

A number of authors including Hogben et al. [1], Silva et
al. [9], Zhu et al. [16], Li et al. [11], Zhang et al. [17] and Liu et
al. [13] have attempted to describe the field of botnet protection
through series of survey papers. Although the surveys provide a
comprehensive overview of the field, they only briefly address
contemporary detection approaches. In parallel, several au-
thors, such as Zeidanloo et al. [15], Feily et al. [14] and Bailey
et al. [10], have also summarized scientific effort of detecting
the botnets while proposing novel taxonomies of detection
methods, introducing different classes of botnet detection and
presenting some of the most prominent methods within the
defined classes. The authors have acknowledged the potential
of machine learning-based approaches in providing efficient
and effective detection, but they have not provide a deeper
insight on specific methods, neither the comparison of the
approaches by detection performances and evaluation practice.
Masud et al. [18] and Dua et al. [19] have analysed the general

role of machine learning within modern cyber-security. The
authors have outlined the benefits of using machine learning
for discovering the existence of the malware on both network
and client levels. However the authors have not provided an
overview of the state of the art on botnet detection, leaving the
question of current trends within the field of botnet detection
unanswered.

To the best of our knowledge this paper is the first to
provide up-to-date analysis of existing botnet detection meth-
ods that are based on machine learning. The paper presents
the systematic overview of contemporary detection methods,
with the goal of contributing to the better understanding of
capabilities, limitations and opportunities of using machine
learning for identifying botnet traffic. The contribution of the
paper is three-fold. First, the paper provides a detailed insight
on the field by summarizing current scientific efforts, thus
giving the precise picture what has been done within the field.
The paper analyses existing detection methods by investigating
which bot-related heuristic were assumed by the detection
systems and how different machine learning techniques were
adapted in order to capture botnet-related knowledge. Second,
the paper compares the existing detection methods by outlining
their capabilities, limitations and performances of detection.
Special attention is placed on practice of experimenting with
the methods and methodologies of performance evaluation.
Third, the paper indicates challenges and the limitations of
the use of machine learning for identifying botnet traffic and
outlines possibilities for the future development of machine
learning-based botnet detection systems.

The rest of the paper is organized as follows. Section II ex-
amines the botnet phenomenon through the analysis of botnet
life-cycle, C&C communication channel, and resilience tech-
niques botnets deploy. Different aspects of botnet phenomenon
are addressed in the light of their influence on the detection
of botnets. Section III presents botnet detection through the
analysis of basic principles of modern detection approaches.
The section places special emphasis on botnet detection based
on traffic analysis and the use of machine learning for identify-
ing botnet-related traffic. Section IV introduces the principles
of analysis the methods will be subjected to. State of the art
on botnet detection based on machine learning is presented
in Section V. This section present the most prominent mod-
ern detection approaches by analysing their characteristics,
capabilities and limitations. The discussion of the presented
scientific efforts and possibilities for future improvements is
given by Section VI. Finally, Section VII concludes the paper
by summarizing the findings of the review and outlining
the opportunities for future work on machine-learning botnet
detection.

II. THE BOTNET PHENOMENON

Botnets represent a complex and sophisticated phenomenon
that deploys a variety of advanced techniques of C&C com-
munication and malicious activities. Additionally the attackers
equip their botnets with a broad spectrum of resilience func-
tionalities [17], [20]–[22] that are specially developed to make
detection much harder and sometimes even impossible. An
understanding of the operation and functionalities of botnets
is crucial for the development of novel detection methods and
for qualified reflection on contemporary detection systems.

The complexity of botnet phenomenon is best understood by
analysing botnet life-cycle, C&C communication channel, and
techniques ensuring the resilient and stealthy operation of
botnets. The following chapters present the three main aspects
of botnet phenomenon in more detail.

A. Botnet life-cycle

Botnet operation can be addressed through the analysis of
botnet life-cycle i.e. the set of bot’s functional phases observ-
able during the botnet operation. The detection approaches
target specific phases of botnet life-cycle, by utilizing specific
heuristics of botnet behaviour within these phases. Therefore,
the understanding of the botnet life-cycle is crucial to the
successful analysis of the existing work on botnet detection.
The botnet life-cycle has been described as a set of states
by several authors, such as Silva et al. [9], Feily et al. [14],
and Z. Zhu et al. [16]. These authors defined the botnet life-
cycle in the similar fashion to each other, dividing the botnet
operation into three distinct phases: the infection phase, the
communication phase and the attack phase. Although, there
are some differences in the authors’ definition of the three
operational phases, the botnet life-cycle can be generalized as
illustrated in Figure 1.

The first phase of the botnet life-cycle is the Infection
phase in which vulnerable computers are compromised by
the bot malware, thus becoming zombies within a specific
botnet. Usually this phase can be further divided into two sub-
phases known as Initial Infection and Secondary Infection.
During the initial infection sub-phase computers are infected
by malicious piece of software known as a "loader". The
initial infection can be realized in different ways, for instance,
through the unwanted download of malware from malicious
websites, through the download of infected files attached to
email messages, by propagation of malware from infected
removable disks, etc. The loader primary role is to assist
in obtaining the bot malware binary. Upon successful initial
infection, the secondary infection sub-phase start, during which
the loader downloads the malware binary from an external
network location and installs in on the vulnerable machine.
The bot malware binaries can be downloaded using diverse
protocols, such as FTP (File Transfer Protocol), HTTP (Hyper-
text Transfer Protocol) / HTTPS (Hypertext Transfer Protocol
Secure) or some of the P2P (Peer-to-Peer) transfer protocol.

The second phase of the botnet life-cycle the Communi-
cation phase. This phase includes several botnet operational
modes that entail communication between compromised com-
puters and C&C servers. The communication phase covers
communication devoted to receiving instructions and updates
from the botmaster, as well as the reporting on the current
status of bots. The communication covers several modes of
operation: initial connection attempts to the C&C server upon
successful infection phase, connection attempts by the bot after
reboot of the compromised machine, periodical connection
attempts in order to report the status of the infected machine,
as well as the connection attempts initiated by the C&C server
in order to update malware code or propagate instructions to
bots. The communication between zombie and the C&C server
is realized using the C&C channel that can be implemented in
different ways. The C&C channel is presented in more detail
in the following chapter.

The third phase of botnet life-cycle is marked as Attack
phase as it includes bot operation aimed at implementing
attackers’ malicious agenda. During attack phase zombie com-
puter may launch DDoS attacks, start SPAM e-mail campaigns,
perform distribution of the stolen identities, deploy click-fraud,
manipulate online reputation systems and surveys, etc [1], [10],
[11]. In this operational phase the bots can also implement
propagation mechanism, such as scanning for vulnerable com-
puters or distributing malicious software. The second and the
third phase are functionally linked so they are usually altering
one after another, once a vulnerable computer is successfully
infected. However it should be noted that different phases
within the botnet life-cycle can last for different time spans,
and that the length of a specific phase can vary depending on
the attack campaign the bot implements.

B. C&C channel

Command and Control (C&C) channel is the main car-
rier of botnet functionality and the defining characteristic of
bot malware. The C&C channel represents a communication
channel established between the botmaster and compromised
computers. This channel is used by the attacker to issue
commands to bots and receive information from the compro-
mised machines [3]–[5]. The C&C channel enables remote
coordination of a large number of bots, and it introduces
the level of flexibility in botnet operations by creating the
ability to change and update malicious botnet code. As the
crucial element of the botnet phenomenon, the C&C channel
is often seen as one of the most important indicators of botnet
presence and thus one of the most valuable resources for botnet
detection.

C&C communication infrastructure has been rapidly evolv-
ing over a recent years. As a result, several control mechanisms
in terms of protocols and network architecture have been used
to realize the C&C channel [3]–[5], [23]–[25]. On the basis
of topology of the C&C network, botnets can be classified
as botnets with centralized, decentralized or hybrid network
architecture. The three types of botnet network topologies are
illustrated in Figure 2.

Centralized botnets have centralized C&C network archi-
tecture, where all bots in a botnet contact one or several C&C
servers owned by the same botmaster (Figure 2a). Centralized
C&C channels can be realized using various communication
protocols, such as IRC (Internet Relay Chat), HTTP and
HTTPS. IRC-based botnets are created by deploying IRC
servers or by using IRC servers in public IRC networks. In this
case, the botmaster specifies a chat channel on a IRC server
to which bots connect to in order to receive commands. This
model of operation is referred to as the push model [26], as the
botmaster "pushes" commands to bots. HTTP-based botnets
are another common type of centralized botnets, that rely on
HTTP or HTTPS transfer protocol to transfer C&C messages.
In contrast to bots in IRC-based botnets, bots in HTTP-
based botnets contact a web-based C&C server notifying their
existence with system-identifying information via HTTP or
HTTPS requests. As a response, the malicious server sends
back commands or updates via counterpart response messages.
This model of operation is referred to as the pull model [26],
as bots have to "pull" the commands from the centralized
C&C server. The IRC-and and the HTTP-based botnets are

Initail infection

Secondary

infection

Connection

Maintainace and

Update

Malicious Activity

or

Propagation

Phase 1 Phase 2 Phase 3

Fig. 1. Botnet life-cycle

easy to deploy and manage, and they are very efficient in
implementing the botmasters’ malicious agenda, due to the low
latency of command messages. For this reason, the IRC- and
the HTTP-based C&C have been widely used for deploying
botnets. However, the main drawback of botnets with central-
ized network architecture is that they are vulnerable to the
single point of failure. That is, once the C&C servers have
been identified and disabled, the entire botnet could be taken
down.

Decentralized botnets represent a class of botnets devel-
oped with the goal of being more resilient to neutralization
techniques. Botnets with decentralized C&C infrastructure
have adopted P2P (Peer-to-Peer) communication protocols as
the means of communicating within a botnet [5], [23]. This
implies that bots belonging to the P2P botnet form an overlay
network in which the botmaster can use any of the bots (P2P
nodes) to distribute commands to other peers or to collect
information from them (Figure 2b). In these botnets, the
botmaster can join and issue commands at any place or time.
P2P botnets are realized either by using some of the existing
P2P transfer protocols, such as Kademlia [27], Bittorent [28]
and Overnet [29], or by custom P2P transfer protocol. While
more complex and perhaps more costly to manage and operate
compared to centralized botnets, P2P botnets offer higher
resiliency, since even if the significant portion of the P2P
botnet is taken down the remaining bots may still be able to
communicate with each other and with the botmaster, thus
pursuing their malicious purpose. However, P2P botnets have
one major drawback. They cannot guarantee high reliability
and low latency of C&C communication, which severely limits
the overall efficiency of orchestrating attacks.

Some of the recent botnets [30] have adopted more ad-
vanced hybrid network architectures (Figure 2c), that combines
principles of centralized and decentralized C&C network ar-
chitectures. This class of botnets uses advanced hybrid P2P
communication protocols that try to combine resiliency of P2P
botnets with the low latency of communication of centralized
botnets. The hybrid botnet architecture has been investigated
by several groups of authors, such as Wang et al. [24] and
Z. Zhang et al. [25]. The authors suggest that in order to
provide both resilience and low latency of communication
hybrid botnets should be realized as networks in which bots
are interconnected in P2P fashion and organized in two distinct
groups: the group of proxy bots and the group of working
bots. Working bots would implement the malicious activity
while proxy bots would provide the propagation of C&C
messages from and to the botmaster. Working bots would
periodically connect to the proxy bots in order to receive

commands. Based on the work presented in [24], [25] this
topology should provide a resilience to take down efforts as
well as improvements in latency of C&C messages comparing
to the regular P2P botnets.

C. Resilience techniques

One of the primary goals of the botnet operation is flying
under the radar of botnet detection and neutralization systems.
Therefore attackers equip their botnets with a diversity of
resilience techniques capable of providing the stealthiness
and robustness of operation. Implemented at network level,
resilience techniques have a goal of providing secrecy and
integrity of the communication, anonymity of the botmaster,
and robustness of the C&C channel to take down efforts. Some
of the most important means of providing secrecy of C&C
communication are obfuscation of existing and development
of custom communication protocols, as well as the encryption
of the communication channel. Using these techniques the
security and the integrity of communication are preserved, thus
efficiently defeating detection methods that rely on content of
the traffic payloads for detection. However usage of encrypted
communication channels and obfuscated communication pro-
tocols can be considered suspicious and it can be used as a
trigger for additional traffic analysis. Other commonly used
techniques that provide resilience of botnet operation are Fast-
flux and Domain Generation Algorithm (DGA) [17].

The basic idea behind Fast-flux is to have numerous IP
addresses associated with a single fully qualified domain
name, where the IP addresses are swapped in and out with
extremely high frequency, by changing DNS records. Fast-
flux [21] is widely used by the botnets to hide phishing and
malware delivery sites behind an ever-changing network of
compromised hosts acting as proxies. This way the anonymity
of C&C servers (and consequently botmaster) is protected,
while providing more reliable malicious service. However it
should be noted that by using Fast-flux, a specific botnet
heuristic is formed that can be used for efficient detection of
botnets [31].

DGA (Domain Generation Algorithm) [17], [22] i.e., do-
main fluxing is a technique that periodically generates a large
number of domain names that can be used as rendezvous points
with their controllers. Bots using the DGA generate large
number of pseudo-periodical domain names that are queried,
to determine addresses of the C&C servers. In order for
mechanism to be functional the appropriate part of the DGA
algorithm is also implemented by the attacker. The attacker
registers pseudo-periodical domain names corresponding to

Bot
Bot

Bot Bot

Bot

BotBot

Bot Bot

Bot

Bot

Proxy

bots

Working

bots

Botmaster

Bot Bot

Bot

Bot Bot

Bot

C&C communication channel

Botmaster

BotBot

Bot

Bot

Bot

Botmaster

a)

b) c)

C&C serversC&C servers

C&C communication channel

Fig. 2. Botnet architectures: a) centralized, b) decentralized and c) hybrid

the IP address of malicious servers. Although complex and
hard to implement in efficient manner, the DGA algorithm
has been improved over the years providing reliable mean of
communication for some of the recent botnets [32]. The large
number of domains makes it difficult for law enforcement to
blacklist malicious domains or to detect the bots by detecting
ones that contact the known malicious domain names. As in
the case of Fast-flux, the DGA also introduces certain botnet
heuristics that could be used for botnet detection [32]. However
it should be noted the DGA is primary used as a back-
up communication vector if primary communication channel
fails. Using DGA as a backup strategy higher resilience and
robustness of C&C communication is achieved.

In parallel with resilience techniques deployed at the net-
work level, modern botnets also use an abundance of client
level resilience techniques. These resilience techniques provide
the robustness of bot malware to detection at the host com-
puters [2], [33], [34]. Some of the most prominent techniques
are code obfuscation techniques, such as polymorphism and
metamorphism. These enable the bot code to mutate without
changing the functions or the semantics of its payload. Hence,
bot binaries in the same botnet are usually different from each
other. Using these techniques bot malware evades conventional
detection solutions that depend on signatures of malware
binaries. Other client level resilience techniques are taint the
bot malware behaviour at the client computer and attack the
system for monitoring client level forensics [35]. Finally, one

of the most challenging malicious technique deployed by
the bot malware at the client level is a rootkit ability [36],
[37]. Having the rootkit ability the malware is able to defeat
majority of malware tracking systems implemented at the host
computer. Client level resilience techniques have turned to
be very effective in avoiding modern detection systems, thus
posing the great challenges to detection at client level. As
a result, the majority of the contemporary detection methods
focus on the analysis of network traffic produced by bots, as
the defining aspect of the botnet phenomena [1], [9].

III. BOTNET DETECTION

From the early 2000s, when the first detection solutions
were developed, many experimental systems have been re-
ported in the literature, with various goals, and based on
diverse technical principles and varying assumptions about bot
behaviour and traffic patterns [9], [10], [14], [15]. Depending
of the point of deployment detection approaches can generally
be classified as client-based or network-based.

Client-based detection approaches are deployed at the
client computer targeting bot malware operating at the com-
promised machine [18], [38]–[43]. These methods detect the
presence of bot malware by examining different client level
forensics, for instance, application and system logs, active
processes, key-logs, usage of the resources and signature of
binaries. Furthermore, the client-based detection can also in-
clude examination of traffic visible on the computer’s network

interfaces [44]–[46].

Network-based detection, on the other hand, is deployed
at an "edge" of the network (usually in routers or firewalls),
providing botnet detection by analysing network traffic. This
class of methods identifies botnets by recognizing network traf-
fic produced by them within all three phases of bots life-cycle.
These approaches are usually referred to as intrusion detection
systems (IDS) or intrusion prevention systems (IPS) [9], [14].

In parallel with conventional network- and client-based
detection methods a novel class of hybrid detection methods
has emerged [46]–[50]. This class of methods concludes about
the existence of botnets on the basis of observations gathered
at both client and network levels. The main hypothesis behind
hybrid approaches is that it is possible to provide significant
improvements in performances of botnet detection by corre-
lating findings from independent client- and network-based
detection systems.

There are several conceptual differences between client-
and network-based detection which make detection based on
the traffic analysis often seen as a more promising solution.
As mentioned in the previous section, client-based detection
systems are highly vulnerable to the variety of client level
resilience techniques. Attackers place a great and, most of
all, continuous effort in making the presence of bot malware
undetectable at the compromised machine [2], [33], [34].
Furthermore the detection systems that detect presence of bot
malware at client computers are only able to identify the indi-
vidual compromised hosts and the C&C servers contacted by it.
Finally, an extensive deployment of the client-based detection
systems is burdened by the practical challenges of deploying
the detection system to a large number of clients machines.
On the other hand, the network-based detection is targeting
the essential aspects of botnet functioning, i.e. network traffic
produced as the result of botnet operation. Network-based
approaches assume that in order to implement its malicious
functions botnets have to exhibit certain network activity. This
assumption is supported by following reasoning. First, in order
to make their operation more stealthy botnets have to limit
the intensity of attack campaigns (sending SPAM, launching
DDoS attacks, scanning for vulnerabilities, etc.) and taint and
obfuscate the C&C communication channel. However this
contradicts the goal of providing the most prompt, powerful
and efficient implementation of malicious campaigns. Second,
network level resilience techniques harden the detection but
they also introduce the additional botnet heuristics that can be
used for detection [31], [32]. The main advantage of network-
based detection is the fact that it has wider scope then the
client-level detection systems. The network-based detection is
pushed further away from the actual hosts so it is able to
capture the traffic from a large number of client machines. This
provides the ability of capturing additional aspects of botnet
phenomena, for instance, group behaviour of bots within the
same botnet [51], [52], time dependency of bots activity and
diurnal propagation characteristics of botnets [53].

A. Network-based detection

Network-based detection is based on analysis of network
traffic in order to identify presence of compromised computers.
This class of detection methods detects botnets by identifying

traffic produced by botnets operating in all three phases of
botnet life-cycle. The traffic is usually analysed on either
packet level or flow level. Flows are usually defined as 5-tuple
consisting of: source and destination IP addresses, source and
destination ports and protocol identifier. The flow level analysis
can generally catch a more finite characteristics of botnet-
related communication, while the packet level analysis can
provide more information on the attack vectors as it inspects
the packet payload. Additionally, as the flow level analysis
does not require access to the packet payload it is less privacy
evasive comparing to the packet level analysis. Network-based
detection can be classified based on several aspect, such as the
point of implementation, the stealthiness of operation, and the
basic principles of functioning.

Detection approaches based on traffic analysis can gen-
erally be deployed at different points in the network, where
the main difference between methods is in the network scope
they cover. By analysing traffic at the client machine only one
compromised machine can be detected while implementing the
detection system further from the client would include traffic
from more hosts. However implementing the traffic monitoring
in the higher network tiers also implies the need for processing
larger amount of data.

Based on the stealthiness of functioning the methods can
be classified as Passive or Active detection techniques. The
passive detection approaches do not interfere with botnet op-
eration directly, but operate based on observation only, which
makes them stealthy in their operation and undetectable by
the attacker. Active detection methods, on the other hand, are
more invasive methods that actively disturb botnet operation
by interfering with malicious activities or the C&C com-
munication of the bots. Additionally, these techniques often
target specific heuristics of the C&C communication or the
attack campaign, providing higher precision of detection at
the expense of flexibility and generality of the approach. The
passive approaches on the other hand have an advantage of
being able to detect wider range of botnet types, by deriving
the pattern of malicious traffic from the observation only.
Majority of botnet detection approaches are passive while only
few as [54] are active.

In parallel with the classification of botnet detection based
on the place of implementation or stealthiness of functioning
the methods can be classified based on their functional charac-
teristics as Signature- or Anomaly-based methods. Signature-
based methods are based on recognizing characteristic patterns
of traffic, also known as "signatures" [55]–[58]. The signature-
based detection performs packet level traffic analysis by using
deep packet inspection (DPI) to recognize signatures of mali-
cious payloads. This class of detection techniques covers all
three phases of botnet life-cycle and it is able to detect known
botnets with high precision. The main drawback of signature-
based approaches is that they are able of detecting only known
threats, and that efficient use of these approaches requires
constant update of signatures. Additionally these techniques
are liable of various evasion techniques that change signatures
of botnet traffic and malicious activities of bots, such as
encryption and obfuscation of C&C channel, Fast-flux and
DGA techniques, etc.

Anomaly-based detection is a class of detection methods
that is devoted to the detection of traffic anomalies that can

indicate existence of malicious instances within the network
[51], [59]–[63]. The traffic anomalies that could be used for
detection differ from easily detectable as changes in traffic
rate, latency, to more finite anomalies in flow patterns. This
group of approaches can operate on both packet and flow level,
targeting different botnet heuristics and using various anomaly
detection algorithms. Some of the most prominent anomaly-
based approaches detect anomalies in packet payloads [55],
[59], DNS (Domain Name System) traffic [31], [61], [62],
botnet group behaviour [51], [53], etc. The anomaly-based de-
tection can be realized using different algorithms ranging from
the statistical approaches, machine learning techniques, graph
analysis, etc. In contrast to the signature-based approaches,
the anomaly detection is generally able to detect new forms
of malicious activity and it is more resistant to existing bot-
net resilience techniques. However some challenges in using
anomaly-based detection still exist. This class of techniques
requires the knowledge of anomalies that characterize botnet
traffic. Additionally traffic produced by modern botnets is often
similar to the "normal" traffic, resulting in many false positives.
Finally anomaly detection methods often have to analyse a
vast amount of data, which is difficult to perform in real-time,
making the detection of a fine-grained anomalies in large-scale
networks a prohibitive task. One of the novel and the most
promising anomaly-based methods is the group of detection
methods that rely on machine learning for detection of bot-
related traffic patterns. The machine learning is used because
it offers the possibility of automated recognition of bot-related
traffic patterns without the need for traffic to exhibit spe-
cific anomalous characteristics. Additionally machine learning
provide the ability of recognizing the patterns of malicious
traffic without a priori knowledge about the malicious traffic
characteristics.

B. Machine learning for botnet detection

The basic assumption behind machine learning-based
methods is that botnets produce distinguishable patterns of
traffic or behaviour within the client machine and that this
patterns could be detected by employing some of the Machine
Learning Algorithms (MLA) [18], [19].

Machine Learning (ML), is a branch of artificial intel-
ligence, that has a goal of construction and studying of
systems that can learn from data [64], [65]. Learning in
this context implies ability to recognize complex patterns
and make qualified decisions based on previously seen data.
The main challenge of machine learning is how to provide
generalization of knowledge derived from the limited set of
previous experiences, in order to produce a useful decision
for new, previously unseen, events. To tackle this problem the
field of Machine Learning develops an array of algorithms that
discover knowledge from specific data and experience, based
on sound statistical and computational principles. Machine
learning relies on concepts and results drawn from many fields,
including statistics, artificial intelligence, information theory,
philosophy, cognitive science, control theory and biology. The
developed machine learning algorithms (MLAs) are at the
basis of many applications, ranging from computer vision to
language processing, forecasting, pattern recognition, games,
data mining, expert systems and robotics. At the same time,
important advances in the machine learning theory and algo-
rithms have promoted machine learning to the principal mean

for discovering knowledge from the abundance of data that
is currently available in diverse application areas. One of the
emerging application areas is botnet detection that relies on
MLAs to detect the bot-related network traffic patterns.

Machine learning algorithms can be classified based on the
desired outcome of the algorithm on two main classes:

1) Supervised learning
2) Unsupervised learning

Supervised learning [66] is the class of well-defined ma-
chine learning algorithms that generate a function (i.e., model)
that maps inputs to desired outputs. These algorithms are
trained by examples of inputs and their corresponding outputs,
and then they are used to predict output for some future inputs.
The Supervised learning is used for classification of input
data on some defined class and for regression that predict
continuous valued output.

Unsupervised learning [67] is the class of machine learning
algorithms where training data consists of a set of inputs
without any corresponding target output values. The goal in
unsupervised learning problems may be to discover groups
of similar examples within the input data, where it is called
clustering, to determine the distribution of data within the input
space, known as density estimation, or to project the data from
a high-dimensional space down to two or three dimensions for
the purpose of visualization.

In the case of the anomaly-based botnet detection, the ma-
chine learning represent the mean of classifying or clustering
traffic by using some of the supervised and unsupervised ma-
chine learning algorithms. Traffic is analysed on both flow and
packet level where different features of traffic are extracted.
Extracted traffic features describe the traffic that characterizes
specific host or server in the network, or the specific traffic
flow. The more details on the traffic features used by the
contemporary detection methods can be find in Section V.

In the supervised learning scenario, machine learning for
botnet detection can be implemented as illustrated in Figure 3a.
The supervised MLA is first trained using the training data,
forming the function that maps inputs and corresponding
outputs. The function, also referred to as a model is then
used to classify the inputs from test data. In order to be
used by the MLA both training and test data need to be
appropriately pre-processed. Pre-processing is implemented by
the Data Preprocessing unit that extracts the features from the
available data and selects ones will be used within the MLA.
Choosing the right features is one of the most challenging
task of practical deployment of MLA. The features should
be chosen in that way so they could capture targeted botnet
heuristics. Some of the most popular supervised MLA used
for botnet detection are: SVM (Support Vector Machines),
ANN (Artificial Neural Networks), Decision tree classifiers,
Bayesian classifier, etc.

In contrast to the supervised learning scenario, unsu-
pervised learning scenario implies the use of unsupervised
learning for the clustering of bot-related observations. The
main characteristic of unsupervised MLAs is that they do
not need to be trained beforehand. Unsupervised MLAs for
botnet detection are deployed as illustrated in Figure 3b.
These techniques pre-process available data by extracting and

Training data

Data

Preprocessing
Supervised ML

Features

Test Data

Classifier

Model

DecisionData

Preprocessing

Features

Data

Data

Preprocessing
Unsupervised ML

Features
Clusters

a)

b)

Fig. 3. Machine learning for botnet detection: a) supervised learning framework and b) unsupervised learning framework

selecting the features and then using the unsupervised MLA
to cluster the observations, similar to each other, to the same
cluster. The main challenges of successful implementation of
these kind of learning scenario is choosing of appropriate
features as well as determination of number of clusters. The
most popular unsupervised learning approaches used for botnet
detection are: K-means, X-means and Hierarchical clustering.

The presented scenarios for deployment of MLAs for
botnet detection represent only the simplified illustration of
botnet detection frameworks based on machine learning. Real-
life implementations of data pre-processing usually include
additional, more advanced processing in order to extract infor-
mation that could successfully capture targeted botnet heuris-
tics. In parallel with scenarios illustrated in the Figure 3 some
of the modern machine learning-based approaches implement
the detection through several phases, using combination of
different MLAs or by deploying the MLAs in an adaptive
manner. This way more fine grained, flexible, and adaptable
detection can be achieved. More details on contemporary
detection approaches based on machine learning, deployment
of machine learning algorithms and performances they provide
can be found in Section V.

IV. THE PRINCIPLES OF THE ANALYSIS

Botnet detection approaches based on machine learning,
as well as modern botnet detection approaches generally, have
several goals that they try to achieve, such as:

1) Generality
2) Stealthiness
3) Timely detection
4) High detection performances
5) Robustness on evasion techniques

Through this paper we analyse the characteristics of con-
temporary machine learning-based botnet detection approaches
and their ability to fulfil these goals. The analysis of de-
tection methods is realized through two phases: the analysis
of functional characteristics of methods and the analysis of

performances of methods. The principles of the analysis are
presented in more detail by the following chapters.

A. Characteristics of detection methods

The analysis of characteristics of detection methods is
realized through the analysis of heuristics assumed by the
approaches, the analysis of traffic features and MLAs used by
the approaches, and assessment of generality, stealthiness and
the ability of detection methods to provide timely detection.

The generality refers to the ability of covering the wide
range of botnet types, regardless of botnet propagation mech-
anisms, implemented attack vectors, and the realization of
the C&C communication channel. Different detection methods
can target different phases of bot life-cycle i.e., the infection
phase, the communication phase or the attack phase. Detection
approaches that cover the communication phase can be directed
at various communication protocols and network topologies
(IRC, HTTP, P2P), while detection approaches that cover the
attack phase can target different attack campaigns (SPAM,
DDoS, etc.). Some of the methods rely on payload signatures
(as described in Section III) of traffic limiting the generality
of the method to known botnets. Additionally, the generality
of the botnet detection depends on the bot-related heuristics
assumed by the approach, and on how this heuristic relies
to the real-world botnets. Detection methods that cover the
specific type of botnets or the specific phase of bot life-cycle
are generally more efficient then the methods that try to cover
all types of botnets. However these detection techniques are at
the same time less flexible to the changing nature of botnets
phenomenon.

Stealthiness entails the ability of detection approach to
function without being detected by the attacker, thus all passive
techniques (as described in Section III) are stealthy in their
operation. All detection addressed by this review are passive,
thus fulfilling the stealthiness requirement.

Timely detection is a another much wanted characteristic
of a detection system defined through the ability operating

efficiently and producing the detection results in "reasonable"
time. The timely detection often entails a need for a detection
method to operate in on-line fashion, thus being capable
of processing large quantities of data efficiently. However it
should be noted that the requirements of timely detection
are not precisely defined, and that question of how prompt
detection should be is still unanswered.

B. Performance Evaluation

The analysis of the performances of methods is realized
through the analysis of the performance evaluation practices
used by the methods and assessment of evasion techniques
the methods are vulnerable to. The analysis of performance
evaluation used within experimenting with detection meth-
ods is realized through assessment of evaluation scenarios,
quantitative and qualitative aspects of evaluation data and
examination of used performance metrics.

Testing and evaluation of the proposed approaches is
typically realized using labelled traffic traces, i.e. traffic traces
consisting of known malicious and non-malicious traffic traces
[68]. Correctly labelled datasets are one of the main prereq-
uisites of deterministic evaluation of detection performances.
The malicious traffic represent traffic produced by botnets,
while non-malicious traffic, often refereed to as "background"
traffic, is a "clean" traffic that only contains traffic produced by
non-malicious hosts. The labelled datasets is formed either by
labelling previously recorded traffic trace or by combining the
malicious and non malicious datasets. The labelling of the traf-
fic can be done by using some of the existing IDS systems [56],
[57] and signature-based botnet detection systems [55] or
by checking IP and domain blacklists. However this way of
obtaining labelled dataset is highly dependent on the precision
of the labelling mechanism. Alternatively, malicious and non-
malicious traffic traces can be obtained separately and than
combined forming totally deterministic traffic traces. In this
case, the malicious bot-related traffic traces can be obtained in
the following scenarios:

1) Scenario 1: Bot-related traffic is captured by
Honepots [69], [70] deployed by researchers them-
selves or by some third party.

2) Scenario 2: Bot-related traffic is generated within
fully controllable network environments, where re-
searchers have total control on both C&C servers
and infected zombie machines. This scenario requires
bot malware source code to be available. Having the
source code, experiments can be realized in safe and
totally controlled fashion.

3) Scenario 3: Bot-related traffic is generated in semi-
controlled environments, where researchers have bot
malware binary but not the bot malware code. In
this scenario researchers deploy compromised ma-
chines by infecting them purposely with specific bot
malware samples. Zombie computers are allowed to
contact the C&C servers in order for bot-related
traffic to be recorded. In order to limit any unwanted
damage to the third parties on the Internet the traffic
produced by the infected machines is filtered using
different rate and connection limiting techniques as
well as matching of the malicious signatures of

bot traffic [69]. Although one of the simplest, this
scenario rises many legal and ethical concerns.

Besides the way malicious traffic trace is obtained, the
number of distinct bot malware samples used for evaluation of
botnet detection methods is also very important for assessing
the validity of obtained performance measures. Normally, the
more bot malware samples of different types used within the
evaluation the better. Using the traffic traces form different bot
malware for training and testing could give a good indication
if a method can generalize well or not.

Non-malicious traffic traces could be obtained in various
ways: from self generated traffic using statistical traffic gen-
erators to the network traces recorded on LAN, enterprise,
campus and in some cases even core ISP networks. However
it should be noted that for the process of obtaining background
traffic the primary concern is to make sure that the traffic
traces are benign. This can be easily achieved on the controlled
LAN network, while obtaining traffic from other "real-world"
networks would need to include some kind of labelling as well.
Additionally the traffic from one network to another vary, so
choosing the right "background" traffic trace is also a very
challenging task.

Understanding the performance metrics used is crucial
to make a sound judgement of capabilities of the approach.
Performance metrics used within the approaches can greatly
vary but is typically express by some of the following metrics:

1) True positives rate (TPR) i.e. Recall:
TPR = recall = TP

TP+FN

2) True negative rate (TNR): TNR = TN
TN+FP

3) False positive rate (FPR): FPR = FP
FP+TN

4) False negative rate (FNR): FNR = FN
TP+FN

5) Accuracy: accuracy = TP+TN
TP+FP+TN+FN

6) Error: error = FP+FN
TP+FP+TN+FN

7) Precision: precision = TP
TP+FP

Where true positive (TP) is a number of positive samples
classified as positive, true negative (TN) is a number of
negative samples classified as negative, false positive (FP)
is a number of negative samples classified as positive, and
false negative (FN) is a number of positive samples classified
as negative. However it should be noted that not all of the
approaches are evaluated using all of the performances metrics.
The following sections presents more details on reported
detection performances, evaluation practices and evaluation
dataset used for the analysed detection methods.

C. Evasion techniques

Detection methods should be robust on evasion techniques
in such a way that for detection to be evaded botnet should
severely limit the efficiency of implementing its malicious
agenda. The vulnerability of detection approaches to evasion
techniques highly depend on the botnet heuristics used by

the detection method as well as technical principles on which
method relies on. Rallying detection method on easily change-
able botnet characteristics can lead to easy evasion, which
would consequently limit the prospective use of the detection
approach. Stinson et al. [35] have proposed a framework for
systematic evaluation of robustness of detection methods on
a series of evasion techniques. Similarly to the principles
presented in [35] this paper considers several types of evasion
techniques (ET) that directly affect detection approaches based
on traffic analysis, such as:

1) ET1 - Evasion of host based detection: Evasion
techniques that evade botnet detection at the client
machine. This category includes a wide range of tech-
niques, such as evasion by attacking process monitor
and evasion by tainting bot malware behaviour at the
client computer.

2) ET2 - Evasion by traffic encryption: Techniques that
perform encryption of the traffic used within the C&C
channel.

3) ET3 - Time-based evasion: Evasion techniques that
try to avoid bot activity in specific time windows
in which detection method operates, thus restricting
the detection method from catching the right obser-
vations.

4) ET4 - Evasion by flow perturbation: The class of
evasion techniques that change the patterns of traffic
by changing the flow statistics.

5) ET5 - Evasion by performing only a subset of avail-
able attacks, thus limiting the available observation
for the methods that are targeting the attack phase of
botnet life-cycle.

6) ET6 - Evasion by restricting the number of attack
targets, by targeting hosts at the same internal net-
work, thus evading the methods that monitor traffic
at network boundaries.

7) ET7 - Evasion of cross-host clustering by employing
sophisticated schemes avoiding the group activities of
bots within the same administrative domain.

8) ET8 - Evasion by coordination of bots out-of-band,
by using Fast-flux and DGA algorithms as a mean of
communicating, thus providing a level of privacy and
resilience to malicious C&C servers.

The majority of the existing detection methods could be
evaded by deploying some of the evasion techniques outlined
here. However, different evasion techniques bear an imple-
mentation cost that varies from low to very high [35], often
causing severe damage to the utility of the botnet. Therefore,
the fact that detection system could be evaded does not
necessarily mean that the cost of evasion will be justified.
Please note that the paper does not address the complexities
of evasion techniques and its effect on the overall utility of the
botnet. Examination of the vulnerabilities of existing detection
methods to the evasion techniques is presented in the following
Section V.

V. STATE OF THE ART: THE ANALYSIS OUTLOOK

This section analyses contemporary machine learning-
based botnet detection approaches, on the basis of the prin-
ciples of analysis presented in Section IV. The methods
are addressed in the chronological order starting from the

some of the first machine learning-based detection approaches.
Additionally, the methods are divided into three groups based
on the point of implementation i.e. network-based, client-based
and hybrid detection approaches. The review only addresses
client-based and hybrid approaches that heavily rely on the
network traffic analysis. Other client-based and hybrid botnet
detection methods are not covered by this review.

The results of the analysis are summarized by the series of
tables. The characteristics of the analysed detection approaches
are summarized in Table I and Table II, where Table I
gives an overview of how existing detection approaches fulfil
the requirements of generality and timely detection, while
Table II summarizes the MLAs and traffic features used by
the approaches.

The analysis of the performance of the methods is il-
lustrated in Table III and Table IV. The Table III gives a
brief overview of evaluation practice and datasets used within
the approaches as well as reported performances for analysed
detection methods. However, it should noted that the results
presented in the table should be taken with caution, as the
values presented represent the bottom range of the perfor-
mances of the methods. Additionally, the methods should not
be directly compared using the reported metrics, as they used
different evaluation practices and testing datasets. However,
the presented performance metrics can still indicate the overall
performances of the particular approach in identifying botnet
traffic.

Table IV illustrates how different approaches tolerate most
common evasion techniques, by indicating the strength of the
indication (SF - strong factor and WF - weak factor) of the
method being evaded by the evasion strategies presented in the
Section IV. However, it should be noted that the indications
given in the Table IV are based on the facts presented by the
authors and that they should be used more as a guidelines than
the precise measure.

A. Network-based detection methods

One of the first network-based botnet detection approaches
that use machine learning was proposed by Livadas et al. [71]
during 2006. The proposed approach evaluated the use of
several MLAs for identifying the traffic originating from IRC-
based botnets. The approach is realized in two stages. The first
stage classifies traffic flows on either chat or non-chat flows,
while the second stage further classify IRC chat flows on bot-
net or real chat flows. Both stages are realized using machine
learning techniques. The first stage utilize machine learning
in order to identify IRC chat flows within the total traffic,
while the second stage use machine learning to classifies IRC
flows on malicious or non-malicious ones. The efficiency of
different machine learning techniques in identifying botnet
traffic is evaluated by varying classification techniques, a set
of characterization attributes and the size of the training set.

MLA and features used: The method used three different
supervised MLAs for the realization of both classification
phases: C4.5 decision tree classifier, Naive Bayes classifier and
Bayesian network classifier [65]. The MLAs were assessed
by using several flow level features such as: flow duration
(numeric), maximum initial congestion window (numeric),
indicator whether client or server initiated flow (categorical),

TABLE I. BOTNET DETECTION METHODS BASED ON MACHINE LEARNING - THE CHARACTERISTICS OF METHODS

Detection Method Network / Flow / C&C Signature Individual Host / Detection On-line
Host / Host Protocol Independent Group Activity / Phase operation
Hybrid -based Independent C&C Servers

Livadas et al. [71] Network Flow IRC x H 2 -
Strayer et al. [72] Network Flow IRC x H 2 x
G.Gu et al. [73] Network Host x x G 2,3 -
Husna et al. [74] Network Host x - H 3 -
Noh et al. [75] Network Flow P2P x H 2,3 -
Nogueira et al. [76] Network Flow x x H 2,3 x
Liu et al. [77] Network Host P2P x G 2,3 -
Liao et al. [78] Network Flow P2P x H 2,3 -
Yu et al. [79] Network Flow IRC x H 2,3 x
Langin et al. [80] Network Host P2P x H 2 -
H.Choi et al. [81] Network Flow DNS x G 2,3 x
Sanchez et al. [82] Network Host x x H 3 -
Chen et al. [83] Network Flow x x H 2,3 x
Saad et al. [84] Network Flow P2P x H 2 -
Zhang et al. [85] Network Flow P2P x H 2 -
W.Lu et al. [86] Network Flow IRC - H 2,3 -
Bilge et al. [87] Network Flow x x S 2 x
Masud et al. [45] Host Flow IRC - H 2,3 -
Shin et al. [44] Host Flow x x H 2,3 -
Zeng et al. [46] Hybrid Flow x x G 2,3 -

average byte per packet for flow (numeric), average bits
per second for flow (numeric), average packets per second
for flow (numeric), percentage of packets pushed in flow
(numeric), percentage of packets in one of eight packet size
bins (numeric), variance of packet inter-arrival time (numeric)
and variance of bytes per packet for flow (numeric).

Performance evaluation: The approach was evaluated us-
ing bot-related traffic generated through a fully controlled
experiment realized in accordance with the Scenario 2. Botnet
traffic traces were obtained using only one bot malware sample
(Kaiten bot). Background traffic was gathered from the campus
network. As a result of evaluation a Bayesian network classifier
showed potential in accurately classifying botnet IRC flows,
with relatively high FNR (10-20%) and FPR (30-40%). Other
two MLAs performed more poorly. The evaluation also showed
that careful selection of the flow attributes used for the purpose
of classification is of the most importance. This approach was
one of the first that demonstrate the possibility of utilizing the
machine learning in botnet identification. The method targets
individual bots and the second phase of their life cycle, by
analysing traffic on the flow level. The presented detection
does not depend on the traffic payload providing detection
of encrypted C&C channel. However as the method only
targets IRC-based botnets its effectiveness in a real-world
implementation is severely limited. In addition, the method is
vulnerable on evasion by flow perturbation (strong indication).

Strayer et al. introduced a detection approach based
on network behaviour and machine learning in 2008 [72].
The proposed framework represents an extension of Strayer’s
previous work [88] and work conducted by Livadas et al. [71].
Similar to the Livadas et al. approach, the framework utilizes

several machine learning approaches in order to classify IRC
traffic flows as malicious or non-malicious.

Strayer et al. approach can be divided into four stages.
The first stage implements data pre-processing by filtering
flows that are most likely not carrying C&C data. The filtering
is based on prior knowledge of IRC bots behaviour patterns
and flows characteristics. Implemented as a five level process,
the filtering selects only TCP flows, eliminates scan attempts
(TCP flows with only SYN or RST packets) high bit-rate
flows (bulk data transfer) and brief flows (less than 2 packets
or 60 seconds), and selects flows with small average packet
length (less than 300 bytes). The pre-filtered flows are then
sent to the second phase that implements MLAs in order to
identify the suspicious flows. Flows classified as suspicious
are passed to the third stage i.e., correlator stage. In the
correlator stage the flows are clustered into group of flows with
similar characteristics. This stage utilizes newly developed
multi-dimensional flow correlation [72]. The correlated flows
are then passed to the fourth stage that implements topological
analysis using graph theory to determine flows with a common
controller. Finally flows that share a common controller are
investigated in order to determine if they belong to a botnet
or not.

MLA and features used: Within the second stage, the
method implements the classification of flows by applying
three different supervised MLAs: C4.5 decision tree, Naive
Bayes and Bayesian network classifier [65]. Several flow level
features were used: flow start and end time (numeric), flow
protocol (categorical), summary of TCP flags (categorical),
total number of packets exchanged in flow (numeric), total
number of bytes exchanged in flow (numeric), total number

of packets pushed in flow (numeric), flow duration (numeric),
maximum congestion window (numeric), whether client or
server initiated connection (categorical), average byte per
packet for flow (numeric), average bits per second for flow
(numeric), average packets per second for flow (numeric),
percentage of packets pushed in flow (numeric), percentage
of packets in one of eight packet size bins (numeric), variance
of packet inter-arrival time (numeric) and variance of bytes per
packet for flow (numeric).

Performance evaluation: Similar to the Livadas et al.
approach [71], performances of the Strayer et al. approach
have been evaluated through evaluation campaign using bot-
related traffic generated within fully controlled experiments,
as described by Scenario 2. For the testing only one bot code
(Kaiten bot) was used, while background traffic was gathered
from the campus network. Performances of the used MLA
were evaluated by false positive (FPR) and false negative
(FNR) rates. Naive Bayes have shown low FNR, but higher
FPR, Bayesian Networks technique have shown low FPR,
but higher FNR, while C4.5 decision provided relatively low
values of both FNR and FPR. The evaluation also showed that
training and performances of classifiers was quite sensitive
to the used flow attributes, the training set, and the number
of flows used for the training. The method targets individual
bots within the botnet and second phase of their life cycle by
analysing traffic at the flow level. The method is independent
from signatures of traffic payload and the authors argue that
the method is suitable for on-line detection. The presented
approach shares limitations with the authors’ previous work
[71], [88]. It is only able to detect IRC botnets with central-
ized topology and it requires external judgement, either by
human or machine, in order to alarm the existence of botnet.
Additionally, the method can be evaded by evading classifiers,
correlators and topology analysis. Classification can be evaded
by performing flow perturbation (strong indication), correlators
can be evaded by time-based evasion (strong indication) and
the topology analysis can be evaded by deploying evasion of
cross-host clustering (strong indication).

Gu et al. proposed BotMiner [73] as a novel mining-
based approach in 2008. The proposed approach was one
of the first to promise C&C communication topology and
protocol independent detection and it is often regarded as one
of the most prominent detection techniques. The approach is
dedicated to the detection of the group activities of botnets by
assuming that bots within the same botnet will be characterized
by similar malicious activity and similar C&C communication
patterns.

The architecture of the BotMiner detection system consists
of five main components: A-Plane monitor, C-Plane monitor,
A-Plane clustering, C-Plane clustering and Cross-plane cor-
relator. A-Plane and C-Plane monitors are deployed on the
edges of the network examining traffic between internal and
external networks and employing appropriate pre-processing.
The A-Plane monitor analyses the outbound traffic in order to
detect the malicious activities of internal devices while the C-
Plane monitor is responsible for tracking network traffic flows.
Two monitoring components provide the network logs that are
then transferred to the appropriate clustering entity. C-plane
clustering and A-plane clustering components process the logs
generated by the C-plane and A-plane monitors, respectively.

The two clustering entities find the clusters of hosts with
similar communication and attack traffic patterns. The results
of these entities are then sent to the cross-plan correlation
entities. The cross-plane correlator combines the results of
the A-Plane and the C-Plane clustering and makes the final
decision on which hosts are possibly members of the botnet.

MLA and features used: C-plane clustering is implemented
as a two-step process. The first step performs the coarse-
grained clustering using a simple clustering algorithm. The
second step performs clustering in order to generate smaller
and more precise clusters. Both steps are realized using X-
means clustering algorithm. X-means [89] is an efficient algo-
rithm based on K-means clustering algorithm. Different from
K-means, the X means algorithm does not require the user
to choose the number K of final clusters in advance. The first
step uses eight features: mean and variance of number of flows
per hour (numeric), number of packets per flow (numeric),
average number of bytes per packet (numeric), average number
of bytes per second (numeric). The second step of clustering
uses 52 features: 13 quantiles of the each of the features used
in previous step. A-plane clustering is also carried through
a two-step clustering of activity logs. The first step clusters
the whole list of clients by the type of their activity, while
the second step further clusters clients according to specific
activity features. The A-plane clustering uses relatively weak
cluster features, but provides a possibility of using complex
features that are more robust against evasion attacks.

Performance evaluation: BotMiner performances have
been evaluated within experiments using bot-related traffic
generated by all three scenarios, described in Section IV.
Traffic traces produced by diverse types of botnets were used:
IRC-based (Spybot, Sdbot and Rbot), HTTP-based (Bobax)
and P2P botnets (Nugache and Storm). Background traffic
was gathered from the campus network. The technique showed
high efficiency in detecting different botnets, with the detection
rate (TPR) higher than 99% and bounded FPR. The BotMiner
implements traffic analysis at the host level and it is designed
to target groups of compromised machines within a monitored
network, by targeting the second and the third phases of botnet
life-cycle. The technique is entirely independent of the C&C
protocol, structure, and infection model of botnets. However,
BotMiner has several limitations as well. The presented ap-
proach is vulnerable to several evasion tactics such as, evading
the C-Plane monitoring, the A-plane monitoring and the cross-
plane correlation entity. C- plane monitoring can be evaded by
flow perturbation (strong indication). A-Plane can be evaded
by performing only subset of attacks (strong indication), by
targeting the hosts within the local network (week indication).
Finally cross-plane correlation analysis can be evaded by
time-based evasion (strong indication) and evasion of cross-
clustering (strong indication).

Husna et al. [74] introduced a detection approach based
on analysis of behaviour of spammers in 2008. The approach
assumes that the majority of spammers are bots and that these
compromised hosts can be detected based on the patterns of
individual and group behaviour of hosts within the botnets. The
method classifies a spammers behaviour based on the features
contained in the header of e-mail messages. The method is
independent from the content of the message itself.

MLA and features used: The proposed system is realized

through two phases of functioning. The first phase performs
selection of features using PCA (Principal Component Analy-
sis) [90] method. The PCA extracts features with high impact
to the given dataset. As a result four host level features
were selected: active time (numeric), content length (numeric),
frequency (numeric) and time of arrival (numeric). The second
phase of the approach performs clustering of host machines by
employing one of the two clustering algorithms i.e., K-means
or hierarchical clustering [67]. The clustering algorithms use
previously extracted features as an input.

Performance evaluation: Performances of the Husna et
al. approach have been evaluated within experiments using
labelled dataset containing only spam e-mails as well as dataset
containing both spam and non-spam e-mails. Performances of
the used the method were expressed by precision of detection,
number of true positives (TP) false positives (FP) and false
negatives (FN). Although the majority of the e-mails were
clustered correctly, K-means have showed a slightly advantage
over the hierarchical clustering. For instance K-means was
able to cluster e-mails with a precision of over 90% of, while
hierarchical clustering had precision of over 77%. The method
analyses traffic on host level targeting individual spamming
botnets in the third phase of their life cycle. The technique
is independent of the C&C protocol, structure, and infection
model of botnets. However the approach also has a several
disadvantages. First, it only targets spamming botnets leaving
a broad range of botnet types uncovered. Additionally, the
method is liable on several evasion techniques such as: evasion
by traffic encryption (strong indication), time-based evasion
(strong indication), evasion by restricting number of targets
(strong indication).

Noh et al. (2009) proposed detection method specially
developed in order to detect P2P botnets [75]. The method
assumes that P2P bots are characterized by traffic flows that
fallow distinctive activity pattern i.e., that P2P bots generate
flows that have similarity patterns which can occur at irregular
intervals. Using the observed P2P flow patterns, the authors
develop a new detection framework that groups flows by
similar behaviours and constructs a transition model for each
of them. The authors argue that the bots could be successfully
detected by comparing transition model for regular P2P traffic
and botnet P2P traffic.

The proposed approach consists of four stages: Flow
Grouping, Flow Compression, Flow Modelling and Detection
stage. The Flow Grouping employs MLA in order to realizes
clustering of monitored TCP and UDP connections. The sec-
ond stage, known as Flow Compression stage computes the
state value of each clustered flow and extracts the transition
information. The state of the flow is defined by the value of
seven flow level features. The third stage uses the information
about transition of state value to construct a transitions matrix
for flow modelling. The technique used to generate transition
matrix is developed by the author and it is based on a Markov
chain framework. Finally, the Detection Engine uses the like-
lihood ratio computed from the probability-based models in
order to alert the existence of P2P botnets.

MLA and features used: The flow grouping stage imple-
ments clustering of flows. The clustering is realized through
several stages. Monitored traffic is first pre-processed by
segmenting the traffic on TCP and UDP flows, eliminating

meaningless TCP packets and packets originating from re-
transmission generated due to flooding attacks. Segmented
flows are then examined, and for every flow seven categorical
features are extracted: indicators of UDP or TCP protocol,
source and destination ports, number of connections, con-
nection interaction indicator, packet count comparison, traf-
fic volume comparison. Using the extracted feature vectors,
flows are clustered using ROCK algorithm [91] that provides
efficient clustering of categorical attributes. This MLA applies
clustering by soft links, allowing flows to link to the cluster if
they are linked to at least one of its flows.

Performance evaluation: The method has been evaluated
using traffic traces of non-malicious and malicious P2P traffic.
However it is not known how the author obtained the traces.
Traces of three P2P botnets were used: SpamThru, Storm and
Nugache botnets. The authors reported high TPR (over 95%)
and low FPR (under 2.88%). The proposed system analyses
traffic on flow level and targets individual bots operating in
the second and third phases of botnet life-cycle. The approach
is independent of packet content, and it is capable of detect-
ing botnets using encrypted and obfuscated communication
protocols. However the the approach is developed exclusively
for detection of P2P botnets limiting its generality. The pre-
sented approach can be evaded by several evasion tactics such
as: time-based evasion (strong indication), flow perturbation
(strong indication), evasion by performing subset of available
attacks (weak indication) and evasion by restricting number of
targets (weak indication).

Nogueira et al. (2010) [76], [92] proposed a botnet detec-
tion approach that provides identification of botnet traffic using
Artificial Neural Networks (ANNs) as classification algorithm.
The novelty of the method is its ability to operate in on-line
fashion and adapt to changes in botnet traffic patterns. The
adaptability of the method is provided by adding one additional
entity to the general framework of using supervised MLA for
botnet detection (Figure 3a). The added entity is Intrusion
Management System (IMS), that uses traffic examined by the
detection system as well as results of the classification in
order to make a conclusion about presence of malicious traffic.
If the malicious traffic is detected by IMS and not by the
trained neural network the process of retraining the ANN using
novel observation is initiated. However the decision process
performed by IMS is not automated. In order to to validate
a decision made by the classifier the IMS requires external
judgement (by human or automatic intervention system).

MLA and features used: Although considering several
ANN models, the proposed approach implements identification
tests based on a feed-forward back propagation network with
three layers [66]. The input layer has h + 1 neurons, where
h corresponds to the number of previous samples that are
presented at the input together with the current sample, that
is, the extent of temporal correlation that is considered. The
number of neurons in the hidden layer is empirically selected
such that the performance function (in this case, the mean
square error) is minimized. The output layer has 1 neuron,
since each output vector represents the existence of malicious
or non-malicious traffic. Unfortunately authors did not provide
more details on features used by the ANN so the more detailed
analysis of the approach is not possible.

Performance evaluation: Performances of the method have

TABLE II. MACHINE LEARNING FOR BOTNET DETECTION - THE DETAILS ON USED MLAS

Detection Method Supervised or MLAs used Number of
Unsupervised features

Livadas et al. [71] S Comparison of three MLAs: 10
C4.5 Tree, Naive Bayes and Bayesian Network classifiers

Strayer et al. [72] S Comparison of three MLAs: 16
C4.5 Tree, Naive Bayes and Bayesian Network classifiers

G.Gu et al. [73] U Two level clustering by:
First level: X-means clustering Level #1: 8
Second level: X-means clustering Level #2: 52

Husna et al. [74] U Comparison of two MLAs: 4
K-means clustering and Hierarchical clustering

Noh et al. [75] U ROCK clustering algorithm 7
Nogueira et al. [76] S ANN (Artificial Neural Networks) in adaptive setup NA
Liu et al. [77] U K-means clustering NA
Liao et al. [78] S Comparison of three MLAs: 12

C4.5 Tree, Naive Bayes and Bayesian Network classifiers
Yu et al. [79] U K-means in adaptive setup 4
Langin et al. [80] S SOM (Self Organizing Map) 8
H.Choi et al. [81] U X-means clustering 13
Sanchez et al. [82] S SVM (Support Vector Machine) 53
Chen et al. [83] S Least square SVM (LS-SVM) 4
Saad et al. [84] S Comparison of five MLA: 11

SVM, ANN, Nearest Neighbours, Gaussian,
and Naive Bayes classifiers

Zhang et al. [85] U Two level clustering:
First level: BIRCH algorithm Level #1: 4
Second level: Hierarchical clustering Level #2: 2

W.Lu et al. [86] U Comparison of three MLAs: 256
K-means, Un-merged X-means, Merged X-means clustering

Bilge et al. [87] S Comparison of three MLAs: 15
C4.5 Tree, SVM, and Random forest classifiers

Masud et al. [45] S Comparison of five MLAs: 20
SVM, C4.5 Tree, Naive Bayes, Bayes Network,
and Boosted decision tree classifiers

Shin et al. [44] S Correlation of the findings of two MLAs:
MLA #1: SVM MLA #1: 7
MLA #2: One Class SVM (OCSVM) MLA #2: NA

Zeng et al. [46] U,S Correlation of the findings of two MLAs:
On network level: Hierarchical clustering 17
On client level: SVM 9

been evaluated within a controlled experiment using traffic
traces of different malicious and non-malicious applications.
The authors obtained malicious traffic traces similarly to the
Scenario 2, where authors programmed the application per-
forming various malicious activities using Sub Seven rootkit.
The non-malicious "background" traffic is generated by various
legitimate applications running on several local machines. On
the mixed traffic traces the approach showed high detection
rate (TPR over 87.56%) for both malicious and non-malicious
traffic. The method analyses traffic on flow level and it is
devoted to the detection of individual bots operating in the the
second and third phases of botnet life-cycle. The method has
several advantages such as: independence from topology and
deployed communication protocol, ability to detect encrypted
and obscured protocols, and low computational overhead.
However the approach has several drawbacks such as need for

external judgement in order to provide adaptive functioning.
Additionally the approach is is vulnerable on flow perturbation
as a evasion strategy (strong indication) and time based evasion
(strong indication). It should be noted that due to the lack
of details about features chosen for the classification, a final
conclusion about evade-ability of approach cannot be made at
this point.

Liu et al. (2010) proposed a P2P botnet detection frame-
work based on unsupervised ML techniques and feature anal-
ysis of network streams [77]. The proposed framework is real-
ized through three phases: detection of P2P nodes, clustering
of P2P nodes and detection of botnet activity. All three phases
imply certain assumptions regarding behaviour of both P2P
hosts and P2P bots. The first step could be seen as a pre-
processing step that analyses network streams in order to detect

P2P nodes within the network. The analysis is conducted by
assuming that the P2P bots are characterized by a high degree
of paroxysm and distribution. The degree of of paroxysm is
determined by examining the number of connections over time
while degree of distribution is determined by examining the
ratio of connections to different subsets a node is connected
to. The second stage clusters the nodes selected by the first
phase on several groups of P2P nodes. Finally, the third phase
of the approach finds similarities between suspicious actions
that P2P nodes implement in order to estimate if P2P node
is a member of P2P botnet or not. The authors assume that
bots within the same botnet will show similarity in malicious
actions.

MLA and features used: The second stage clusters the
nodes by using K-means clustering algorithm [67]. The authors
assume that the nodes from the same P2P network show steady
communication for a long time period and high symmetry of
communication, so the nodes are clustered using the following
features of P2P traffic: quantity and frequency of data exchange
between nodes and symmetry of flows between pair of nodes.
However the authors did not indicate exact features used by
the method.

Performance evaluation: The method has been evaluated
through series of experiments within a controlled network en-
vironment, similar to the Scenario 3. The tests were carried on
network traces containing flows from different common, non-
malicious P2P applications as well as flows from several well-
known P2P botnets (Storm, Slapper, Nugache). The approach
has shown that efficient clustering of different P2P networks
can be achieved within clustering time of 24 hours. Under
these conditions proposed approach has shown the capability
of identifying different P2P botnet traffic within the overall
network traces. The method is performing traffic analysis on
the host level. Furthermore, the framework targets the group
activity of the bots within the botnet addressing both second
and third phase of botnet life-cycle. The authors also argue
that the approach is independent of botnet communication
protocol and packet content, and that is capable of detecting
polymorphic, undiscovered and cryptographic channel botnets.
However the proposed approach is vulnerable to a number of
evasion techniques: flow perturbation (strong indication), time-
based evasion (strong indication) evasion of cross-clustering
(strong indication) and evasion by performing only subset of
attacks (strong indication).

Liao et al. (2010) [78] explored possibilities of identify-
ing P2P botnet traffic using supervised MLAs. The authors
followed scientific efforts of Livadas et al. [71] and Strayer
et al. [72], [88], by employing the same MLA. However
in contrast to the previous work, the authors explored the
possibility of deploying these MLAs for the detection of P2P
botnets.

Similarly to the general framework of using supervised
MLA for identifying botnet detection, the approach can be
observed as a two phase process (Figure 3a). Within the
first phase data is pre-processed by extracting features of
traffic flows. Several features are extracted such as: indica-
tor of synchronous sessions (categorical), average number of
bytes per flow (numeric), average length of packets in flow
(numeric), standard deviation of number of bytes per flow
(numeric), standard deviation of number of packets in flow

(numeric), number of small sessions (numeric), percentage of
small packets (numeric), average size of packet (numeric),
standard deviation of packet size (numeric), average number
of packets per flow (numeric), percentage of small packets
per flow (numeric), number of small packets (numeric) and
number of null packets (numeric). Where small packets have
size between 63-399 bytes, while the sessions with flows
and packets within one standard deviation are called "small
session".

MLA and features used: Within the second phase the
method implement three supervised MLAs: C4.5 decision
tree, Naive Bayes and Bayes Network classifiers [65]. The
performances of these MLAs in classifying botnet traffic flows
were analysed and compared. The MLAs observe flows as a
vectors of previously defined features.

Performance evaluation: For the purpose of testing botnet-
related traffic traces were recorded in accordance with Scenario
3. The Storm bot was the only malware sample used within
the testing. Non-malicious "background" data was generated
by several computers running non-malicious applications. The
C4.5 classifier has shown the best overall detection perfor-
mances providing high accuracy of detection (over 98%) and
very low false positive and false negative rates. The other
two MLAs performed slightly worse, implying the need for
the optimization of exploration parameters. The proposed
method analyses traffic on flow level, targeting individual bots
operating in the second and third phases of botnet life cycle.
The method promises detection of botnets that is independent
from packet content. However the presented approach has a
limited scope as it is only targeting P2P botnets and it is
generally vulnerable on evasion by flow perturbation (strong
indication).

Yu et al. [79] proposed a novel on-line botnet detection
approach in 2010. The newly introduced method promises on-
line botnet detection by performing data-adaptive clustering
of traffic flows. The method assumes that traffic flows from
bots in the same botnet will exhibit high similarities between
each-other. As the main goal of the approach is to provide
timely detection through on-line operation the method operates
in sliding windows. This way the method retains continuous
network traffic and faithfully captures dynamic nature of botnet
traffic.

MLA and features used: Within every sliding window
the system performs the following procedure. First, the pre-
processing stage extracts multi-dimensional feature streams
from network traffic flows. The feature stream represents a
multi-dimensional streaming time series that uniformly quan-
tifies each traffic flow using the set of characteristics. Each
feature stream i.e. vector of features, covers a certain time
period, while each element in the feature vector is a value that
describes the certain characteristic of the flow. The features
used within the multi-dimensional vector are: number of bytes-
per-packet for flow (numeric), average bits-per-second for flow
(numeric), average packets-per-second for flow (numeric) and
number of packet-per-flow (numeric). In order to cluster flows
based on the formed feature streams the method employs a
novel data-adaptive clustering. Initially, the method employs a
classical clustering method, i.e., K-means [67], to divide all
the feature streams into several clusters. For each cluster, a
central feature stream is chosen to represent it. After forming

the clusters, the similarity between feature streams of the same
cluster is computed. In contrast to the common implementation
of the K-means clustering that entails distance measurement
as a similarity measure, the proposed system uses correlation
analysis of feature streams. If some cluster has a similarity
measure higher then a predefined threshold it will be treated
as a suspected cluster. Consequently, all hosts corresponding to
the flows in the suspicious cluster will be regarded as suspected
bot hosts. When the window slides, the network traffic is pre-
processed once again and data-adaptive clustering refreshes the
clusters. The clusters are only updated in two situations. First,
if some feature streams become invalid in case of connection
breaking, and second if the content of some feature streams
change. For each of the two update scenarios special updating
operations are developed. In the first scenario invalid feature
streams are deleted and new ones are added, while in the
second all existing clusters are re-constructed by efficient split
and merge operations. This kind of data-adaptive clustering
provides a great gain in terms of computational efficiency
execution time comparing to the more conventional periodical
re-clustering.

Performance evaluation: For the purpose of testing botnet
traffic is obtained in accordance with the Scenario 2, where
authors used Rbot botnet source code to set up a fully control-
lable botnet and record the "malicious" traffic. Non-malicious
i.e. "background" traffic is recorded on a laboratory network
originating from diverse types of legitimate applications. Using
the test data set the approach expressed very high detection
rate (100%), but also it exhibited high FPR (around 20%). The
execution time of detection algorithm proved to be appropriate
for on-line detection (in the manner of hours). The proposed
detection systems is based on flow-based traffic analysis target-
ing individual bots that operate in the second and third phases
of botnet life cycle. The method does not depend on content
signatures and it is independent of C&C protocol and network
topology. However the method also has its limitations, as it is
vulnerable on evasion by flow perturbation (strong indication)
due to flow-based analysis, and time-based evasion (strong
indication) due to operation in sliding window.

Langin et al. (2010) proposed a P2P botnet detection
framework that utilizes Self-Organizing Map (SOM) as a
mean of clustering firewall logs data in order to discover
unknown P2P bot and other network security issues [80].
The detection framework is based on the assumption that a
properly configured firewall should deny access for P2P traffic
originating from outside of the local network and log such
a traffic for further inspection. The detection approach uses
the firewall logs of the denied incoming traffic in order to
determine if they are produced by a botmaster that is trying
to connect to the potential bot within the local network. This
way the proposed approach is able to detect the existence of
bot even before it becomes involved in attack.

MLA and features used: The method uses Self-Organizing
Map (SOM) [93] as a MLA for learning about existence of bots
within the network. Firewall logs of denied incoming traffic
are pre-processed in order to extract vector of features for
local destination addresses. For every destination IP address
following features are extracted: total number of firewall logs
(numeric), total number of unique external IP address in
the log entries (numeric), total number of unique destination

ports in the log entries (numeric), the lowest destination port
(numeric), the highest destination port (numeric), total number
of ICMP protocol log entries (numeric) and total number of
TCP protocol log entries (numeric) and total number of UDP
protocol log entries (numeric). Formed feature-vectors are then
forwarded to the mining entity. The mining entity uses SOM to
determine if there is a suspicious host within the local network.
SOM is implemented through two steps namely clustering and
classification steps. Within the first clustering phase the SOM
is trained. Training is realized by clustering the labelled data
and marking the cluster that contain bot-related samples. The
second stage clusters unlabelled, previously unseen data. Data
clustered to suspicious clusters will be marked as suspicious
as well, and the corresponding local host will be considered a
potential bot.

Performance evaluation: The method was trained using
firewall logs of incoming traffic that was denied at the point of
campus network firewall. The test dataset contained 20 million
firewall logs, for approximately 60000 local IP addresses.
Additionally it is known that there were two P2P bot hosts
operating within the campus network. After the training the
methods was tested by the logs obtained during the 96 days
at the point of campus network firewall. Using the described
testing procedure the presented method showed its accuracy
by identifying 18 suspect hosts, where some of them were in-
fected with bots while others were improperly configured. The
presented approach targets the individual bots covering both
second of botnet life-cycle. The presented detection approach
discovers knowledge of intrusions and other malignant network
problems that is not available by other methods and it preserves
privacy of user data by the use of non-local network data and
the abstraction of the data in the SOM. However the method
also has several disadvantages. First, the resources required for
the self-training of the SOM and results interpretation is hard
to obtain. Second, as trained on data specific to local network
the SOM is not transferable to other locations.

Choi et al. (2011) developed a light-weight botnet de-
tection approach based on analysis of botnet group activity
within DNS traffic [81], [94]. The proposed method, referred
to as BotGAD (Botnet Group Activity Detector) uses a small
amount of data from DNS traffic to detect botnets. BotGAD
is relying on several observations regarding the use of DNS
services by botnets. First, when a bot is trying to lookup
a C&C server or update server and second, when a bot
performs DNS lookup of the victim. The authors assume that
the bots within the botnet perform the DNS queries in a
coordinated fashion, exhibiting group activity that generally
appears intensively having a periodic and sporadic pattern.
Additionally the authors assume that the botnets have relatively
stable group activity i.e., that the botnet groups are consistent.

BotGAD is realized through five main parts: data collector,
data mapper, correlated domain extractor, matrix generator, and
similarity analyzer. The data collector receives and aggregates
DNS traffics from the sensors. In order to provide better
precision of botnet detection sensors are deployed throughout
the whole monitored network. The data mapper then parses
gathered DNS traffic and inserts DNS information into the
hash map data structure. The hash map data structure consists
of domain maps where every domain map has a domain name
as a key and an IP map as a value. IP maps have an IP

address number as a key and the information list as a value.
The information list has timestamps of each DNS query and
DNS based features as a value. Information mapped this way is
then transmitted to the matrix generator and correlated domain
extractor. The matrix generator builds a matrix in order to
measure a similarity score host contacting certain domains.
Binary similarity matrix (dimension m by n) is defined for
every domain, and it holds indications if certain IP addresses
(one of m) queries the domain in some of observed time
slots (n time slots). The correlated domain extractor classifies
domain sets using the DNS based features stored in the hash
maps. The similarity analyser is the final component of the
BotGAD detection system, that calculates the similarity score
of generated matrices. It also performs a hypothesis test to
make a decision to detect botnet domains. Consequently the
detected botnet domains are then summarized in a database.

MLA and features used: The correlated domain extractor
employs X-means clustering [89] algorithm in order to detect
correlated domains. The authors suggest 13 different features
to be used for clustering. The features can be classified into
three classes, depending on the aspect they describe: DNS
lexicology, DNS query information and DNS answer features.
DNS lexicology features are: number of domain tokens (nu-
meric), average length of domain token (numeric) and black-
listed 2nd level domains (categorical). DNS query features
are: number of queries sent (numeric), number of distinct
sender IPs (numeric), number of distinct senders autonomous
system numbers (ASNs) (numeric), query type (categorical)
and estimated similarity of a domain (numeric). Finally DNS
answer features are: number of distinct resolved IPs (numeric),
number of distinct ASNs of resolved IPs (numeric), number
of distinct countries of resolved IPs (numeric) and TTL value
in DNS answers (numeric).

Performance evaluation: Performances of the method have
been evaluated using three DNS traces originating from cam-
pus and two ISP networks. As these traces were on real
network the authors used a combination of different ap-
proaches to verify and label the traces, such as: blacklist
matching, web reputation search, IP address resolution and
domain information investigation. Within the experiment the
technique showed high detection rate (over 95%), very low
FPR (lower than 0.31%) and low FNR (under 4.6%). BotGAD
is directed at detection of group activity of botnet by covering
the second and the third phases of the botnet life-cycle. The
method does not depend on content signature and it is able to
detect bots using encrypted protocols. As it uses a relatively
small amount of traffic it can provide real-time detection.
However the proposed method is vulnerable to various evasion
techniques such as: time-based evasion (strong indication),
evasion by flow perturbation (weak indication), evasion of
cross-clustering (strong indication) and evasion by using out-
of-band coordination of bots (strong indication).

Sanchez et al. (2011) [82] proposed the system for detec-
tion of spamming botnets by classifying the sender of e-mail
as spamming hosts or legitimate mail server (LMS) machines.
The main assumption made by the authors is that majority of
spamming bots are end-user machines and not the legitimate
mail server (LMS). Additionally the authors assume that such
end-users would directly send the e-mail to the recipient and
not through some LMS. The authors propose a system that

deploys supervised MLAs in order to build the model of
malicious spamming hosts using a set of features that cannot
be easily manipulated by spammers.

MLA and features used: The method uses SVM (Sup-
port Vector Machine) [65] as machine learning algorithm for
classification of hosts on LMS or bots. The paper focuses
on the features of a sending machine that cannot be easily
manipulated by a spammer, and are already available at or
can be easily obtained by a recipient mail server. In particular,
the paper considers two types of features associated with a
sending machine: the operating system (OS) and the host name
lexical structure of the sending machine. OS features used are
indicator if the OS type can be determined (categorical) and
indicator of the type of OS deployed at the remote machine
(categorical). In addition to the OS features 51 host lexical
features were used: number or dots on a host name (numeric),
number of dashes on the local name portion of the host name
(numeric), if a host name encodes IP as a part of the host
name (categorical), if the reverse DNS lookup of the machine
IP address resolves to a valid host name (categorical), indicator
of some of the 13 common keywords found on the local name
portion of a host name (categorical), indicator of some of the
34 common keywords found on the local name portion of a
host name by the Internet draft (categorical).

Performance evaluation: The proposed approach has been
evaluated using 3 different e-mail traces. One is recorded on
a campus network containing only LMS records while the
other two were spam traces gathered by spam traps. On the
testing dataset the framework showed high detection rate (over
91%), low false positive (under 0.56%) and false negative
rate (under 8.19%) for all of the applied MLA. The proposed
framework is targeting individual bots covering the third phase
of the botnet life cycle. The method is primarily developed for
detection of spamming bots severely limiting the applicability
of the approach. The proposed method is primarily vulnerable
on evasion techniques by changing the naming convention of
the host names, and by relying on legitimate mail servers for
delivering the message.

Chen et al. (2011) [83] were one of the first to tackle
problem of on-line adaptive botnet detection. The authors
explored the possibility of implementing a detection method
that would use MLAs in an adaptive manner and thus be able
to adapt to the changes in characteristics of botnet traffic.

The system is composed of the following components:
flow parser, graph feature extractor, external IP blacklists, and
online classifier. The first two elements implement data pre-
processing in the following way. The flow parser reconstructs
all the packets that correspond to the same traffic flow, where
a flow is defined as the unique 6-tuple of client and server
IP-addresses, client- and server-ports, timestamp and transport
layer protocol (TCP or UDP). On seeing each new flow,
the system updates the aggregated statistics for the pair of
IP-addresses which are communicating with each other. The
graph feature extractor then maps the pairs of flows between
the client and the server and computes simple aggregated
counts for how many flows were exchanged between the IP-
pair within a pre-configured time interval. At the end of this
time-interval, the following information is passed on to the
online learning module: timestamp for the end of the time
(numeric) window, client IP-address (categorical), server IP-

TABLE III. DETAILS ON PERFORMANCE EVALUATION THE ANALYSED METHODS

Detection Method Botnet-related Background Number of Performances of the approaches
data data bot samples

Livadas et al. [71] Scenario 2 Campus 1 FPR (10-20%), FNR (30-40%)
Strayer et al. [72] Scenario 2 Campus 1 FPR (< 30%), FNR (> 2.17%)
G.Gu et al. [73] Scenarios 1,2,3 Campus 6 TPR (99%), FPR (1%)
Husna et al. [74] Scenarios 1 NA NA Precision (> 88%), TP, FP, FN
Noh et al. [75] NA LAN 3 TPR(> 95%), FPR (< 2.88%)
Nogueira et al. [76] Scenario 2 LAN 1 TPR (> 87.56%)
Liu et al. [77] Scenario 3 LAN 3 TPR (53-100%)
Liao et al. [78] Scenario 3 LAN 3 Accuracy (> 92%), FP, FN
Yu et al. [79] Scenario 2 LAN 1 TPR(100%), FPR(< 20%)
Langin et al. [80] Scenario 1 LAN 2 TPR (100%), FP
H.Choi et al. [81] Scenario 1 Campus, ISP NA TPR (> 95.4%), FPR (< 0.32%),

FNR (< 4.6%)
Sanchez et al. [82] Scenario 1 Campus NA TPR (> 91%), FPR (<0.56%),

FNR (< 8.91%)
Chen et al. [83] Scenario 1 ISP 5 Error rate (< 7%)
Saad et al. [84] Scenario 1 LAN 2 TPR (> 89%), Error rate (< 20%)
Zhang et al. [85] Scenario 3 LAN, Campus 2 TPR (100%), FPR (< 0.2%)
W.Lu et al. [86] Scenario 2 ISP 2 TPR (> 95%)
Bilge et al. [87] Scenario 1 ISP NA TPR (> 87.8%), FPR (< 20.2%)
Masud et al. [45] Scenario 2 LAN 2 Accuracy(> 95.2%), FPR (< 3.2%)

FNR (< 6.5%)
Shin et al. [44] Scenario 3 LAN 15 TPR (100%), FPR (< 1%)
Zeng et al. [46] Scenario 2,3 LAN 6 FPR (< 0.16%), FNR (12.5%)
Comment: NA - not available values

address (categorical) and number of flows exchanged between
the IP-pair (numeric). The online learning module then trains a
classifier using the dataset updated for each incoming IP-pair.

MLA and features used: For the implementation of an
adaptive and online botnet detection system the authors turned
to the new algorithm known as least-square SVM (LS-
SVM) [95]. LS-SVM is incremental in terms of both evolving
feature sets as well as training samples. The algorithm uses
a predefined number of training samples, N for training the
model of malicious traffic. When m new samples are obtained
the system excludes a corresponding m number of samples
from the training set and uses a new training set in order to
form the traffic model. The method considers several methods
of excluding the older samples from the training set such as
eliminating the oldest samples first or eliminating the samples
with least influence of decision surface.

Performance evaluation: The proposed framework has been
evaluated by an experiment using two labelled data sets
obtained in accordance with the Scenario 1. The labelling
was realized using the external IP blacklists. Based on the
performed labelling bot-related traffic within the datasets was
originating from several botnets namely: Confickter, Grum,
Pong, Pushdo and Sality. Within the experiment the technique
showed low error rate (under 7%) and the ability to operate
in adaptive and on-line manner. The proposed system was
compared with batch SVM that was periodically retrained,
and it has shown a clear advantage in computational and time
requirement. The proposed approach performs traffic analysis
on flow level targeting individual bots by capturing traffic

characteristics of both second and third phases of the botnet
life-cycle. The approach is independent from the protocol and
traffic content. However the presented approach is vulnerable
on evasion by time-based evasion (strong indication) and
evasion by flow perturbation (strong indication).

Saad et al. (2011) [84] conducted a study on P2P botnet
detection using machine learning techniques. The authors
explored the ability of commonly used MLAs to meet on-line
botnet detection requirements, namely adaptability, novelty
of detection and possibility of early detection. The author
proposed a detection framework based on the identification of
network traffic produced by P2P bots. The framework assumes
that botnets have distinctive C&C communication patterns
which can be used for efficient detection of bots existence
within the network even before their attack occurs. Similarly
to the general scheme of applying supervised MLA for botnet
detection (Figure 3a), the proposed framework is realized
through two phases. First phase, implements pre-processing of
network traffic by extracting an extensive set of traffic features
for each of the flow. Using the extracted set of features, the
second phase implements supervised MLAs in order to classify
traffic flows as non P2P traffic, P2P C&C flows, and normal
P2P traffic flows.

MLA and features used: The features of traffic flows
are analysed using five different supervised machine learning
techniques. The machine learning techniques that were applied
and compared by their performances are: SVM (Support
vector Machine), ANN (Artificial Neural Network), Nearest
neighbours classifier, Gaussian-based classifier, and Naive

bayes classifier [65]. The features used within the MLAs
were: source and destination addresses of flow (categorical),
source and destination ports of flow (numeric), transport layer
protocol (numeric), payload size in bytes (numeric), average
packet length per flow (numeric), total number of packets per
flow (numeric), total number of bytes per flow (numeric), total
ratio of incoming packets over the number of outgoing packets
(numeric), total number of subset of packets of the same length
over the total number of packets in the same flow (numeric),
and total number of bytes of all the packets over the number
of packets in the same flow (numeric).

Performance evaluation: The proposed framework has been
evaluated within an experiment using bot-related traffic ob-
tained in accordance with the Scenario 1. Bot-related traffic
was originating from two P2P botnets namely Storm and
Waledac. Non-malicious "background" traffic was recorded on
a LAN network with host computers running different non-
malicious applications. Each of the five used MLA were eval-
uated by training speed, classification-speed and accuracy of
detection. The authors conclude that all five techniques provide
detection rate grater than 89%. ANN and SVM require the
most time to be trained and to perform classification. However,
it should be noted that none of the five techniques were
able to satisfy on-line detection requirements. Additionally
the authors also argue that considering both the training and
classification time, the SVM and the ANN are not suitable for
online detection. The proposed approach is targeting individual
bots by capturing traffic characteristics of the second phase
of the botnet life-cycle. The approach is independent from
the protocol and traffic content. However the approach is
vulnerable on evasion by changing the traffic patterns by flow
perturbation (strong indication) and time-based evasion (strong
indication).

Zhang et al. (2011) [85] introduced a novel botnet de-
tection system that is able to identify stealthy P2P botnets,
even when malicious activities may not be observable. The
proposed approach focuses on identifying P2P bots within
a monitored network by detecting the C&C communication
patterns that characterize P2P botnets, regardless of how they
perform malicious activities.

The proposed approach is realized through two main
phases. The first phase that identifies P2P hosts and the second
that identifies P2P bots among P2P hosts. Identification of
the P2P hosts is implemented through pre-processing of the
traffic. Traffic pre-processing is realized by flow filtering and
extracting of potential P2P flows. The filtering is realized by
excluding the network flows whose destination IP addresses
were previously resolved in a DNS response. The reason for
this kind of filtering is that P2P clients usually contact their
peers directly, by looking up IPs from a routing table for
the overlay network, rather than resolving a domain name.
The remaining traffic is then analysed and a number of
statistical features which will be used to isolate flows related to
P2P communications from unrelated flows, are extracted. For
each host within the monitored network three flow sets are
identified: flows related to successful outgoing TCP and UDP
connections and flows related to failed outgoing TCP/UDP
connections. The approach now assumes that P2P nodes often
generate a large number of failed outgoing flows because
they periodically probe their peers with ping/pong messages to

maintain a view of the overlay network or search for content.
Therefore hosts that generate at least one successful outgoing
TCP or UDP connection, and more than a predefined number
of outgoing failed TCP/UDP connections, are retained for
further analysis.

MLA and features used: For every traffic flow four features
are extracted: number of packets sent and received (numeric),
and number of bytes sent and received (numeric). The gener-
ated features vectors are then used by the two-level clustering
algorithm in order to cluster the flows. The two-level clustering
is realized by combination of BIRCH algorithm [96] and
hierarchical clustering [67]. BIRCH algorithm is used to form
sub-cluster from the set of flows using Euclidean distance of
predefined flow features. Then, for each sub-clusters, flows are
aggregated in it and represented by the vector of average values
of feature used within the first level of clustering i.e. the vector
consisting of average number of packets sent and received per
flows in the sub-cluster (numeric), and the average number of
bytes sent and received per flows in the sub-cluster (numeric) .
Newly formed vector of features is used to cluster the vectors
to the clusters of similar vectors. Finally the flows contained in
the sub-clusters of one cluster are grouped to the same cluster
of flows. For each of generated clusters of flows the set of
destination IP addresses related to the flows in the clusters
is considered, and for each of this IPs theirs BGP prefix are
considered. Finally, clusters with the number of distinct BGP
prefixes smaller than some predefined threshold are discarded.
Remaining clusters of flows are called fingerprint clusters, and
they are used to identify final candidates for P2P hosts. A host
is, however, considered as P2P host if its flows belong to at
least one of the fingerprint clusters.

In the second phase, the proposed botnet detection system
analyses the traffic generated by the candidate P2P clients
and classifies them into either legitimate P2P clients or P2P
bots. This is based on a number of assumptions. The authors
assume that the P2P bots have more persistent functioning
on the compromised system, eliminating P2P clients that are
running P2P applications with short active time, compared to
the underlying system. In order to further discriminate between
legitimate persistent P2P clients and P2P bots, the approach
uses the following observations. First, bots that belong to the
same botnet use the same P2P protocol and network. Second
the set of peers contacted by two different bots have a much
larger overlap then a set of peers contacted by two P2P clients
connected to the same legitimate P2P network.

Performance evaluation: The presented approach has been
tested using bot-related traffic traces generated by controlled
experiments realized in accordance with Scenario 3. For
generation of these traces two malware samples were used:
Storm and Waledac. Non-malicious data was gathered from
campus network while traces of non- malicious P2P traffic
were recorded on a LAN network operating with several hosts
running non- malicious P2P applications. Within the controlled
experiment the technique showed high efficiency in identifying
both malicious and non-malicious P2P hosts, with the TPR
of 100% and FPR of 0.2%. The technique also provided the
similar detection performances for the scenarios where the
host is simultaneously using both malicious and non-malicious
P2P traffic. The proposed detection framework analyses traffic
on flow level targeting individual bots covering the second

phase of the botnet life-cycle. Furthermore the method does not
depend on content signatures or any transport layer heuristics.
However the proposed detection approach is vulnerable on
several evasion strategies such as: flow perturbation (strong
indication), time-based evasion (strong indication), evasion by
coordinating bots out of band (strong indication).

W. Lu et al. proposed a novel botnet detection approach
based on the unsupervised MLA in 2011 [86]. The method
represent continuation on scientific efforts started by the same
group of authors a year earlier [97], [98]. Comparing to their
previous work, the approach has explored the possibilities of
applying a wider range of unsupervised MLAs. The proposed
botnet detection framework first filters network traffic pro-
duced by known applications and then focuses on identifying
botnet communication within the suspicious traffic.

MLA and features used: The proposed detection frame-
work is realized by three phases: Feature Analysis, Clustering
and Botnet Decision. In the first phase the method extracts
the temporal-frequent attributes of network flows. The ex-
tracted features are 256-dimensional vectors that represent
the temporal-frequent characteristics of the 256 ASCII binary
bytes on the flow payload over a predefined time intervals. The
vectors are generated using n-gram (i.e. n=1) of bytes distribu-
tion over one second intervals. These feature vectors are used
in order to cluster corresponding flows within the Clustering
phase. The Clustering phase implements three different cluster-
ing algorithms thus giving an insight on their performances in
clustering botnet traffic. The clustering techniques used within
the framework are K-means clustering [67] with fixed number
of clusters for botnet detection, and two versions of X-means
clustering [89]. The clusters formed by the clustering phase
are then forwarded to the Botnet decision phase that marks
the cluster with the lowest standard deviation as the botnet
cluster.

Performance evaluation: The proposed approach has been
evaluated using bot-related traces harvested from both Scenario
1 and Scenario 2. The botnet traffic traces were produced
by two IRC-based botnets (Kaiten and one undefined). The
non-malicious trace is gathered from a public ISP network.
Performance evaluation can be divided into two stages: the
performance testing of unknown traffic classification and the
performance testing of the approach ability to discriminate
malicious botnet traffic. The method exhibited high detection
rate in identifying botnet traffic (over 95%), where different
clustering techniques provide different detection performances.
The merged X-means performed better than the other two
approaches since it had a considerably higher detection rate
than un-merged X-means and much lower FPR than K-means.
The proposed framework is targeting individual bots covering
both second and third phases of botnet life-cycles. The method
is primarily developed for detection of IRC-based bots but
authors argue that it can easily be extended to other types of
botnets as well. The presented approach is liable on several
evasion techniques such as: evasion by traffic encryption
(strong indication), time-based evasion (strong indication) and
flow perturbation (strong indication).

Bilge et al. (2012) [87] proposed Disclosure, a large-
scale, wide-area botnet detection system that incorporates a
combination of novel techniques to overcome the challenges
imposed by the use of NetFlow data for botnet detection.

The authors argue that widely available NetFlow data can be
successfully used in order to provide on-line botnet detection
on large-scale networks.

The proposed method is realized using supervised learn-
ing and therefore implemented in accordance with a gen-
eral scheme of using supervised MLA for botnet detection
(Figure IIIa). The Netflow data is initially pre-processed by
separating clients from servers, on the basis of the number
of service ports opened by the servers. Then for the selected
servers the number of features are extracted. The features are
calculated using the NetFlow data that captures the traffic of
certain servers. The features can be grouped in three classes:
flow size features, client access pattern features, and temporal
behaviour features. Flow size features include several features
that are calculated based on the number of bytes going to/from
the server: mean and standard deviation of number of bytes
within a predefined time window (numeric), correlation of
feature vector of flows in consecutive time windows (numeric),
flow size within the time window (numeric). Client access
pattern features are minimum, maximum, median and standard
deviation of flow inter-arrival times in the predefined time
window (all numeric). Additionally as a client access pattern
features a number of unmatched flow for a particular server
within the predefined time window is observed (numeric).
Finally the system extracts a number of temporal features that
characterize the variability of client flow volume as a function
of time. Therefore temporal behaviour features are statistical
features of the number of flows opened per specific server in
predefined time interval.

MLA and features used: Using the extracted features the
supervised MLA is trained. To build detection models for iden-
tifying C&C servers, the authors experimented with a number
of machine learning algorithms, including the C4.5 decision
tree classifier, SVM (Support Vector Machines), and Random
forest algorithms [65]. However the random forest algorithm
provided the best results in terms of on-line operation and
precision of detection. Therefore it is used as a main MLA
within the method .

Performance evaluation: The proposed approach has been
evaluated using labelled traffic traces harvested in accordance
with Scenario 1. The traces obtained were originating from
both campus and ISP networks. Performance evaluation was
realized by experimenting with different sets of features and it
showed that the method can provide "reasonable" compromise
between detection rate (TPR) and FPR. As an illustration the
system is generally able to provide detection rates over 87%
for the FPR under 20%. The proposed framework is targeting
C&C servers by trying to detect the bots activity in the second
phase of the botnet life-cycle. The method is independent from
the C&C protocol, and packet content of the network traffic.
Additionally, the authors argue that the method is able to
provide on-line operation. Base on the presented the system
is vulnerable on several evasion techniques such as: time-
based evasion (strong indication), evasion by flow perturbation
(strong indication), evasion by coordinating bots out of band
(strong indication).

B. Client-based detection methods

Within this chapter two client-based detection systems
are described. These systems strongly rely on network traffic

TABLE IV. THE OVERVIEW OF EVASION TACTICS FOR PARTICULAR DETECTION APPROACH

Detection Method Evasion tactics

ET1 ET2 ET3 ET4 ET5 ET6 ET7 ET8
Livadas et al. [71] - - - SF - - - -
Strayer et al. [72] - - SF SF - - SF -
G.Gu et al. [73] - - SF SF SF WF SF -
Husna et al. [74] - SF SF - SF - - -
Noh et al. [75] - - SF SF WF WF - -
Nogueira et al. [76] - - SF SF - - - -
Liu et al. [77] - - SF SF SF - SF -
Liao et al. [78] - - - SF - - -
Yu et al. [79] - - SF SF - - -
Langin et al. [80] - - - - - - - -
H.Choi et al. [81] - - SF WF - - SF SF
Sanchez et al. [82] - - - - - - - -
Chen et al. [83] - - SF SF - - - -
Saad et al. [84] - - SF SF - - - -
Zhang et al. [85] - - SF SF - - - SF
W.Lu et al. [86] - SF SF SF - - - -
Bilge et al. [87] - - SF SF - - - SF
Masud et al. [45] SF SF SF SF - - - -
Shin et al. [44] SF - SF SF WF - - WF
Zeng et al. [46] SF - SF SF - WF SF -
Comment: SF - strong factor, WF - weak factor

analysis for the detection of bot presence at the point of
compromised computer.

Masud et al. (2008) [45] proposed a client-based detection
method that analyse both traffic produced by host computer
and application execution at host computer. The method is
based on correlating multiple log files and applying MLAs
for detection of C&C traffic. The main assumption behind
the proposed approach is that bots respond much faster than
humans and that command latency is therefore much lower
for C&C communication than in the case of non malicious
applications.

The proposed detection is implemented in accordance with
the general scenario of using supervised machine learning for
botnet detection. The system monitors two types of bot-related
forensics: network traffic traces and application execution logs.
The network traffic traces include all network packets that
are sent or received by the host, while application execution
logs contain the start time of program executions on the host
machine. Both network and application traces are correlated
and pre-processed by the pre-processing entity. As a result of
pre-processing several features of traffic flows are extracted.
Using the extracted features supervised MLA learns the model
of the malicious flows. The trained model is then used to
classify novel flows as malicious or not-malicious.

MLA and features used: The approach implements five dif-
ferent classifiers: SVM (Support Vector Machine), Bayes net-
work classifier, C4,5 decision tree, Naive Bayes and Boosted
decision tree [65]. Different MLA are compared by their
performances of classifying traffic flows as bot-related flows
or not bot-related flows. The MLA algorithms use a number of

features extracted by correlation of two log files. The features
can be divided into two groups: Packet-based features that
are calculated for every packet in the flow and Flow-based
features calculated for every flow. Packet-based features are:
BR (categorical) - indication of potential incoming command
packet i.e. if the time difference between packet coming from
and going to certain IP:port par is smaller than 100ms, BRtime
(numeric) - time difference between BR packet and its corre-
sponding outgoing packet, BRsize (numeric) - length of BR
packet, BO (categorical) - indication of packet that originates
from IP:port pair and that there is a packet going to IP’:port’
pair in a period shorter than 200ms, BoDestMatch (categorical)
- indicator that payload of BO packet contains IP’ address,
BOtime (numeric) - time difference between BR packet and its
corresponding outgoing packet, BA (categorical) - indicator for
an incoming packet there is an application that is started within
3 seconds, BAtime (numeric) - time difference between arrival
of BA packet and the launching of corresponding application,
and BAMatch (categorical) - indicator that in the payload of
BA packet contains name of corresponding application. The
flow based features are: average and variance of length of the
packets in kB, number of BA packets as percentage of total
number of packets, average and variance of BAtime of all BA
packets, number of BR packets as percentage of total packets,
average and variance of BRtime of all BR packets, average and
variance of BRsize of all BR packets, number of BO packets
as percentage of total packets, and average and variance of
BOtime of all BO packets. All flow-based features are numeric
in nature.

Performance evaluation: The system uses data obtained
from a controlled network environment as in Scenario 2. The

system is first trained with log files obtained from the infected
host, and tested using the logs obtained from both infected and
uninfected machines. For the purpose of evaluation, only two
IRC bots were used: SDBot and RBot, where both training
and testing data sets contained traces from both bot samples.
On the testing data set the framework showed high accuracy
of detection (over 95%), low false positive rate (under 3%)
and low false negative rate (under 5%) for all of the applied
MLA. However Boosted decision tree showed the best overall
performances. The method analyses traffic on flow level by tar-
geting individual bots and the communication phase of botnet
life cycle. It does not put any restriction regarding topology
and deployed communication protocol. However the method
relies on access to payload content, so it could be defeated by
encryption of C&C channel. Additionally, the method has not
been tested on non-IRC bots so its ability to tackle modern
bots has not been proved yet. Finally, the presented method is
vulnerable to the various evasion techniques: evasion by traffic
encryption (weak indication), evasion by flow perturbation
(strong indication) and evasion by evading the client based
detection (weak indication).

Shin et al. (2012) proposed EFFORT [44], a cooperative
host-based detection framework, based on intrinsic characteris-
tics of bots from both client and network levels. The proposed
framework is implemented as a multi-module approach that
correlates bot-related indications from different client and
network level aspects, in order to provide more effective
and efficient detection. The overall architecture of EFFORT
consists of five modules (namely M1, M2,M3,M4, and M5).
Module M1 provides an initial gathering of the observation
that are then used in the modules M2, M3 and M4 in order to
generate individual assessment of existence of bots existence.
The observations are then forwarded to the module M5 that
correlates them giving the final decision if the processes are
malicious or not.

Module M1 finds bot-driven processes as well as bot-
related network occurrences within the host computer. This
module captures outgoing network connections produced by
processes running as well as human-process interaction. Out-
going traffic is captured by observing DNS queries while
human-process interaction is captured by recording system
calls related to the keyboard and mouse actions. The two
information are then combined creating a model that describes
what network activities are characteristic for the observed
process. The model employs three metrics: the time difference
between the time when a process issues a DNS query and
the time when a process produces a mouse or keyboard event,
the source of the events, and the indication whether a process
is running in the foreground at the time. The process event
is regarded as generated from human, if the time difference
is very small, the event is from actual physical devices, and
the process is running in the foreground. Indications obtained
by Module M1 are forwarded to the modules M2, M3 and
M4 that perform detection of malicious processes. Module M2
classifies DNS traffic produced by processes as malicious or
non-malicious. Module M3 classifies malicious behaviour of
processes within the host machine. Module M4 is monitoring
the traffic generated by the specific processes on the hosts
network interface. The module employs a simple method of
comparing incoming packets and bytes exchange rate between
process and remote site. If the exchange ratio is smaller than

some predefined threshold bot behaviour is indicated. After
each module (Module M2-M4) makes its own decision, the
correlation engine (Module M5) will combine these results
and make a final decision using a weighted voting scheme.

MLA and features used: Module M2 employs supervised
MLA in order to classify queried domain names as malicious
or benign. SVM (Support Vector Machine) [65] is used, while
several features are considered for the classification. Based
on the domain black lists and whois service five features are
considered: time difference between current date and domain
expiration date - numeric value (most malicious domains are
registered very recently), time difference between domain -
numeric value (most malicious domains have short life time),
number of domain registration - numeric value (malicious
domains are typically registered to few name servers), and indi-
cator whether a target domain can be found on blacklist or not
- categorical value (malicious domains are likely on blacklist).
Based on the search engines two additional features are used:
indicator if the domain names are contacted by the process
well indexed (thus returning many results) - categorical value,
and indicator are the domain queried by the process frequently
used in a malicious context in the top returned web pages -
categorical value. Module M3 also uses supervised learning to
classify malicious behaviour within the host computers. This
module detects the bot malware presence by examining the
usage of host computer resources. The module models benign
processes using several heuristics such as: typically normal
processes rarely access files in other user’s folders and system
directories, typically normal processes do not modify critical
registries, and typically normal processes do not create a large
number of sockets in a short time period. For modelling of
benign behaviour of processes One Class SVM (OCSVM) [65]
was used.

Performance evaluation: Performances of the method have
been evaluated through a set of experiments where bot-related
data was gathered in accordance with Scenario 3, while begin
forensic is gathered from several uninfected machines. For
testing purposes, 15 different real-world bot binaries were
used, covering both centralized and decentralized botnets. The
system managed to detect all bots used within experiments
producing low FPR (less than 1%). The framework is targeting
individual bots covering second and third phase of bot life
cycle. Additionally, the method has a number of advantages
such as, independence from topology and deployed communi-
cation protocol, and ability to detect encrypted and obscured
protocols. However the method is vulnerable on several eva-
sion techniques: time-based evasion (strong indication), host-
based evasion (strong indication), time-based evasion (strong
indication), evasion by flow perturbation (strong indication),
evasion by performing a subset of attacks (weak indication)
and coordinating bots out of band (weak indication).

C. Hybrid detection methods

Although several groups of authors [47]–[50] have pro-
posed hybrid detection systems, to the best of our knowledge
only Zeng et al. [46], [99] have actually implemented it. The
system uses MLAs for inferring about bot existence on both
network and client level, where client level detection entity
heavily rely on traffic analysis.

Zeng et al. (2010) [46], [99] proposed a hybrid detection
approach that provides botnet detection by combining client-
and network-level information. The approach is based on
the assumption that two sources of bot-related information
will complement each other in making detection decisions.
The framework first identifies suspicious hosts by discovering
similar behaviours among different hosts using flow analysis,
and then validates identified suspects to be malicious or not by
scrutinizing their in-host behaviour. The approach is assuming
that bots within the same botnet have similar traffic patterns i.e.
traffic flows with similar pattern and that this occurrence can
be captured by network-based detection. The flows that exhibit
similar characteristics are marked as suspicious, and they are
referred to as triggering flows. The approach then associates all
subsequent flows with each triggering flow on a host-by-host
basis, checking the similarity among those associated groups.
If multiple hosts behave similarly in the trigger-action patterns,
they are grouped into the same suspicious cluster as likely
to belong to the same botnet. Whenever a group of hosts
is identified as suspicious by the network analysis, the host-
behaviour analysis results, based on a history of monitored
host behaviours, are reported. A correlation algorithm finally
assigns a detection score to each host under inspection by con-
sidering both network and host behaviours. The architecture of
the proposed system is consisting of three components: host
analyser, network analyser, and correlation engine.

MLA and features used: The network analyser consists of
two modules: flow analyser and clustering. The flow analyser
takes the NetFlow data from a router as input and searches
for trigger-action botnet-like flow patterns among different
hosts. The clustering is realized by unsupervised learning i.e.,
hierarchical clustering [67]. For every flow a set of 17 numeric
features were used: the mean, variance, skewness and kurtosis
of duration of flow, total number of bytes per flow, total number
of packets per flow, the number of TCP flows, the number of
UDP Flows, the number of SMTP flows, the number of unique
IPs contacted and the number of suspicious ports. The feature
vector is fed to the clustering module that groups similarly-
behaving flows into the same cluster.

MLA and features used: The host analyser is deployed at
every host and it consists of two modules: in-host monitor and
suspicion-level generator. The in-host monitor is tracking run-
time system-wide behaviour taking place in the registry, file
system, and network stack on a host. To quantify suspicious
level based on the observed host-based features, supervised
MLA i.e. SVM (Support Vector Machine) is used. Nine
different features are observed for this purpose: the indicator
of DLL or EXE creation in system directory (categorical), the
indicator of modification of files in system directory (categor-
ical), the indicator of the creation of auto run key in registry
(categorical), the indicator of the creation of process injection
key in registry (categorical), the indicator of modification
of critical registry keys (categorical), the number of ports
opened (numeric), the number of suspicious ports (numeric),
the number of unique IPs contacted (numeric) and the number
of SMTP flows (numeric). Suspicious-level generator generates
a suspicion-level by applying a machine learning algorithm
based on the behaviour reported at each time window. The host
analyser sends the average suspicion-level along with a few
network feature statistics to the correlation engine, if required.

Performance evaluation: The system used bot-related data
obtained from both Scenarios 2 and 3. For testing, 6 bot sam-
ples were used such as: IRC (rbot, spybot), HTTP (BobaxA,
BobaxB) and P2P (Storm, Waledac) bots. Non-malicious traffic
is recorded from the campus network. On the testing data
set the framework showed low FPR (under 0.16%) and rel-
atively low FNR (12.5%). The method generally targets group
activities of botnets and it covers both communication and
attack phase of botnet life-cycle. The approach is independent
from the C&C protocol, topology and content of transmitted
data. The main limitation of the approach is that it cannot
detect individual hosts and that it operates in time windows.
Based on the presented, the method is liable on following
evasion techniques: time-based evasion (strong indication),
evasion by flow perturbation (strong indication), host based
evasion techniques (strong indication), cross-host clustering
(strong indication) and restricting number of attack targets
(weak indication).

VI. DISCUSSION

Based of the analysis of detection approaches presented in
the previous section several challenges of comparing the con-
temporary detection methods can be identified. First, different
approaches assume different botnet traffic heuristics, providing
different flexibility and generality of detection. Second, the
approaches use different MLAs implemented in diverse ways
and various setups. Third, the approaches are tested end
evaluated using diverse evaluation datasets. Finally, the meth-
ods promise different performances that are expressed using
somewhat different performance metrics. All of this make
direct comparison of the approaches difficult and sometimes
even impossible. Therefore, instead of comparing the methods,
this section summarizes the characteristics and the capabilities
of existing detection methods outlining the possibilities of
using machine learning for identifying the presence of botnets
and indicating the space for further improvements and future
work.

A. Characteristics of the approaches

As presented in Table I, the majority of detection ap-
proaches addressed by this review are purely network-based,
thus analysing network traffic recorded at an "edge" of a
network. Depending on the point of implementation the ma-
jority of the approaches are suitable for operating on LAN
networks [44]–[46], [75]–[80], [84], [85], some on campus
networks [71], [73], [81], [82], [85], [88] while only a few on
ISP networks [81], [86], [87]. The main difference between
the points at which the methods are implemented is the exact
scope of network that is visible form the point of traffic
monitoring. For instance, a detection system implemented at
the core network router has more comprehensive outlook on
the behaviour of bots within a certain botnet, than the detection
system implemented at a gateway connecting a local network
to the Internet. By the same token, the client-based techniques
addressed in this survey [44], [45] are only able to catch
network traffic produced by the individual bots.

The detection methods usually target individual bots or
group behaviour of bots within the botnet, while some methods
alternatively target malicious C&C servers. The techniques that
target the group behaviour of bots [46], [73], [77], [81] or

the C&C servers [87] cannot detect individual bots within the
monitored network and they usually require to be implemented
in the higher network tiers from which a broader network scope
is visible. However, this methods provide more comprehensive
insight on dynamics of the botnet behaviour and regularities
of botnet traffic.

As the majority of the approaches operate at the LAN
network targeting individual compromised hosts, there is a
clear need for the development of approaches that can operate
on core ISP networks, thus covering the larger network scope
and consequently being able to catch activity of higher number
of bots. As applying detection systems on high-speed networks
requires detection algorithm that is capable of processing large
quantities of data in an efficient manner, special emphasis
should be place on development of computationally and time
efficient detection algorithms.

The analysed detection methods are based on diverse botnet
traffic heuristics, consequently having different characteristics
regarding generality of operation. The methods target either
the communication, the attack or both phases of botnet life-
cycle, by modelling characteristics of traffic produced during
them. However, none of the techniques covers the infection
phase, which makes the machine learning-based techniques
somewhat lacking behind some of the existing IDSs [56],
[57] and anomaly-based botnet detection systems [55], [59].
Additionally, the techniques that only cover the attacks phase
of the botnet life-cycle [74], [82] are dependent on the specific
attack campaigns thus detecting only botnets that implement
certain malicious activity (in this case botnets sending SPAM
messages).

Some of the methods are independent of C&C commu-
nication [44], [46], [73], [74], [76], [82], [83], [87], while
other methods target specific types of botnets, such as IRC-
based [45], [71], [72], [79], [86] and P2P-based [75], [77],
[78], [80], [84], [85] botnets by relying on specific heuristics
of IRC and P2P C&C channels. Additionally, some of the
techniques such [81] detect botnets by malicious use of DNS
services, limiting its scope to botnets that rely on DNS for
discovering addresses of C&C servers.

The approaches addressed by the survey are generally
independent from the payload content, therefore having a sig-
nificant prevalence over conventional signature based detection
methods [55]–[57]. Only three techniques [45], [74], [86] rely
on content of the payload thus being easily defeated by the
encryption or the obfuscation of the packet payload.

Timely detection by on-line operation is promised by only
a couple of approaches. However, as indicated in Section IV,
the requirements of timely detection are not precisely defined,
and the question of how prompt detection should be is still
unanswered. Some of the contemporary detection approaches
provide the on-line functioning by operating in a time window
and then being periodically trained using the new training set
or by periodically updating the clusters of the observation [76],
[81], [88]. Others, as [79], [83] use adaptive MLAs in order
to provide the adaptive and on-line detection. Finally, some
methods such as [87] argue that they are capable on-line
detection, based on the fact that they are able to process the
data in the shorter time than the actual length of the traffic
traces. One of the important goals of future detection systems

is to define requirements of timely detection and develop
methods that are able to operate in on-line fashion. These
systems should also be able to adapt to the changes in network
traffic patterns and they should improve their efficiency so they
could be implemented in core networks.

B. MLAs used within the approaches

The existing techniques use a variety of machine learning
algorithms deployed in diverse setups. In total 16 different
MLAs were used within the 20 analysed approaches. As
presented in Table II, supervised and unsupervised MLAs
are evenly distributed between the methods. Some of the
approaches experimented with more than one MLA providing
the good insight on how the assumed heuristics hold in differ-
ent learning scenarios as well as what are the performances
of different MLAs [45], [71], [74], [78], [84], [86]–[88].
Additionally, some authors used MLAs in more advanced
setups, where clustering of observation is realized through two
level clustering schemes [73], [85] or where the findings of
independent MLAs were correlated in order to pinpoint the
malicious traffic pattern [44], [46], [73]. Several authors used
the same MLAs within their detection systems [45], [71], [78],
[84], [88] so their direct comparison is possible, to the large
extent.

The MLAs analyse traffic on both packet and flow levels
using an array of host- and flow-based network traffic features.
As indicated in the Section III, the processes of extracting and
choosing the right features set are crucial to the performances
of the detection system. Therefore, one of the most important
goals of the future work is optimization of the chosen feature
set so it can capture the targeted botnet traffic heuristics. Ad-
ditionally, within detection systems that require the processing
of high traffic loads significant resources should be dedicated
to the extraction of the features that will be used within the
MLAs [87]. Therefore, the future work should also be directed
at development of time and computationally efficient data pre-
processing.

The performances of MLAs differ so some of the su-
pervised MLAs algorithms, such as decision tree classifiers
perform very well in terms of time and computational require-
ments of building the model and classifying new traffic obser-
vation. Others, such as ANN and SVM although providing the
precise classification are more performance demanded. Perfor-
mances of data clustering using unsupervised MLAs highly
depend on the number of features and the number of clusters
used within algorithms. However, the approaches addressed
by this paper do not provide the sufficient information on the
performances of MLAs and pre-processing of data adding to
the difficulties of assessing the scalability of the approaches.
Therefore, the future work should be directed at exploring the
efficiency of different classification and clustering algorithms
on extensive botnet traffic dataset.

C. Performances evaluation

Due to the challenges of obtaining training and testing
data, the evaluation of the proposed botnet detection systems
is one of the most challenging tasks within the development
of detection methods. As it can be seen from the Table III the
botnet traffic traces used within the approaches were obtained

both by labelling traffic traces [74], [81], [83], [86], [87] as
well as by combining malicious and non malicious traffic
traces. Malicious botnet traffic traces were obtained through
all three scenarios (as presented in Section IV), while the
background data is usually recorded on the campus or LAN
networks. However, the use of the background traffic recorded
on the LAN or campus network raises concerns regarding the
representativeness of such data and the validity of performance
evaluation. This is due to the fact that the network traffic
produced in the controlled LAN environment do not capture
the traffic patterns of "usual" usage of the Internet, while traffic
on campus networks is usually filtered so some of the traffic
protocols and network services are blocked.

In addition, the malicious traffic samples are usually
recorded from a very limited number of bot samples. For
instance, the performances of only four detection approaches
were evaluated on the traffic traces produced by more than 5
bot sample [44], [46], [73], [83], while the maximal number
of samples used for evaluation was 15 in case of [44]. The
rest of the methods were tested with less than 4 bot malware
samples. The poor number of bot samples can be explained
due to many legal, ethical and practical limitations of getting
the botnet traffic traces. However, the small number of used
bot samples indicates the need for more thorough testing where
more comprehensive set of malware samples would be used,
in order to prove that the detection system is not only able to
model traffic of couple of botnets but also to generalize the
inferred knowledge.

In addition to the diverse evaluation practices, the perfor-
mances of the approaches are also expressed using different
performance metrics. As the methods use different evaluation
practices and testing datasets, they cannot be directly com-
pared using the presented metrics. However, the presented
performance metrics still indicate the overall performances of
the particular approach in identifying botnet traffic, showing
the great perspective of using machine learning for botnet
detection.

As illustrated in Table IV, the proposed approaches are
more or less liable on the different evasion techniques. Gen-
erally, a majority of the the methods are resistant to evasion
by encryption of botnet traffic. Only three approaches [45],
[74], [86] that use features of packet payloads are vulnerable
on this evasion strategy. However, a majority of techniques are
liable on evasion by flow perturbation, due to the fact that they
analyse traffic on the flow level. The techniques that operate
in the time window and especially the ones that promise
the on-line operation are vulnerable on time-based evasion.
The analysed client-based [44], [45] and hybrid [46] based
techniques are vulnerable on evasion techniques that target
the monitoring of the internals of a host computer. As this
study does not address the complexities of evasion techniques
and its effect on the overall utility of the botnet, the future
work could be directed at more thorough analysis of evasion
techniques and vulnerability of modern detection systems to
them, covering effect of evasion techniques to both detection
systems and overall utility of the botnet.

VII. CONCLUSION

Botnet detection based on machine learning has been the
subject of interest of the research community resulting in

the numerous detection methods that are based on different
botnet heuristics, that target different types of botnets using
diverse machine learning algorithms and that consequently
provide varying performances of detection. This paper presents
a review of some of the most prominent contemporary bot-
net detection methods that use machine learning as a tool
of identifying botnet-related traffic. The presented study ad-
dresses 20 detection methods, proposed over the last decade.
The methods have been analysed by investigating bot-related
heuristic assumed by the detection systems and machine
learning techniques used in order to capture botnet-related
knowledge. Furthermore, the methods have been examined by
analysing their characteristics, performances, and limitations.
The analysis of these detection approaches indicates a strong
ability of this class of approaches to be used for identifying
botnet network traffic. However, the study also indicates sev-
eral aspects of machine learning-based approaches that could
be further improved.

First, the modern machine learning-based detection systems
should aim at achieving data-adaptive, on-line and efficient
detection. The approach should be able to adapt to the
changing patterns of botnet traffic, and it should operate in
the on-line fashion in order to provide timely detection and
fulfil requirements of prompt botnet neutralization. Finally, the
detection methods should be time and computationally efficient
so they could be successfully deployed at core networks,
covering larger network scopes and providing more thorough
insight on traffic produced by botnets.

Second, the comprehensive testing and evaluation of the
proposed detection systems is needed, where more comprehen-
sive data sets would be used, covering malicious traffic origi-
nating from higher number of botnets and non-malicious traffic
that capture "true" nature of the Internet traffic. Additionally,
evaluation should not only concentrate on the assessment of
the accuracy of detection but also on the assessment of the
performances of data pre-processing and the machine learning
algorithms, so qualified judgement on detection performances
and the scalability of methods could be made.

REFERENCES

[1] Hogben, G. (ed.), Botnets: Detection, measurement, disinfection and
defence, Tech. rep., ENISA (2011).

[2] M. Egele, T. Scholte, E. Kirda, C. Kruegel, A survey on automated
dynamic malware-analysis techniques and tools, ACM Comput. Surv.
44 (2) (2008) 6:1–6:42. doi:10.1145/2089125.2089126.

[3] P. R. Marupally, V. Paruchuri, Comparative analysis and evaluation of
botnet command and control models, in: Proceedings of the 2010 24th
IEEE International Conference on Advanced Information Networking
and Applications, AINA ’10, IEEE Computer Society, Washington, DC,
USA, 2010, pp. 82–89. doi:10.1109/AINA.2010.171.

[4] H. Zeidanloo, A. Manaf, Botnet command and control mecha-
nisms, in: Computer and Electrical Engineering, 2009. ICCEE ’09.
Second International Conference on, Vol. 1, 2009, pp. 564 –568.
doi:10.1109/ICCEE.2009.151.

[5] D. Dittrich, S. Dietrich, P2p as botnet command and control: a deeper
insight, in: Proceedings of the 3rd International Conference On Malicious
and Unwanted Software (Malware 2008), 2008, pp. 46–63.

[6] M. A. Rajab, J. Zarfoss, F. Monrose, A. Terzis, A multifaceted approach
to understanding the botnet phenomenon, in: Internet Measurement
Conference, 2006, pp. 41–52. doi:10.1145/1177080.1177086.

[7] M. A. Rajab, J. Zarfoss, F. Monrose, A. Terzis, My botnet is bigger than
yours (maybe, better than yours): why size estimates remain challenging,
in: Proceedings of the first conference on First Workshop on Hot Topics

in Understanding Botnets, HotBots’07, USENIX Association, Berkeley,
CA, USA, 2007, pp. 5–5.

[8] S. Liu, J. Gong, W. Yang, A. Jakalan, A survey of botnet
size measurement, in: Networking and Distributed Computing (IC-
NDC), 2011 Second International Conference on, 2011, pp. 36 –40.
doi:10.1109/ICNDC.2011.15.

[9] S. S. Silva, R. M. Silva, R. C. Pinto, R. M. Salles, Botnets: A survey,
Computer Networks 1 (0) (2012) –. doi:10.1016/j.comnet.2012.07.021.

[10] M. Bailey, E. Cooke, F. Jahanian, Y. Xu, M. Karir, A survey of botnet
technology and defenses, in: Conference For Homeland Security, 2009.
CATCH ’09. Cybersecurity Applications Technology, 2009, pp. 299 –
304. doi:10.1109/CATCH.2009.40.

[11] C. Li, W. Jiang, X. Zou, Botnet: Survey and case study, in: Innovative
Computing, Information and Control (ICICIC), 2009 Fourth International
Conference on, 2009, pp. 1184 –1187. doi:10.1109/ICICIC.2009.127.

[12] N. Ianelli, A. Hackworth, Botnets as a vehicle for cyber crime, Tech.
rep., CERT Coordination Centre (2005).

[13] J. Liu, Y. Xiao, K. Ghaboosi, H. Deng, J. Zhang, Botnet: classification,
attacks, detection, tracing, and preventive measures, EURASIP J. Wirel.
Commun. Netw. 2009 (2009) 9:1–9:11. doi:10.1155/2009/692654.

[14] M. Feily, Shahrestani, A survey of botnet and botnet detection,
Emerging Security Information, Systems and Technologies, 2009.
SECURWARE ’09. Third International Conference on (2009) 268–
273doi:10.1109/SECURWARE.2009.48.

[15] H. Zeidanloo, M. Shooshtari, P. Amoli, M. Safari, M. Zamani, A
taxonomy of botnet detection techniques, in: Computer Science and
Information Technology (ICCSIT), 2010 3rd IEEE International Confer-
ence on, Vol. 2, 2010, pp. 158 –162. doi:10.1109/ICCSIT.2010.5563555.

[16] Z. Zhu, G. Lu, Y. Chen, Z. Fu, P. Roberts, K. Han, Botnet re-
search survey, in: Computer Software and Applications, 2008. COMP-
SAC ’08. 32nd Annual IEEE International, 2008, pp. 967 –972.
doi:10.1109/COMPSAC.2008.205.

[17] L. Zhang, S. Yu, D. Wu, P. Watters, A survey on latest botnet
attack and defense, in: Trust, Security and Privacy in Computing and
Communications (TrustCom), 2011 IEEE 10th International Conference
on, 2011, pp. 53 –60. doi:10.1109/TrustCom.2011.11.

[18] M. Masud, L. Khan, B. Thuraisingham, Data Mining Tools for Malware
Detection, Taylor & Francis Group, 2011.

[19] S. Dua, X. Du, Data mining and machine learning in cybersecu-
rity., Boca Raton, FL: CRC Press. xxii, 234 p. $ 89.95 , 2011.
doi:10.1201/b10867.

[20] J. Nazario, T. Holz, As the net churns: Fast-flux botnet ob-
servations, in: Malicious and Unwanted Software, 2008. MAL-
WARE 2008. 3rd International Conference on, 2008, pp. 24 –31.
doi:10.1109/MALWARE.2008.4690854.

[21] T. Holz, C. Gorecki, K. Rieck, F. C. Freiling, Measuring and detecting
fast-flux service networks, in: Proceedings of the Network and Dis-
tributed System Security Symposium, NDSS 2008, San Diego, Califor-
nia, USA, 10th February - 13th February 2008, 2008, pp. 8–8.

[22] M. Antonakakis, J. Demar, C. Elisan, J. Jerrim, Dgas and cyber-
criminals: A case study, Tech. rep., Damballa (2012).

[23] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, D. Dagon, Peer-
to-peer botnets: overview and case study, in: Proceedings of the first
conference on First Workshop on Hot Topics in Understanding Botnets,
HotBots’07, USENIX Association, Berkeley, CA, USA, 2007, pp. 1–1.

[24] P. Wang, S. Sparks, C. C. Zou, An advanced hybrid peer-to-peer botnet,
in: Proceedings of the first conference on First Workshop on Hot Topics
in Understanding Botnets, HotBots’07, USENIX Association, Berkeley,
CA, USA, 2007, pp. 2–2.

[25] Z. Zhang, B. Lu, P. Liao, C. Liu, X. Cui, A hierarchical hybrid structure
for botnet control and command, in: Computer Science and Automation
Engineering (CSAE), 2011 IEEE International Conference on, Vol. 1,
2011, pp. 483 –489. doi:10.1109/CSAE.2011.5953266.

[26] G. Gu, Correlation-based botnet detection in enterprise networks, phd
thesis, Ph.D. thesis, Georgia Institute of Technology (July 2008).

[27] P. Maymounkov, D. Mazières, Kademlia: A peer-to-peer information
system based on the xor metric, in: Revised Papers from the First
International Workshop on Peer-to-Peer Systems, IPTPS ’01, Springer-
Verlag, London, UK, UK, 2002, pp. 53–65.

[28] J. Pouwelse, P. Garbacki, D. Epema, H. Sips, The bittorrent p2p file-
sharing system: Measurements and analysis, in: M. Castro, R. Renesse
(Eds.), Peer-to-Peer Systems IV, Vol. 3640 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2005, pp. 205–216.

[29] K. Kutzner, T. Fuhrmann, Measuring large overlay networks âĂŤ the
overnet example, in: P. MÃijller, R. Gotzhein, J. Schmitt (Eds.), Kom-
munikation in Verteilten Systemen (KiVS), Informatik aktuell, Springer
Berlin Heidelberg, 2005, pp. 193–204.

[30] G. Sinclair, C. Nunnery, B.-H. Kang, The protocol: The how
and why, in: Malicious and Unwanted Software (MALWARE),
2009 4th International Conference on, 2009, pp. 69 –77.
doi:10.1109/MALWARE.2009.5403015.

[31] R. Perdisci, I. Corona, D. Dagon, W. Lee, Detecting malicious flux
service networks through passive analysis of recursive dns traces, in:
Proceedings of the 2009 Annual Computer Security Applications Con-
ference, ACSAC ’09, IEEE Computer Society, Washington, DC, USA,
2009, pp. 311–320. doi:10.1109/ACSAC.2009.36.

[32] Damballa, A new iteration of the tdss/tdl4 malware using dga-based
command-and-control, Tech. rep., Damballa (2012).

[33] I. You, K. Yim, Malware obfuscation techniques: A brief survey,
in: Broadband, Wireless Computing, Communication and Applications
(BWCCA), 2010 International Conference on, 2010, pp. 297 –300.
doi:10.1109/BWCCA.2010.85.

[34] J. Marpaung, M. Sain, H.-J. Lee, Survey on malware evasion techniques:
State of the art and challenges, in: Advanced Communication Technology
(ICACT), 2012 14th International Conference on, 2012, pp. 744 –749.

[35] E. Stinson, J. C. Mitchell, Towards systematic evaluation of the
evadability of bot/botnet detection methods, in: Proceedings of the 2nd
conference on USENIX Workshop on offensive technologies, WOOT’08,
USENIX Association, Berkeley, CA, USA, 2008, pp. 5:1–5:9.

[36] B. Blunden, The Rootkit Arsenal: Escape and Evasion in the Dark
Corners of the System, Jones and Bartlett Publishers, Inc., USA, 2009.

[37] T. Arnold, T. A. Yang, Rootkit attacks and protection: a case study of
teaching network security, J. Comput. Sci. Coll. 26 (5) (2011) 122–129.

[38] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian,
J. Nazario, Automated classification and analysis of internet malware., in:
C. KrÃijgel, R. Lippmann, A. Clark (Eds.), RAID, Vol. 4637 of Lecture
Notes in Computer Science, Springer, 2007, pp. 178–197.

[39] E. Stinson, J. C. Mitchell, Characterizing bots’ remote control behavior,
in: W. Lee, C. Wang, D. Dagon (Eds.), Botnet Detection, Vol. 36 of
Advances in Information Security, Springer, 2008, pp. 45–64.

[40] L. Liu, S. Chen, G. Yan, Z. Zhang, Bottracer: Execution-based bot-like
malware detection, in: Proceedings of the 11th international conference
on Information Security, ISC ’08, Springer-Verlag, Berlin, Heidelberg,
2008, pp. 97–113.

[41] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou,
X. Wang, Effective and efficient malware detection at the end host, in:
Proceedings of the 18th conference on USENIX security symposium,
SSYM’09, USENIX Association, Berkeley, CA, USA, 2009, pp. 351–
366.

[42] U. Bayer, P. M. Comparetti, C. Hlauschek, C. KrÃijgel, E. Kirda,
Scalable, behavior-based malware clustering., in: NDSS, The Internet
Society, 2009, pp. 5–5.

[43] Y. Park, Q. Zhang, D. Reeves, V. Mulukutla, Antibot: Clustering
common semantic patterns for bot detection, in: Computer Software and
Applications Conference (COMPSAC), 2010 IEEE 34th Annual, 2010,
pp. 262 –272. doi:10.1109/COMPSAC.2010.33.

[44] S. Shin, Z. Xu, G. Gu, EFFORT: Efficient and Effective Bot Malware
Detection, in: Proceedings of the 31th Annual IEEE Conference on
Computer Communications (INFOCOM’12) Mini-Conference, 2012, pp.
71–80.

[45] M. Masud, T. Al-khateeb, L. Khan, B. Thuraisingham, K. Hamlen,
Flow-based identification of botnet traffic by mining multiple log
files, in: Distributed Framework and Applications, 2008. DFmA
2008. First International Conference on, 2008, pp. 200 –206.
doi:10.1109/ICDFMA.2008.4784437.

[46] Y. Zeng, X. Hu, K. Shin, Detection of botnets using combined host-
and network-level information, in: Dependable Systems and Networks
(DSN), 2010 IEEE/IFIP International Conference on, 2010, pp. 291 –
300. doi:10.1109/DSN.2010.5544306.

[47] H. Wang, Z. Gong, Collaboration-based botnet detection architecture,
in: Proceedings of the 2009 Second International Conference on Intel-
ligent Computation Technology and Automation - Volume 02, ICICTA
’09, IEEE Computer Society, Washington, DC, USA, 2009, pp. 375–378.
doi:10.1109/ICICTA.2009.326.

[48] H. Wang, J. Hou, Z. Gong, Botnet detection architecture based on
heterogeneous multi-sensor information fusion, Journal of Networks
6 (12) (2011) 1655–1661.

[49] M. Szymczyk, Detecting botnets in computer networks using multi-
agent technology, in: Proceedings of the 2009 Fourth International Con-
ference on Dependability of Computer Systems, DEPCOS-RELCOMEX
’09, IEEE Computer Society, Washington, DC, USA, 2009, pp. 192–201.
doi:10.1109/DepCoS-RELCOMEX.2009.46.

[50] R. F. Erbacher, A. Cutler, P. Banerjee, J. Marshall, A multi-layered
approach to botnet detection., in: H. R. Arabnia, S. Aissi (Eds.), Security
and Management, CSREA Press, 2008, pp. 301–308.

[51] A. Karasaridis, B. Rexroad, D. Hoeflin, Wide-scale botnet detection and
characterization, in: Proceedings of the first conference on First Work-
shop on Hot Topics in Understanding Botnets, HotBots’07, USENIX
Association, Berkeley, CA, USA, 2007, pp. 7–7.

[52] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, N. Feamster, Building a
dynamic reputation system for dns, in: Proceedings of the 19th USENIX
conference on Security, USENIX Security’10, USENIX Association,
Berkeley, CA, USA, 2010, pp. 18–18.

[53] D. Dagon, C. Zou, W. Lee, Modeling botnet propagation using time
zones, in: In Proceedings of the 13 th Network and Distributed System
Security Symposium NDSS, 2006, pp. 7–7.

[54] G. Gu, V. Yegneswaran, P. Porras, J. Stoll, W. Lee, Active botnet prob-
ing to identify obscure command and control channels, in: Proceedings of
the 2009 Annual Computer Security Applications Conference, ACSAC
’09, IEEE Computer Society, Washington, DC, USA, 2009, pp. 241–253.
doi:10.1109/ACSAC.2009.30.

[55] G. Gu, P. Porras, V. Yegneswaran, M. Fong, W. Lee, BotHunter:
Detecting malware infection through IDS-driven dialog correlation, in:
Proceedings of the 16th USENIX Security Symposium, San Jose, Cali-
fornia, USENIX Association, 2007, pp. 167–182.

[56] V. Paxson, Bro: a system for detecting network intruders in real-
time, Computer Networks 31 (23ÃćâĆňâĂIJ24) (1999) 2435 – 2463.
doi:10.1016/S1389-1286(99)00112-7.

[57] M. Roesch, Snort - lightweight intrusion detection for networks, in:
Proceedings of the 13th USENIX conference on System administration,
LISA ’99, USENIX Association, Berkeley, CA, USA, 1999, pp. 229–
238.

[58] J. Goebel, T. Holz, Rishi: identify bot contaminated hosts by irc nick-
name evaluation, in: Proceedings of the first conference on First Work-
shop on Hot Topics in Understanding Botnets, HotBots’07, USENIX
Association, Berkeley, CA, USA, 2007, pp. 8–8.

[59] G. Gu, J. Zhang, W. Lee, BotSniffer: Detecting botnet command and
control channels in network traffic, in: Proceedings of the 15th Annual
Network and Distributed System Security Symposium (NDSS’08), 2008,
pp. 1–1.

[60] A. Ramachandran, N. Feamster, D. Dagon, Revealing botnet mem-
bership using dnsbl counter-intelligence, in: Proceedings of the 2nd
conference on Steps to Reducing Unwanted Traffic on the Internet -
Volume 2, SRUTI’06, USENIX Association, Berkeley, CA, USA, 2006,
pp. 8–8.

[61] R. Villamarin-Salomon, J. Brustoloni, Identifying botnets using
anomaly detection techniques applied to DNS traffic, in: Proceedings
of 5th IEEE Consumer Communications and Networking Conference
(CCNC 2008), 2008, pp. 476–481.

[62] R. Villamarín-Salomón, J. C. Brustoloni, Bayesian bot detection based
on dns traffic similarity, in: Proceedings of the 2009 ACM symposium
on Applied Computing, SAC ’09, ACM, New York, NY, USA, 2009, pp.
2035–2041. doi:10.1145/1529282.1529734.

[63] X. Yu, X. Dong, G. Yu, Y. Qin, D. Yue, Y. Zhao, Online botnet detection
based on incremental discrete fourier transform, JNW 5 (5) (2010) 568–
576. doi:http://dx.doi.org/10.4304/jnw.5.5.568-576.

[64] T. M. Mitchell, Machine Learning, 1st Edition, McGraw-Hill, Inc., New
York, NY, USA, 1997.

[65] I. H. Witten, E. Frank, Data Mining: Practical Machine Learning

Tools and Techniques, Second Edition (Morgan Kaufmann Series in
Data Management Systems), Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2005.

[66] S. Kotsiantis, I. Zaharakis, P. Pintelas, Supervised machine learning:
A review of classification techniques, Frontiers in Artificial Intelligence
and Applications 160 (2007) 3.

[67] A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: a review, ACM
Comput. Surv. 31 (3) (1999) 264–323. doi:10.1145/331499.331504.

[68] A. J. Aviv, A. Haeberlen, Challenges in experimenting with botnet de-
tection systems, in: Proceedings of the 4th conference on Cyber security
experimentation and test, CSET’11, USENIX Association, Berkeley, CA,
USA, 2011, pp. 6–6.

[69] T. Honeynet Project (Ed.), Know Your Enemy: Learning about Security
Threats, 2nd Edition, Addison Wesley Publishing, 2004.

[70] N. Provos, T. Holz, Virtual honeypots: from botnet tracking to intrusion
detection, 2nd Edition, Addison-Wesley Professional, 2009.

[71] C. Livadas, R. Walsh, D. Lapsley, W. Strayer, Usilng machine learning
technliques to identify botnet traffic, in: Local Computer Networks,
Proceedings 2006 31st IEEE Conference on, 2006, pp. 967 –974.
doi:10.1109/LCN.2006.322210.

[72] W. T. Strayer, D. Lapsely, R. Walsh, C. Livadas, Botnet detection based
on network behaviour, in: W. Lee, C. Wang, D. Dagon (Eds.), Botnet
Detection, Vol. 36 of Advances in Information Security, Springer, 2008,
pp. 1–24.

[73] G. Gu, R. Perdisci, J. Zhang, W. Lee, Botminer: Clustering analysis of
network traffic for protocol- and structure-independent botnet detection,
in: Proceedings of the 17th conference on Security symposium, 2008,
pp. 139–154.

[74] H. Husna, S. Phithakkitnukoon, S. Palla, R. Dantu, Behavior analysis
of spam botnets, in: Communication Systems Software and Middleware
and Workshops, 2008. COMSWARE 2008. 3rd International Conference
on, 2008, pp. 246 –253. doi:10.1109/COMSWA.2008.4554418.

[75] S.-K. Noh, J.-H. Oh, J.-S. Lee, B.-N. Noh, H.-C. Jeong, Detecting
p2p botnets using a multi-phased flow model, in: Digital Society, 2009.
ICDS ’09. Third International Conference on, 2009, pp. 247 –253.
doi:10.1109/ICDS.2009.37.

[76] A. Nogueira, P. Salvador, F. Blessa, A botnet detection
system based on neural networks, 2010 Fifth International
Conference on Digital Telecommunications 0 (2010) 57–62.
doi:http://doi.ieeecomputersociety.org/10.1109/ICDT.2010.19.

[77] D. Liu, Y. Li, Y. Hu, Z. Liang, A p2p-botnet detection model and algo-
rithms based on network streams analysis, in: Future Information Tech-
nology and Management Engineering (FITME), 2010 International Con-
ference on, Vol. 1, 2010, pp. 55 –58. doi:10.1109/FITME.2010.5655788.

[78] W.-H. Liao, C.-C. Chang, Peer to peer botnet detection using data min-
ing scheme, in: Internet Technology and Applications, 2010 International
Conference on, 2010, pp. 1 –4. doi:10.1109/ITAPP.2010.5566407.

[79] X. Yu, X. Dong, G. Yu, Y. Qin, D. Yue, Data-adaptive clustering
analysis for online botnet detection, in: Computational Science and
Optimization (CSO), 2010 Third International Joint Conference on,
Vol. 1, 2010, pp. 456 –460. doi:10.1109/CSO.2010.214.

[80] C. Langin, H. Zhou, S. Rahimi, B. Gupta, M. Zargham, M. Sayeh,
A self-organizing map and its modeling for discovering malig-
nant network traffic, in: Computational Intelligence in Cyber Secu-
rity, 2009. CICS ’09. IEEE Symposium on, 2009, pp. 122 –129.
doi:10.1109/CICYBS.2009.4925099.

[81] H. Choi, H. Lee, Identifying botnets by capturing group activities in
DNS traffic, Journal of Computer Networks 56 (2011) 20–33.

[82] F. Sanchez, Z. Duan, Y. Dong, Blocking spam by separating end-user
machines from legitimate mail server machines, in: Proceedings of the
8th Annual Collaboration, Electronic messaging, Anti-Abuse and Spam
Conference, CEAS ’11, ACM, New York, NY, USA, 2011, pp. 116–124.
doi:10.1145/2030376.2030390.

[83] F. Chen, S. Ranjan, P.-N. Tan, Detecting bots via incremental ls-svm
learning with dynamic feature adaptation, in: Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and
data mining, KDD ’11, ACM, New York, NY, USA, 2011, pp. 386–394.
doi:10.1145/2020408.2020471.

[84] S. Saad, I. Traore, A. Ghorbani, B. Sayed, D. Zhao, W. Lu, J. Fe-
lix, P. Hakimian, Detecting p2p botnets through network behavior

analysis and machine learning, in: Privacy, Security and Trust (PST),
2011 Ninth Annual International Conference on, 2011, pp. 174 –180.
doi:10.1109/PST.2011.5971980.

[85] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, X. Luo, Detecting stealthy
P2P botnets using statistical traffic fingerprints, in: 2011 IEEE/IFIP 41st
International Conference on Dependable Systems and Networks (DSN),
Hong Kong, IEEE/IFIP, 2011, pp. 121–132.

[86] W. Lu, G. Rammidi, A. A. Ghorbani, Clustering botnet communication
traffic based on n-gram feature selection, Computer Communications 34
(2011) 502–514.

[87] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, C. Kruegel, Disclosure:
detecting botnet command and control servers through large-scale netflow
analysis, in: Proceedings of the 28th Annual Computer Security Appli-
cations Conference, ACSAC ’12, ACM, New York, NY, USA, 2012, pp.
129–138. doi:10.1145/2420950.2420969.

[88] W. Strayer, R. Walsh, C. Livadas, D. Lapsley, Detecting botnets
with tight command and control, in: Local Computer Networks,
Proceedings 2006 31st IEEE Conference on, 2006, pp. 195 –202.
doi:10.1109/LCN.2006.322100.

[89] D. Pelleg, A. Moore, et al., X-means: Extending k-means with efficient
estimation of the number of clusters, in: Proceedings of the Seventeenth
International Conference on Machine Learning, Vol. 1, San Francisco,
2000, pp. 727–734.

[90] S. Wold, K. Esbensen, P. Geladi, Principal component analysis, Chemo-
metrics and Intelligent Laboratory Systems 2 (1) (1987) 37 – 52,
<ce:title>Proceedings of the Multivariate Statistical Workshop for Geol-
ogists and Geochemists</ce:title>. doi:10.1016/0169-7439(87)80084-9.

[91] S. Guha, R. Rastogi, K. Shim, Rock: A robust clustering algorithm for
categorical attributes, in: In Proc.ofthe15thInt.Conf.onDataEngineering,
2000, pp. 7–7.

[92] P. Salvador, A. Nogueira, U. Franca, R. Valadas, Framework for zombie
detection using neural networks, in: Internet Monitoring and Protection,
2009. ICIMP ’09. Fourth International Conference on, 2009, pp. 14 –20.
doi:10.1109/ICIMP.2009.10.

[93] T. Kohonen, The self-organizing map, Proceedings of the IEEE 78 (9)
(1990) 1464–1480.

[94] H. Choi, H. Lee, H. Kim, Botgad: detecting botnets by capturing group
activities in network traffic, in: Proceedings of the Fourth International
ICST Conference on COMmunication System softWAre and middle-
waRE, COMSWARE ’09, ACM, New York, NY, USA, 2009, pp. 2:1–2:8.
doi:10.1145/1621890.1621893.

[95] J. A. Suykens, J. Vandewalle, Least squares support vector machine
classifiers, Neural processing letters 9 (3) (1999) 293–300.

[96] T. Zhang, R. Ramakrishnan, M. Livny, Birch: A new data clustering
algorithm and its applications, Data Mining and Knowledge Discovery
1 (2) (1997) 141–182.

[97] W. Lu, M. Tavallaee, G. Rammidi, A. A. Ghorbani, Botcop: An online
botnet traffic classifier, in: Proceedings of the 2009 Seventh Annual
Communication Networks and Services Research Conference, CNSR
’09, IEEE Computer Society, Washington, DC, USA, 2009, pp. 70–77.
doi:10.1109/CNSR.2009.21.

[98] W. Lu, M. Tavallaee, A. A. Ghorbani, Automatic discovery of botnet
communities on large-scale communication networks, in: Proceedings
of the 4th International Symposium on Information, Computer, and
Communications Security, ASIACCS ’09, ACM, New York, NY, USA,
2009, pp. 1–10. doi:10.1145/1533057.1533062.

[99] Y. Zeng, On detection of current and next-generation botnets, phd thesis,
Ph.D. thesis, The University of Michigan (January 2012).

