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Research paper 

Defect Detection in Synthetic Fibre Ropes using Detectron2 Framework 
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Department of Energy, Aalborg University, Niels Bohrs Vej 8, Esbjerg, 6700, Denmark   
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A B S T R A C T   

Fibre ropes with the latest technology have emerged as an appealing alternative to steel ropes for offshore in-
dustries due to their lightweight and high tensile strength. At the same time, frequent inspection of these ropes is 
essential to ensure the proper functioning and safety of the entire system. The development of deep learning (DL) 
models in condition monitoring (CM) applications offers a simpler and more effective approach for defect 
detection in synthetic fibre ropes (SFRs). The present paper investigates the performance of Detectron2, a state- 
of-the-art library for defect detection and 

instance segmentation. Detectron2 with Mask R-CNN architecture is used for segmenting defects in SFRs. Mask 
R-CNN with various backbone configurations has been trained and tested on an experimentally obtained dataset 
comprising 1,803 high-dimensional images containing seven damage classes (placking high, placking medium, 
placking low, compression, core out, chafing, and normal respectively) for SFRs. By leveraging the capabilities of 
Detectron2, this study aims to develop an automated and efficient method for detecting defects in SFRs, 
enhancing the inspection process, and ensuring the safety of the fibre ropes.   

1. Introduction 

In offshore industries, SFRs made from materials like Dyneema are 
nowadays used by cranes to lift and hoist heavy equipment to the 
platform facilities. These newly developed ropes are lightweight, hy-
drophobic, UV resistant, and offer 15 times higher strength than the 
traditional steel wire ropes (SWRs) (McKenna et al., 2004, Hoppe, 
1997). SWRs must consider their weight when determining the 
maximum depth for payload deployment. Conversely, SFRs like 
Dyneema are naturally more buoyant than steel, allowing payloads to be 
deployed at greater depths using smaller cranes. This has led to a rising 
trend among companies in developing fibre rope cranes customized for 
industrial use. However, due to their prolonged use in critical systems, 
SFRs suffer from plastic wear, abrasive wear, slack strands, and slack 
wires, necessitating continuous testing and evaluation of defects and 
damages to estimate their remaining useful life (RUL) (Feyrer, 2007, 
Ridge et al., 2001, Oland et al., 2017, Onur and ̇Imrak, 2011). Also, SFRs 
present unique challenges for defect detection due to its non-linear 
behavior and susceptible to diverse range of damages during its life-
time such as chafing (abrasion/wear), core out, plackings (loops for-
mation due to strands out), internal breakages, etc., making their 
inspection challenging. Manual inspection of such SFRs is a costly, 
challenging, inefficient, and time-consuming task. Therefore, there is a 

need to develop a faster and more automatic inspection scheme for 
inspecting damages in SFRs, reducing the total maintenance cost. In the 
literature, non-destructive testing (NDT) techniques (Onur and İmrak, 
2011) such as magnetic (Antin et al., 2019, Yan et al., 2017), acoustic 
emission (AE) (Zhang et al., 2006), ultrasound, X-rays, and γ-rays (Casey 
and Taylor, 1985), fibre optics (Huang et al., 2020, Paixao et al., 2021), 
and computer vision method (CVM) (Vallan and Molinari, 2009, Platzer 
et al., 2009) etc. have been used for defect detection in SWRs (Oland 
et al., 2017). (Falconer et al., 2017) utilized CVM to monitor the length 
and width measurements of SFRs under tension testing as a condition 
indicator. Later, (Falconer et al., 2020) combined CVM and thermal 
monitoring during cyclic bend over sheave tests for CM of fibre ropes. 
(Weller et al., 2015) conducted a series of experiments involving a 
mixture of load/unload, harmonic, and steady load tests on SFRs to 
quantify their stiffness and damping properties. (Weller et al., 2015) 
investigated the influence of load on the condition of the rope as a 
performance measurement in the mooring system. (Halabi et al., 2023) 
conducted experiments to investigate the tensile characteristics of SFRs. 
Subsequently, (Halabi et al., 2023) utilized artificial neural network 
(ANN) models to predict the tri-linear stress–strain profiles of the ropes 
under investigation. 

In recent years, DL models have been used for various applications 
such as condition monitoring, image analysis, video surveillance, etc. DL 
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models process data collected from sensors and cameras to detect defects 
or damages. DL models in computer vision for object detection have 
been designed to provide additional information on the location and 
shape of objects. In condition monitoring applications, these models 
have shown remarkable performance in detecting damages for a variety 
of settings such as electrical systems (Tabernik et al., 2020), conveyor 
belts (Yang et al., 2019), manufacturing industries (Yang et al., 2020), 
railway tracks (Wei et al., 2019), roads (Pham et al., 2020) etc. Jalonen 
et al. (Jalonen et al., 2023) conducted experiments to collect an image 
dataset consisting of normal, worn, and damaged SFRs. (Jalonen et al., 
2023) designed a CNN-based model to detect damages in SFRs. The 
results indicated that CNN9 and CNN15 outperformed other presented 
models for detecting damages. Recently developed one-stage detectors 
such as YOLO version (v2, v3, v4, v5, v6, v7, and v8) (Zhu et al., 2021) 
and single shot multi-box detector (SSD) (Liu et al., 2016) have been 
used in defect detection due to their simple structure and fast speed. The 
single-stage detector utilizes the same feed-forward network fully con-
volutional network (FCN) (Long et al., 2015) for detecting bounding 
boxes (BBox’s) for object classification. FCN architecture allows the 
model to efficiently process the input image to generate predictions for 
BBox’s coordinates and corresponding object classes. This integrated 
approach simplifies the detection pipeline and reduces computational 
complexity, making it suitable for real-time applications. However, its 
accuracy is comparatively lower than two-stage detectors based on 
region-based convolutional neural networks (R-CNN) (Bharati and 
Pramanik, 2020). The two-stage detectors have separate stages for re-
gion proposal and classification, allowing more precise localization and 
improved classification accuracy. 

R-CNN was a breakthrough for object detection, and semantic seg-
mentation (Cai and Vasconcelos, 2018, Wang et al., 2017), as it intro-
duced a novel approach by combining DL with a region proposal 
network (RPN) generating object regions in an image. These proposed 
regions are then processed by a CNN-based classifier to determine the 
presence of objects and classify them into predefined categories. This 
multi-stage approach improved accuracy and efficiency compared to 
traditional methods. (Ye et al., 2024) compared several semantic seg-
mentation models including U-Net (Ronneberger et al., 2015), PSP-Net 
(Zhao et al., 2017), DeepLabv3+ (Chen et al., 2018), and HR-Netv2 
(Sun et al., 2019) for detecting faults in a video dataset of SFRs. Varia-
tions such as Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 
2015), and FCN (Long et al., 2015) have demonstrated the influence of 
deep R-CNN in achieving high performance for semantic segmentation 
tasks to detect and localize objects in an image. Semantic segmentation 
classifies each pixel in an image into a set of pre-defined classes. Later, 
Mask R-CNN (He et al., 2017, Bolya et al., 2019) framework was 
developed, enabling instance segmentation that not only classifies each 
pixel as in the case of semantic segmentation but divides an image into 
separate, distinct parts corresponding to the object of interest. Panoptic 
segmentation (Kirillov et al., 2019) combines the features of semantic 
and instance segmentation for a better understanding of an image by 
providing class labels for each pixel and unique instance IDs for each 
object. Recently developed Detectron2, a successor of the Detectron is a 
state-of-the-art library providing a wide range of functionalities for 
object detection and segmentation tasks (Wu et al., 2019). Detectron2 
includes a collection of models, such as Mask R-CNN, Faster R-CNN, Fast 
R-CNN, RetinaNet, TridentNet, DensePose, Cascade R-CNN, and 
Tensor-Mask, etc. Detectron2 has support for three different types of 
segmentation: semantic, instance, and panoptic segmentation, respec-
tively. In (Wen et al., 2021), Detectron2 with Mask R-CNN architecture 
was used to detect pores and cracks in scanning electron microscope 
(SEM) images of metallic additive manufacturing (AM) parts. The study 
accurately identifying over 90% of the defects present in the testing 
images. (Yagüe et al., 2022) identified defects of irregular and complex 
boundaries with high precision on X-ray images obtained from auto-
motive parts using Detectron2 with Faster R-CNN architecture. (Ali 
et al., 2022) utilized Detectron2 with Faster R-CNN to detect COVID-19 

from chest X-ray images. The experiment was conducted with different 
baseline models to assist radiologist while making critical decisions. It is 
important to emphasize that machine learning methods, including deep 
CNNs and R-CNNs, have been utilized for condition monitoring of SWRs 
in previous studies. Furthermore, object detection models like Fast 
R-CNN, Faster R-CNN, Mask R-CNN, Cascade R-CNN, and YOLO have 
been effectively used for defect detection across a various material, such 
as metals, composites, bridges, etc. This paper aims to bridge the 
existing methodological gaps to demonstrates promising findings in 
detecting defects in fiber ropes. 

In the present paper, the state-of-the-art Detectron2 framework with 
the Mask R-CNN architecture was used to detect defects on experi-
mentally collected high-resolution SFR image datasets. Detectron2 uti-
lizes pre-trained models to harness the power of transfer learning (TL). 
These models are pre-trained on massive image datasets and then fine- 
tuned on the specific task. In this way, Detectron2 is a scalable and 
efficient approach for faster inference on real-time scenarios. The Mask 
R-CNN architecture in Detectron2 effectively handles the complex and 
overlapping damage instances thereby ensuring accurate and detailed 
segmentation. This capability enables automated analysis of SFRs with 
high accuracy, diminishing reliance on manual inspection and mini-
mizing the potential for human error. The primary objective of this study 
is to train a model capable of accurately detecting and segmenting the 
defects in the SFRs dataset by assigning specific labels to each pixel or 
region of interest. The model’s performance is then assessed using 
appropriate evaluation metrics. The novelty and difficulty of this work 
lie in the following aspects:  

1. Defect detection in SFRs is a challenging task due to the complex and 
non-linear behavior of ropes, as well as the diverse range of damages 
they can sustain during their lifetime, such as chafing, plackings, 
core damage, and compressions.  

2. This work addresses the limitations of manual inspection of SFRs, 
which is costly, time-consuming, and prone to human error, by 
introducing an automated and efficient DL-based approach for defect 
detection.  

3. The study aims to modernize traditional inspection practices in the 
offshore industry by offering a more precise, efficient, and auto-
mated solution for identifying defects in SFRs, ultimately enhancing 
industrial safety and operational efficiency.  

4. The study utilizes an experimentally obtained high-dimensional 
image dataset comprising 1,803 SFRs with seven different types of 
defect class collected from three different ropes, making it a realistic 
and challenging dataset for defect detection.  

5. Detectron2 with Mask R-CNN architecture has been utilized for 
defect detection, even when they overlap or occlude each other, by 
providing instance-level segmentation masks. 

The rest of the paper is structured as follows: Section 2 provides an 
overview of the proposed Detectron2 framework, covering aspects such 
as experimental setup, data collection methodology, annotation process, 
and model configuration. Additionally, the evaluation metrics employed 
in this study are presented, which serve as the basis for assessing the 
model’s performance. Section 3 discusses the results, showcasing the 
performance of the proposed work. Finally, Section 4 concludes the 
paper, summarizing the findings and discussing their implications. 

2. Model 

Fig. 1 illustrates the fundamental architecture of the Detectron2 
framework. The architecture consists of two main stages: the backbone 
and the head. The backbone stage allows a combination of sub- 
networks, including ResNet, ResNeXt, feature pyramid networks 
(FPN), and other similar architectures, as long as their input and output 
dimensions are compatible. Each network has its own strengths and 
characteristics making them suitable for specific tasks. ResNet 
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introduces residual blocks with skip connections addressing the chal-
lenge of training very deep neural networks allowing them to learn 
complex features with high accuracy. ResNeXt, an extension of the 
ResNet network introduces cardinality (number of parallel internal 
paths or branches) within a single block to enhance its feature extraction 
capabilities. This improves the network accuracy in comparison to 
increasing the number of layers of the network. On the contrary, FPN 
addresses the issue of multi-scale object detection and feature learning 
by creating a pyramid of features making it effective for tasks where 
objects can appear in various sizes. In the present work, the performance 
of different backbone architectures is compared to choose the most 
suitable architecture for detecting defects in SFRs. The chosen archi-
tecture is utilized to extract significant features from the input image. 
These extracted features are then directed to a region proposal network 
(RPN) responsible for determining the presence of objects within spe-
cific regions. Subsequently, these regions are processed by the head 
stage through an FCN layer to predict the coordinates of BBox’s and 
associated class labels. During this phase, Intersection over Union (IoU) 
metrics are computed. The correct predictions of BBox’s can be calcu-
lated using the IoU score defined by: 

IoU =

[
area(PB ∩ GB)
area(PB ∪ GB)

]

(1)  

where IoU ≥ 0.5 depicts a good match while no match otherwise. Also, ∩
and ∪ represents intersection and union between predicted BBox’s (PB) 
and actual/ground-truth BBox’s (GB) respectively. 

The capabilities of the model are further enhanced by incorporating 
a mask branch into the existing architecture. This introduces a seg-
mentation mask for each detected object region, facilitating precise 
object segmentation. These additional components enable robust object 
detection, accurate BBox prediction, and effective instance 
segmentation. 

2.1. Experimental setup 

The experimental setup consists of a motor, three sheaves (one 
sheave for holding weight, two rotation pulley blocks, two wire guide 
wheels), four LED lights, NVIDIA Jetson Nano P3450, and three defec-
tive SFRs each of length 8 m subjected to a weight of 50 kg (Rani et al., 
2023). During the data collection process, the SFRs were rotated on 
sheaves supported by rotation pulleys and wheels for guiding the rope 

used for lifting purposes. This rotational movement helps simulate 
real-world scenarios where the ropes are subjected to rotational forces. 
The motor was operated at approximately 6 rotations per second to 
prevent motion blur when capturing images at 165 fps with an exposure 
time of 0.01 seconds. Although the back-and-forth movement of the 
SFRs over the sheaves may potentially cause faults to shift or redistribute 
along the rope’s surface, no significant changes were observed in fault 
distribution during the experimental process. This suggests that the 
artificially introduced faults remained relatively stable throughout the 
experiments. The experimental setup is shown in Fig. 2. 

2.2. Rope description 

Dyneema (Dynamica-ropes aps) is a gel-spun, multi-filament fibre 
manufactured from HMPE (high-modulus-poly-ethene) or UHMWPE 
(ultra-high-molecular-weight-poly-ethylene). It possesses several 
notable characteristics such as high strength, low weight, low elongation 
at break, and resistance to most chemicals or harsh environments. These 
excellent mechanical properties with low density, result in a high 
performance-to-weight ratio. It serves as a valuable resource for re-
searchers and industry professionals to monitor and assess the condi-
tions of fibre ropes as potential replacements for SWRs. In the present 
work, Dyneema fibre is used to construct the rope for conducting the 
experiment. The characteristics of the rope used in the experiment are 
given as follows:  

• Fibers: Dyneema SK 75/78  
• Nominal Diameter: 8 mm  
• 12 strands / 12 braided rope  
• Torsional neutral  
• Pitch/stitch length approx. 11mm.  
• Braiding period: approx. 66mm 

2.3. Data collection 

The image dataset has been acquired using a Basler acA2000 camera 
with a Basler C11-5020-12M-P Premium 12-megapixel lens. To read the 
images from the camera, an NVIDIA Jetson Nano P3450 was used as the 
processing (for reading and analyzing the captured data) platform. To 
provide sufficient and uniform illumination, four Aputure AL-MC 
RGBWW LED lights each having an illumination of 1000 lux have 

Fig. 1. Architecture of Detectron2 model.  

A. Rani et al.                                                                                                                                                                                                                                    



Applied Ocean Research 150 (2024) 104109

4

been used. A total of 1,803 images having a resolution of 2000 × 1080 
pixels have been collected to apply the defect detection algorithms. Each 
rope used in the present consists of 20 placking, 6 compression, and 4 
chafing defects. This dataset comprises multiple instances of the same 
errors or faults occurring in the rope at different time intervals, along 
with images capturing various types of defects observed in different 
sections of the rope. Defects such as compression, which involve changes 
in diameter over an extended length of the rope, cannot be considered as 
single defects due to their elongated nature. Importantly, all images in 
the dataset are original, and no data augmentation techniques were 

applied. Each image offers a unique representation of SFRs, showcasing 
diverse defects and conditions without any artificial modifications 
introduced through augmentation methods. 

The ISO standard 9554:2019 "Fibre rope – General specifications" 
provides comprehensive information regarding the potential damages 
that may occur during the lifespan of SFRs (Iso 9554 2019). This stan-
dard serves as a valuable reference for understanding the types of defects 
that can occur in these ropes (Lian et al., 2017, Lin et al., 2022, Li et al., 
2023, Davies et al., 2015). The experiment has been performed on three 
SFRs where defects have been artificially introduced by an expert roper 

Fig. 2. Experimental setup for collecting SFRs dataset.  

Fig. 3. Examples of data collected for rope with various damages and normal.  
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from Dynamica Aps, Denmark (Dynamica-ropes aps n.d.). Fig. 3 depicts 
the various rope damages considered in the paper. The three ropes 
contain placking defects (pulled strands) as one of the potential defects 
that can occur in various applications. The severity of the placking de-
fects varied, ranging from high to medium levels. In addition to the 
placking defects, each of the three defective ropes also contained other 
types of defects, including compression, chafing, and core out. By 
including these specific defects in the experiment, the aim was to pro-
vide a realistic representation of the types and severity levels of defects 
that can occur in SFRs during their operational lifespan. The dataset 
used in this study (utilizes three ropes) is a subset of the complete image 
dataset (utilizes ten ropes) that is publicly accessible and can be found in 
Rani et al. (2023). The detailed layout of the collected SFRs dataset 
related to the number of images in each set, defect type, and distribution 
is depicted in Table 1. 

2.4. Object detection and segmentation 

Detectron2 has robust object detection and segmentation capabil-
ities. It can accurately identify and differentiate objects even when they 
overlap or occlude each other. This is especially important in scenes 
with multiple objects of varying sizes and orientations. As a result, 
Detectron2 provides rich information beyond classification, allowing for 
spatial understanding, precise localization, and instance level analysis. 

The primary outcome of an object detection method is in the form of 
BBox. In the case of SFRs, the defects to be detected are generally 
asymmetric in shape. Therefore, a rectangular BBox may not be suitable 
for annotation. In such cases, polygons can be used as an alternative 
solution for annotating defects. A polygon may have arbitrary points, 
making it more accurate for defining the defects in SFRs. In the present 
work, labeling was performed on the collected dataset with the polygon 
annotation method using VGG image annotator (VIA), an open-source 
tool. The labeled dataset includes seven classes: placking high, plack-
ing medium, placking low, compression, core out, chafing and normal 
respectively. Fig. 4 depicts the annotated image using the VGG 
annotator. 

2.5. Model configuration 

The training configuration is described as follows:  

• Training dataset: A custom train dataset of SFRs was introduced to 
the platform consisting of 1,315 images each having a dimension of 
2040 × 1086 pixels.  

• Learning rate (LR): The learning rate for the model was set to 
0.00025.  

• Total iterations: The training phase was performed for a total of 
30,000 iterations.  

• Number of classes: The model was configured to have 7 classes: 
placking high, placking medium, placking low, compression, core 
out, chafing and normal respectively. These classes represent various 
damages on the SFRs.  

• Threshold: The testing threshold for object detection was set to 0.70. 
During the inference, objects with a detection score above 0.70 are 
considered positive detections. 

3. Results 

The Detectron2 framework, commonly used for both object detection 
and segmentation tasks involving generic objects, was utilized with the 
Mask R-CNN architecture to detect defects in an experimentally 
collected dataset of SFRs. It was implemented on a system featuring a 
CPU speed of 3 GHz, 32 GB RAM, and an Nvidia GeForce RTX 4090 GPU. 
The entire dataset of 1,803 images has been divided into three subsets: 
train, validation, and test images. The model was trained with 1,315 
images and then fine-tuned and validated over 331 images. Also, 157 
images have been used for evaluating the model’s performance, serving 
as the test images. To address the dataset’s limited size and prevent 
overfitting, various data augmentation techniques were applied, 
including rotation, flipping, and adjustments in brightness and contrast. 
However, it’s important to note that Detectron2′s performance can be 
influenced by the nature of the objects being detected and the dataset 
characteristics. Comparisons between generic and non-generic objects, 
such as industrial defects, may not be directly applicable due to potential 
disparities in object distributions and model generalization. 

3.1. Performance comparison of backbone architectures 

Initially, the paper compares the performance of Mask R-CNN with 
ResNet-50-FPN-3x, ResNet-101-FPN-3x, and ResNeXt-101-FPN-3x ar-
chitectures respectively. The model’s nomenclature follows a format: 
[backbone]-[feature]-[learning schedule], where the backbone repre-
sents the chosen DL neural network architecture, and the feature denotes 
the feature extraction methodology using FPN. The training was per-
formed using TL by initializing the model’s weights by pre-training it on 
the COCO dataset for 3 epochs (notated as 3x learning schedule). The 
architectures are chosen based on the high average precision (AP) on 
object segmentation BBox’s and instance segmentation masks. AP is 
commonly used in object detection tasks, particularly when there is a 
need to prioritize precision over other metrics like recall, or when 
dealing with imbalanced datasets. Given that the dataset includes de-
fects of different sizes that need to be detected, AP has been chosen as 
the performance metric to evaluate the model’s ability to accurately 
detect objects of varying sizes. Including AP in the evaluation allows for 
a comprehensive assessment of the model’s precision-recall trade-off 
across different object sizes, which is essential for understanding its 
performance in object detection tasks with diverse object sizes. AP is 
calculated by computing the area under the precision-recall curve. It 
summarizes the model’s performance across all confidence thresholds. 
AP ranges from 0 to 1, where higher values indicate better performance. 
AP values in the range of 0.7 to 0.9 are considered very good for defect 
detection tasks. Table 2 presents the performance comparison of Mask R- 

Table 1 
Layout of collected SFRs dataset.  

Defect Type Number of Images 

Placking Low 120 
Placking Medium 121 
Placking High 403 
Compression 827 
Core out 278 
Chafing 54 
Total Images 1,803  

Fig. 4. Annotated sample using VGG annotator.  
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CNN on the pre-trained dataset and custom dataset. The IoU evaluation 
metric has been used to measure the accuracy of the object detector 
given by Eq. (1). Here, the result of IoU greater than 0.5 (AP50) is 
considered a good forecast. It can be observed that ResNeXt-101-FPN-3x 
shows high AP50 for both BBox (44.3 %) and segmentation mask (39.5 
%) with a comparatively large training time of 0.690 s/iter in compar-
ison to other backbone models. Though ResNeXt-101-FPN has better 
AP50 for BBox and mask on but takes longer time to train or predict. 
However, in the case of the custom dataset results show high AP50 for 
BBox (77.01 %) and segmentation (77.97 %) in less training time of 

0.1267 s/iter for ResNet-50-FPN-3x. Therefore, Mask R-CNN with 
ResNet-50-FPN-3x is chosen as the backbone architecture for the present 
work. Fig. 5 depicts the AP for BBox and instance segmentation for 
ResNet-50-FPN-3x architecture for the experimentally collected dataset 
of SFRs. 

Also, detailed performance metrics of different backbone architec-
tures for different IoUs and object sizes have been obtained on the 

Table 2 
Comparison of the performance metrics of pre-trained models obtained from the 
training dataset.  

Model Train time (s/iter) Type AP50(%)  

Pre- 
trained 

Custom- 
dataset  

Pre- 
trained 

Custom- 
dataset 

ResNet-50- 
FPN-3x 

0.26 0.13 Box 
Segm 

41.0 
37.2 

77.01 
77.97 

ResNet-101- 
FPN-3x 

0.34 0.16 Box 
Segm 

42.9 
38.6 

66.66 
66.66 

ResNext-101- 
FPN-3x 

0.69 0.22 Box 
Segm 

44.3 
39.5 

66.41 
66.20  

Fig. 5. Evaluation results for ResNet-50-FPN  

Table 3 
Comparison of the performance metrics of different models obtained from the 
training dataset in order to choose the best-suited model for in-situ application.  

Model Type AP 
(%) 

AP50(%) AP75(%) APm(%) APl(%) 

ResNet-50-FPN- 
3x 

Box 
Segm 

58.37 
58.57 

77.01 
77.97 

64.95 
65.51 

23.30 
24.10 

59.40 
59.67 

ResNet-101-FPN- 
3x 

Box 
Segm 

53.88 
51.82 

66.66 
66.66 

59.19 
57.25 

25.74 
25.39 

54.80 
52.92 

ResNext-101- 
FPN-3x 

Box 
Segm 

55.56 
52.19 

66.42 
66.19 

62.79 
58.13 

25.49 
25.32 

56.60 
53.68 

* Image size is 512 × 512. 
* AP is average precision, AP50 and AP75 is the AP computed at an IoU value of 
0.50 and 0.75 respectively. 
* APm and APl are AP for medium and large objects. 
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custom dataset of SFRs. Table 3 presents the performance metrics for 
ResNet-50-FPN, ResNet-101-FPN and ResNeXt-101-FPN. In each case, 
the training was performed for 30,000 iterations with a base learning 
rate of 0.00025. The disparity between the best values for APm and APl 

highlights the model’s sensitivity to object size variations. The model 
may perform significantly better in detecting larger objects compared to 
medium-sized ones. Further, the difference in these AP values also 
provides insights into the distribution of object sizes within the dataset. 
It can be observed during the validation of backbone architectures, that 
the Mask R-CNN with ResNet-50-FPN backbone presented the best re-
sults for the precision metrics in less training time distributed for BBox 
and mask type in comparison to ResNet-101-FPN and ResNeXt-101-FPN 
backbone architectures. While the present work focuses on evaluating 
the precision of defect detection based on object size (medium and 
large), it is crucial to consider that precision can also vary significantly 
across different defect types in SFRs. The size and shape of defects can 
exhibit substantial diversity across types, irrespective of their severity 
levels. For instance, placking defects are larger while core out defects 
could appear smaller and more localized. This inherent variation in size 
and shape, independent of defect type or severity, can impact the 
model’s ability to precisely detect and localize different defects. 
Furthermore, defect types with high representation in the training 
dataset are likely to be detected more precisely compared to those with 
limited samples, owing to the model’s exposure during training. Addi-
tionally, certain defect types, such as core out involving internal 
breakages, may be more challenging to detect and segment precisely 
when compared to surface-level defects like compression or chafing, 
affecting class-wise precision. 

3.2. Data augmentation 

The training dataset encompasses a considerable number of defective 
images and defect types. However, despite this diversity, an inherent 
imbalance among the datasets may still exist. To address this, various 
data augmentation techniques on the collected SFR dataset have been 
applied in the present work. These techniques include resizing, hori-
zontal/vertical flipping, rotation, and random adjustments to contrast 
and brightness. The augmentation was applied prior to training the 
model, serving the purpose of augmenting the instances of damages 
within the dataset. For resizing, the dataset was transformed with min 
and max sizes set at 800 pixels. The brightness and contrast augmen-
tation were applied with a random probability of 0.5 with a maximum 
limit of 0.2. Similarly, vertical flipping was applied with a random 
probability of 0.5. In the present work, horizontal flipping does not have 
any impact on the current dataset. 

Additionally, rotation was incorporated within a range of ±15 de-
grees on the collected dataset. The model was subsequently trained with 
these augmented datasets. Table 4 provides an overview of the perfor-
mance metrics for the chosen Mask R-CNN with R50-FPN-3x architec-
ture for augmented and non-augmented SFRs datasets. The results 
indicate that the performance of the ResNet-50-FPN architecture with 
annotations is notably inferior when compared to the non-annotated 
model, resulting in AP50 scores of 50.15 % and 49.52 % for object de-
tector bounding boxes and instance segmentation masks, respectively. 

The brightness and contrast technique did not yield any noticeable 
improvement in the performance. This suggests that the collected 
dataset already encompasses images with different light and weather 
conditions. Also, the collected dataset contains images with different 
orientations due to the rotation of ropes across the sheaves while col-
lecting the dataset. Therefore, rotation techniques do not have any 
impact on the performance of the model. Similarly, other augmentation 
techniques, including flipping and resizing, did not contribute to 
enhancing the model’s performance. In conclusion, neither of these 
augmentation approaches appeared to improve the model’s overall 
performance. 

3.3. Visual evaluation 

Fig. 6 presents the segmentation mask and accuracy of the polygon 
applied to each instance in SFRs for the Mask R-CNN with ResNet-50- 
FPN architecture. The predicted polygon also has corresponding labels 
and a confidence percentage ranging from 0 to 100 % as low to high 
confidence of having a defect on the SFR. This confidence parameter 
(threshold value) provides an estimation for the detected defect to be a 
true positive (TP). In this case, the threshold value is set to 0.70. If the set 
value is very low, then the results may show a large number of non- 
secure detections. The results show that model has successfully 
segmented each defect instance, providing precise boundaries and out-
lines for the detected defects. This instance segmentation capability is 
particularly beneficial when defects overlap or occlude each other, as it 
allows for accurate separation and identification of individual defect 
instances. 

3.4. Model assessment 

The performance of the model is illustrated in Fig. 7.  

1. Accuracy: The model was trained with 1,315 images and achieved a 
training accuracy of approximately 97.6% as shown in Fig. 7 (a). The 
accuracy represents the percentage of correct predictions made by 
the model compared to the actual data. During testing, the trained 
model was evaluated using a separate test dataset consisting of 157 
images. Out of the 157 test images, 154 were correctly identified as 
defective by the model with a high confidence score threshold of over 
0.70 (threshold). Despite the complexity and variability of images, 
the model maintains a high level of accuracy in detecting defects in 
SFRs. 

2. False Positive (FP) curve: Fig. 7 (b) shows the FP curve, which rep-
resents the instances where the model identified a defect incorrectly 
(FP) as the training progressed. It can be observed that the FP curve 
decreases as the training progresses, indicating the model’s 
improved ability to correctly detect defects with a high confidence 
score.  

3. False Negative (FN) curve: Fig. 7 (c) illustrates the false negative 
curve, which represents instances where the model failed to identify 
a defect (FN) with a confidence score below 0.70. The FN curve 
decreased as the training steps increased, indicating that the model 
improved in minimizing false negatives and accurately identifying 
defects with high confidence. A lower false negative rate is crucial for 
ensuring that critical defects are not missed during inspections. 
Despite the high performance of the model, as demonstrated in the 
Fig. 7, there are instances where the model may struggle with ac-
curate defect detection. Fig. 8 illustrates few misinterpreted or 
incorrectly classified defects obtained from the model. In the top 
image, the model was not able to detect ‘core out’ defect correctly 
due to the small and low contrast of the defect. While in the bottom 
image, the SFR is not a completely compressed rope rather a normal 
rope leading to failed inspection.  

4. Loss: The total loss value and validation loss, depicted in Fig. 7 (d) 
and (e), indicates the number of mistakes made by the model during 

Table 4 
Comparison of the performance metrics obtained from the training dataset for 
chosen Mask R-CNN ResNet-50-FPN-3x architecture with and without 
augmentation.  

Mask R-CNN- 
R50-FPN-3x 

Type AP 
(%) 

AP50(%) AP75(%) APm(%) APl(%) 

Without 
augmentation 

Box 
Segm 

58.37 
58.57 

77.01 
77.97 

64.95 
65.51 

23.30 
24.10 

59.40 
59.67 

With 
augmentation 

Box 
Segm 

27.66 
27.51 

50.15 
49.52 

28.55 
27.27 

23.57 
23.60 

28.41 
28.46 

* Image size is 512 × 512. 
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each training or validation iteration. It can be observed that the total 
loss reduces to 0.18 after 30,000 iterations, indicating the model’s 
improved performance over time. 

Overall, the provided results demonstrate the effectiveness of 
Detectron2 framework with Mask R-CNN in accurately detecting defects 
in SFRs, particularly those with curved, irregular boundaries or over-
lapping defects (e.g., placking, chafing, and compressions). This infor-
mation can be leveraged for more targeted maintenance and repair 
strategies, as well as for developing a deeper understanding of the failure 
mechanisms and degradation patterns specific to SFRs. The high accu-
racy achieved, along with the observed improvements in the FP and FN 
curves, suggests the model’s potential for practical application in defect 
detection tasks for SFRs. With appropriate fine-tuning and adaptation, 
Detectron2 could potentially be extended to inspect and monitor the 
condition of ropes made from different materials, further expanding its 
applicability and impact. Nonetheless, the model faces challenges when 
dealing with smaller, less prominent, highly occluded/blended, or low- 
contrast defects (e.g., core outs). Moreover, uncertainties may arise 
during the integration of Detectron2 for SFR defect detection, 

encompassing aspects like convergence issues, overfitting, or under-
fitting during training, as well as the optimal selection of hyper-
parameters and evaluation metrics. Addressing these uncertainties and 
optimizing model parameters are vital steps in augmenting the model’s 
efficacy and dependability in practical settings. 

While the present paper focuses on defect detection at a specific 
point in time, the model’s precise defect characterization could facilitate 
monitoring defect progression over time. By analyzing sequential im-
ages or video data of the same rope section, the model’s ability to 
accurately locate and segment defects could allow for monitoring the 
progression of defects, such as the growth of plackings, chafings, or the 
expansion of compression zones. This information could be valuable for 
predictive maintenance and RUL estimation of SFRs. 

4. Conclusion and future work 

The paper presents a state-of-the-art Detectron2 framework that uses 
Mask R-CNN with ResNet50-FPN architecture for object detection and 
instance segmentation. We conducted a comparative analysis involving 
ResNet101-FPN and ResNeXt101-FPN architectures alongside 

Fig. 6. Output results obtained from Detectron2. 
* The color is randomly chosen to enhance the visual clarity and make it easier for readers to distinguish between different defects or classes detected by the model. 
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ResNet50-FPN to determine the most suitable model for in-situ appli-
cations. The effectiveness of the model was evaluated on an experi-
mentally collected dataset obtained from introducing artificial damages 

on real SFRs. The model’s performance demonstrates its precision in 
detecting damages across diverse categories, including those with 
irregular and complex shapes. The model highlights its potential for 

Fig. 7. Evaluation results for the proposed model  
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practical application in damage detection tasks for SFRs. During the 
model’s training, a key challenge arises from the need for manual 
annotation to evaluate and understand the performance of each back-
bone architecture. Another constraint emerges due to the limited num-
ber of experimentally collected SFRs images for training the model. To 

enhance the model’s performance, synthetic data may be incorporated 
into the dataset. This approach is anticipated to contribute substantially 
to elevating the model’s effectiveness in condition monitoring applica-
tions. Moreover, it’s crucial to recognize the potential complexity of 
real-world scenarios such environmental conditions (e.g., temperature, 
humidity), variations in rope manufacturing processes, and operational 
parameters (e.g., tension, stress), where multiple failure types may occur 
simultaneously or sequentially over the rope’s lifetime. While the pre-
sent model is trained on six damage types obtained experimentally in 
controlled environments to minimize external influences and vari-
ability. It may struggle to provide accurate descriptions when ropes 
exhibit combinations of these damage types not adequately represented 
in the training dataset. To address this limitation and improve the 
model’s ability to handle complex failure scenarios, several strategies 
can be explored. These include expanding the training dataset to include 
a more diverse range of damage types and combinations, incorporating 
multi-label classification techniques to predict multiple damage types 
simultaneously, and exploring advanced deep-learning models capable 
of capturing complex interactions between different failure modes. In 
the future, this study could be expanded to include further experiments 
or simulations involving various types of ropes, including SWRs, SFRs, 
or hybrid ropes, and exploring different materials and constructions. 
Through a systematic comparison of the methodology’s performance 
across diverse rope types, materials, and constructions, researchers can 
evaluate its effectiveness and pinpoint any limitations or challenges it 
may encounter. 

Fig. 7. (continued). 

Fig. 8. Illustration of few misinterpreted damages obtained from the model.  
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