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Abstract

The focus on electrification of mobile working machines is increasing in
industry as well as in the academic community, and ways to realize both
technically and commercially feasible solutions are continuously being pur-
sued. At this point, solutions presented by industry has mainly focused
on avoiding internal combustion engines by installing cable or battery fed
electric motors powering the main pump(s) which supplies the working
hydraulics. However, rotary functions are sought powered directly by electro-
mechanical drives, not including hydraulics. In this endeavor a main chal-
lenge is the operation of linear actuators that remain controlled by hydraulic
control valves. The associated throttle losses necessitates large batteries to
be compensated or alternatively results in low machine uptimes, potentially
rendering electrified machines commercially infeasible. An obvious approach
to avoid throttle losses may be the replacement of valve-controlled linear
actuators by electro-mechanical solutions in low to medium force applica-
tions, whereas heavy duty working machines subject to large forces such
as medium/large excavators may benefit from standalone electro-hydraulic
primary controlled/variable-speed drives. Utilization of such solutions will
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substantially increase the energy efficiency due to absent or at least limited
throttle losses, and the electric power sharing and electric energy recu-
peration capabilities offered by common DC-bus’ and batteries. However,
such standalone solutions/drives must be able to meet both the required
maximum force and maximum speed, and even thought these maximum
quantities seldom are required concurrently, these requirements may render
the associated motors and inverters somewhat large. Hence, applying such
solutions may lower the battery requirements, but require substantial levels
of motor and inverter power to be installed, which again may compromise
the commercial feasibility. This paper presents a potentially feasible alter-
native to these solutions for an excavator implement, in the form of an
electro-hydraulic/mechanical drive network. This is applied for actuation
of three linear implement functions as well as the rotary swing function.
The realization of the electro-hydraulic/mechanical drive network involves
chamber short-circuiting and electro-hydraulic variable-speed displacement
machines enabling electro-hydraulic power sharing. The proposed drive
network is compared to a highly efficient standalone dual motor electro-
hydraulic drive solution as well as a separate metering valve drive supplied
by a battery fed electro-hydraulic pump. Results demonstrate that, compared
to the standalone dual motor electro-hydraulic drive solution, the proposed
drive network is realizable with similar energy efficiency and hydraulic
displacement but less installed motor power and likely less integration effort,
rendering this a more sustainable and cost-efficient solution. Finally, besides
being realizable with less installed motor power and hydraulic displacement,
the proposed drive network shows substantially improved energy efficiency
compared to the separate metering valve drive solution.

Keywords: Electro-hydraulic drive networks, energy efficiency, electrifica-
tion, excavator implement drives.

1 Introduction

The losses of traditional hydraulic working machines are mainly associ-
ated with the losses of internal combustion engines (ICE’s) and those of
the hydraulic systems. Considering excavators, average ICE and hydraulic
system efficiencies of 40% and 30%, respectively, have been reported for a
16t excavator [5], resulting in a total machine efficiency from fuel input til
mechanical output of 12%. Hence, major machine level efficiency improve-
ments may be achieved by replacement of ICE’s by battery or cable fed
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electric machines and associated inverters. Assuming a combined average
efficiency of electric machines, inverters and batteries of 80%, the energy
consumption is reduced by 50% compared to ICE powered machines empha-
sizing the importance and significance of electrifying hydraulic working
machines.

Even though electrification of such machines is an ongoing trend, the
hydraulic systems of such machines remain inefficient due to the continued
utilization of throttle control valves.1 As a results, current electrified working
machines are subject to either low machine uptimes or large battery capaci-
ties, which in either case may render such machines commercially infeasible
and prevent the anticipated reduced energy consumption and associated
emissions to become reality.

In order to overcome this unfortunate feature, hydraulic system efficien-
cies must be improved. Even though valve-based system architectures may
provide for improved efficiencies compared to traditional valve-controlled
systems [1, 2, 3, 4], obvious technologies to consider for energy efficiency
improvements are electro-mechanical or electro-hydraulic drive solutions.
The former has already been proposed for small and medium sized machines
whereas the latter may be a feasible alternative in larger machines. Electro-
hydraulic drive research and developments have historically been focused
on standalone drives for actuation of hydraulic cylinders and a fairly large
number of such drives have been presented in literature, e.g. [6, 7, 8, 9, 10].
Hydraulic working machines typically contain multiple linear and rotary
functions realized via hydraulic cylinders and hydraulic motors. However,
this far only limited attention has been given to dedicated multi-axis electro-
hydraulic drive systems. Only recently this topic has been emerging, and
ranges from system solutions combining displacement units in variable-
speed and/or displacement-controlled cylinders with valve-controlled cylin-
ders in a mix [11, 12] to more disruptive drive design approaches such as
the so-called HHEA [13, 14] and electro-hydraulic (variable-speed) drive
networks [15, 17]. The field of electro-hydraulic drive networks offers a
tremendous amount of possible drive architectures, and the solution space
increases exponentially with the number of hydraulic cylinders or motors
to be actuated [15]. Furthermore, electro-hydraulic drive networks enable
the possibility to completely avoid the use of throttle control valves, and
hence to completely avoid the associated losses. These drive networks may

1Based on experiences by the authors at the BAUMA fair in Munich, Germany, Oct. 2022.
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be realized with short-circuited chambers and with the only active com-
ponents being variable-speed displacement units in network configurations.
The absence of control valves and the related conceptual losses, renders
such drive networks highly efficient, and the networked drive systems and
chamber short-circuits may provide for significantly reduced power installa-
tion requirements compared to other electro-hydraulic drive solutions as well
as systems based on electro-mechanical actuators [16, 22], also in excava-
tors [19]. The tight interconnections between the individual cylinders/motors
of electro-hydraulic drive networks necessitates special consideration on the
design foundation [18], and may seem difficult to control from a first glance.
However, decoupling control design methods have been developed [17] and
experimentally validated [20, 21], showing that such drive networks can
indeed be controlled properly, also without the use of advanced nonlinear
control methods [23, 24].

This paper presents a novel hybrid excavator implement drive system for
actuation of the four axes being the main boom cylinders, the arm cylinder,
the bucket cylinder and the swing function of a wheeled excavator depicted
in Figure 1, and is an extension to the drive system considered in [19].

Main Boom Cylinder(s)

Articulated Boom Cylinder

Arm Cylinder
Bucket Cylinder

Swing Motor

Excavator Implement

Figure 1 Illustration of excavator implement and the associated boom, arm, bucket cylinders
and swing motor.
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Figure 2 Load cycles for implement cylinder piston and swing motor velocities and
hydraulic pressure forces/torque.

Here the articulated boom cylinder is not considered as the associated power
transmission is limited compared to that of the main boom, arm and bucket
cylinders as well as the swing function. The proposed drive system combines
an electro-hydraulic drive network actuating the cylinders and an electro-
mechanical swing drive, effectively realizing an electro-hydraulic/mechanical
drive network (denoted EDN). The EDN is compared to a drive solution
based on dual displacement unit electro-hydraulic standalone cylinder drives,
also combined with an electro-mechanical swing drive (denoted DEH),
and a drive solution based on individual metering valves supplied by an
electro-hydraulic variable-speed pump (denoted SMV). The former (DEH)
is based on dual displacement unit standalone electro-hydraulic drives with
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no conceptual losses and hence one of the most efficient standalone drive
solutions realizable. The latter (SMV) may be the most efficient drive solution
when applying throttle control valves. Due to the electric power interfaces, all
three solutions considered are applicable in battery or cable fed machines.
Considering the application, especially wheeled excavators are used for a
variety of tasks and subject to idle phases which, for a commercial excavator
drive design, should all be considered [3]. In some of these tasks, like leveling
of soil, the controllability is of main relevance whereas for other tasks the
energy efficiency is most important. The latter is true for digging which
is a predominant excavator task. However, for simplicity, the drive designs
considered in the following are based on the series of measured digging
cycles illustrated in Figure 2 from a representative 17-19t wheeled excavator.
From these, the main components are sized with offset in Bosch Rexroth
A2 hydraulic displacement units and Bosch Rexroth eLION electric motors.
Loss models based on experimental measurements are used to estimate the
resulting power consumption and loss distribution, and results suggests the
energy efficiency of the EDN to be substantially improved compared to the
SMV and comparable to the DEH, but realizable with less installed electric
motor power.

2 Electro-Hydraulic/Mechanical Drive Network

The proposed electro-hydraulic/mechanical drive network (EDN) considered
for actuation of the excavator implement cylinders and swing function is
depicted in Figure 3. The electro-hydraulic part of the drive network is a
so-called minimal realizable electro-hydraulic drive network, i.e. it contains
the minimal number of displacement machines necessary to enable control
of cylinder motions and the system pressure level. The electro-mechanical
part of the drive network includes an electric motor shaft connected directly
to the gear ring of the excavator undercarriage/cab assembly. As a result,
there are five electric motor inputs to control and five outputs in terms
of the cylinder velocities, the swing speed and the lower pressure level in
the hydraulic system. Furthermore, the proposed EDN is configured with
three chambers short-circuited, namely the boom rod side, the arm piston
side and the bucket piston side chambers. The consequences of these short-
circuiting’s are nearly identical pressures in the short-circuited chambers,
resulting from the fact that the fluid can flow nearly unrestricted between
these chambers. Consequently, hydraulic power is transmitted nearly loss free
between these chambers during simultaneous cylinder motions. The same
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Figure 3 Proposed electro-hydraulic/mechanical drive network (EDN) for excavator
implement.

feature is presented on the electrical side of the system, due to the common
DC-bus/supply. Finally, the network configured variable-speed displacement
units (VsD’s) allow to control the individual outputs, with this relying on a
combined effort of all VsD’s. This topic is not further addressed here, but
generally considered in [17, 21].

2.1 Flow & Pressure Requirements

In order to size the displacement machines related to the hydraulic side of the
EDN and subsequently the electric motors, the associated flows and pressure
differences must be determined. This task is conducted assuming steady state
conditions, and from a conservative system standpoint, i.e. assuming that
no dissipative effects are present. Considering the schematic of Figure 3,
the flow continuity equations may under these conditions be expressed as
Equations (1)–(3), assuming identical and constant fluid bulk modulii β.
Assuming steady state conditions the displacement machine flows Q1, Q2,
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Q3, Q4 may be obtained as Equations (4), (5).

ṗ235 =
β

V235
(Q1 −Q2 −Q4 +A2ẋ1 −A3ẋ2 −A5ẋ3) (1)

ṗ1 =
β

V1
(Q1 +Q3 −A1ẋ1), ṗ4 =

β

V4
(A4ẋ2 −Q3) (2)

ṗ6 =
β

V6
(A6ẋ3 −Q4) ⇒ (3)

Q1 = (A1 −A2)ẋ1 + (A3 −A4)ẋ2 + (A5 −A6)ẋ3 (4)

Q2 = A1ẋ1 −A4ẋ2, Q3 = A4ẋ2, Q4 = A6ẋ3 (5)

From the constraints induced by the chamber short circuits, the pressure dif-
ferences related to the displacement machines are given by Equations (6), (7).

∆p1 = p235 − p0, ∆p2 = p1 − p235 (6)

∆p3 = p1 − p4, ∆p4 = p235 − p6 (7)

Applying the load cycles of Figure 2 with Equations (4)–(7), the chamber
pressures, displacement machine flows and pressure differences as well as
the associated ranges appear as depicted in Figure 4 assuming a minimum
pressure 20 [bar] is always present in any volume.

3 Benchmark Drive Systems

The two benchmark drive systems mentioned in the Introduction are cho-
sen from their applicability in electrified machines, but also their ability
to operate under similar conditions as the EDN in terms of controlling the
piston motions and pressure levels. In addition, the benchmark systems may
be considered some of the most efficient system topologies within their
respective areas, i.e. standalone variable-speed electro-hydraulics and valve
controlled hydraulics.

3.1 Benchmark Drive System # 1 – Separate Metering Valve
Control

The benchmark drive system based on separate metering valve control (SMV)
is depicted in Figure 5. Besides the separate metering control functionality,
the drive system also includes flow regenerative valves on the boom and arm
functions, and is supplied by an electro-hydraulic variable-speed pump with
electric load-sensing functionality.
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Figure 4 (A) EDN chamber pressures. (B) VsD flows for EDN. (C) VsD pressure differ-
ences for EDN. (D) Required ranges for VsD flows and pressure differences with the EDN.

The valve flows are obtained in a way similar to the displacement machine
flows of the EDN, i.e. from the steady state flow continuity equations, and are
given by Equations (8)–(11). Here plim = 1 [bar] and ẋlim = 10 [mm/s].

Q1 = A1ẋ1 +Qa, Q2 = A2ẋ1 +Qa, Q3 = A3ẋ2 −Qb (8)

Q4 = A4ẋ2 −Qb, Q5 = A5ẋ3, Q6 = A6ẋ3, Q7 = Q8 = Dsω2 (9)

Qa =

{
−A2(ẋ1 + ẋlim) for ẋ1 < ẋlim, p1 − p2 > plim

0 else
(10)

Qb =

{
A4(ẋ2 − ẋlim) for ẋ2 > ẋlim, p4 − p3 > plim

0 else
(11)
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Figure 5 Separate metering valve drive system with electro-hydraulic supply (SMV).

The pump flow is given by Equation (12), i.e. given by the sum of flows
entering the cylinders and the hydraulic swing motor.

Qp = Q̄1 + Q̄2 + Q̄3 + Q̄4 + Q̄5 + Q̄6 + Q̄7 + Q̄8 (12)

Q̄1 =

{
Q1 for Q1 ≥ 0
0 for Q1 < 0

, Q̄2 =

{
0 for Q2 ≥ 0

−Q2 for Q2 < 0
(13)

Q̄3 =

{
Q3 for Q3 ≥ 0
0 for Q3 < 0

, Q̄4 =

{
0 for Q4 ≥ 0

−Q4 for Q4 < 0
(14)

Q̄5 =

{
Q5 for Q5 ≥ 0
0 for Q5 < 0

, Q̄6 =

{
0 for Q6 ≥ 0

−Q6 for Q6 < 0
(15)

Q̄7 =

{
Q7 for Q7 ≥ 0
0 for Q7 < 0

, Q̄8 =

{
0 for Q8 ≥ 0

−Q8 for Q8 < 0
(16)

The pump outlet pressure is assumed to be controlled via electric load
sensing, and adjusted according to Equation (17). Here ppo = 7 [bar] is the
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pressure overhead necessary to enable valve control under all possible loads.

pp = max(p1, p2, p3, p4, p5, p6, p7, p8) + ppo (17)

From Equations (8)–(17) and the load cycles in Figure 2, the corresponding
chamber pressures, pump flow and pressure difference and related ranges are
depicted in Figure 6 using a minimum pressure of 20 [bar] in the cylinder
chambers.
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Figure 6 (A) SMV chamber pressures. (B) VsD flow for SMV. (C) VsD pressure difference
for SMV. (D) Required ranges for VsD flow and pressure difference with the SMV.
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3.2 Benchmark Drive System # 2 – Standalone Electro-Hydraulic
Control

The benchmark drive system based on standalone electro-hydraulic control
utilizes the dual displacement machine configuration with two electric motors
per cylinder as depicted in Figure 7, while leaving the swing drive purely
electro-mechanical as for the EDN. As discussed in the Introduction, this
drive system (DEH) is not subject to conceptual losses at all, and may
therefore be considered highly efficient compared to many other standalone-
type electro-hydraulic drives introduced in literature. This drive system shares
the electric supply across all the VsD’s and the swing drive similar to the
proposed EDN. The flows and pressure differences of the displacement
machines may be obtained as Equations (18)–(21) using the steady state flow
continuity equations.

Q1 = (A1 −A2)ẋ1, Q2 = A2ẋ1, Q3 = (A3 −A4)ẋ2 (18)

Q4 = A4ẋ2, Q5 = (A5 −A6)ẋ3, Q6 = A6ẋ3 (19)

∆p1 = p1 − p0, ∆p2 = p1 − p2, ∆p3 = p3 − p0 (20)

∆p4 = p3 − p4, ∆p5 = p5 − p0, ∆p6 = p5 − p6 (21)
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Figure 7 Drive system based on dual pump electro-hydraulic standalone drives (DEH’s).
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Figure 8 (A) DEH chamber pressures. (B) VsD flows for DEH. (C) VsD pressure differ-
ences for DEH. (D) Required ranges for VsD flows and pressure differences with the DEH.

Combining Equations (18)–(21) with the load cycles of Figure 2, the chamber
pressures, displacement machine flows, pressure differences and associated
ranges appear as shown in Figure 8, again assuming a minimum pressure of
20 [bar].

4 Implement Drive Component Sizing

The sizing of VsD components is based on the ranges of flows and pressure
differences presented in the previous sections. The swing drive requirements
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are based directly on the speed and torque specified in Figure 2, while assum-
ing the friction torque of the hydraulic swing motor negligible compared
to the friction of the rotary gear ring of the excavator undercarriage/cab
assembly. Furthermore, the leakage of the hydraulic swing motor is assumed
negligible in the following.

4.1 Sizing of VsD Displacement Machines

The sizing of the VsD displacement machines is based on the Bosch Rexroth
A2 bent axis pump and motor series [25, 26], and are considered here due
to their proven application history. For any of the considered displacement
machines which are not connected to a vented fluid reservoir, the suction
restrictions are not violated as a result of the assumption of a minimum
pressure level of 20 [bar]. For this reason, displacement machines operating
under these conditions may be used in all four quadrants, and therefore these
are chosen as A2FM hydraulic motors. Displacement machines connected
directly to a fluid reservoir are subject to suction restrictions, hence only
operable in two quadrants, and therefore these machines are chosen as A2FO
hydraulic pumps. In addition, when fluid is pumped from a vented reservoir
into a pressurized control volume, cavitation may occur in the suction port.
As a results of this the A2FO sizing’s are based on the maximum positive
flow requirements. Finally, flow losses are not included in the sizing, and
therefore this task is based on nominal shaft speeds but with an upper limit of
6000 [rpm].

The displacement machine sizes chosen for the three drive systems
are shown in Figure 9 along with the total geometric displacements to be
installed. Here, the EDN and DEH are subject to reduced installed displace-
ments by nearly 9% and 10%, respectively, compared to the SMV, whereas
the difference in total displacement among the EDN and DEH is owed to the
available component range.

4.2 Sizing of Electric Motors

Based on the displacement machine sizes presented in Figure 9 and the load
of the swing function shown in Figure 2, the ideal shaft speed and torque
requirements for the electric motors are established as shown in Figure 10.

The electric motors are sized using the S2 torques as the maximum design
torques and the shaft speeds well below the maximum motor speeds, while
not including the flow and torque losses related to the displacement machines.
Considering the Bosch Rexroth eLION EMS1 motor portfolio and the electric
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Figure 10 Required max. electric motor speeds and torques for the three drive systems.



428 Lasse Schmidt et al.

74

62

52

SMV DEH EDN
0

10

20

30

40

50

60

70

80

Av
er

ag
e 

To
ta

l M
ot

or
 P

ow
er

 [k
W

]

1 x EMS1-16 7 x EMS1-10 5 x EMS1-10

-29.7%-16.2%

-16.1%

Figure 11 Choice of eLION motors EMS1 along with the resulting total rated (motor) power
to be installed.

motor requirements in Figure 10, the motor choices are presented in Figure 11
along with the resulting total rated motor power for each drive system.

The deviations in the total rated motor power results especially from
either relatively high required torques or the use of a relatively large number
of VsD’s. In case of a high maximum motor torque, the associated rated
power tends to be correspondingly large as well, attributed the associated
speed range of the electric motor. Similarly, the use of a relatively large
number of VsD’s tends to result in a relatively large total installed torque
overhead, with this increasing with the number of VsD’s applied. A reason-
able level of installed torque and power is therefore achieved with few units
and with a reasonable ratio between required speed and torque for each unit.

In summary, the total rated motor power for the EDN is 16.1% lower than
the DEH and 29.7% lower than for the SMV. This is attributed less number
of VsD’s applied compared to the DEH and, indirectly, to the substantially
lower torque requirement compared to the SMV.

4.3 Tank Sizing Considerations

Besides the component sizes and the associated material usage, another
important aspect from a sustainability standpoint is the amount of fluid
required for the drive systems, which is related to sizes of the fluid reser-
voirs/tanks. Neither the EDN nor the DEH rely on throttle control, meaning
that the fluid degasification and fluid cooling requirements are substantially
reduced compared to the SMV. The only throttling present in the EDN and
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DEH drive systems are associated only with cross-port leakage and drain
flows, whereas it is the pump flow that is throttled with the SMV.

A rule of thumb suggests that the tank volume should be three times the
average (throttled) flow to allow for appropriate heat dissipation and fluid
degasification.2 Based on this, the theoretical SMV tank size may be obtained
as Equation (22), and applying the same rule for the EDN and the DEH while
accounting for the cylinder piston volumes, the associated theoretical tank
sizes are obtained from Equation (23).

Vtank,SMV = 3mean(Qp) (22)

Vtank,SMV = 3mean(ΣQD +Σ|QL|) + (A1 −A2)x1,max (23)

+ (A3 −A4)x2,max + (A5 −A6)x3,max

Using the loss models described in Section 5, the resulting theoretical tank
volumes appear as depicted in Figure 12. Evidently, the theoretical EDN and
DEH tank volumes are dramatically reduced compared to the SMV, in both
cases by more than 90%. Traditional tank designs used in mobile working
machines are often optimized in various ways, and could be as low as half of
the volume proposed for the SMV. In such a case, the theoretical reduction in
EDN and DEH volumes still exceed 80% compared to the SMV.
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Figure 12 Ideal fluid reservoir/tank sizes and relative reduction compared to SMV.

2https://www.powermotiontech.com/hydraulics/reservoirs-accessories/article/21882642/fu
ndamentals-of-hydraulic-reservoirs (date: 26-10-2023).

https://www.powermotiontech.com/hydraulics/reservoirs-accessories/article/21882642/fundamentals-of-hydraulic-reservoirs
https://www.powermotiontech.com/hydraulics/reservoirs-accessories/article/21882642/fundamentals-of-hydraulic-reservoirs
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5 Energy Efficiencies & Loss Distribution

Based on the chosen component sizes for the proposed EDN and the
benchmark drive systems SMV and DEH, their energy efficiency and loss
distributions are considered in the following along with the loss models
applied for the analyses.

5.1 Loss Models Used in Case Studies

Regarding the loss model used for the displacement machines, this is based on
a measured loss map for an A2FMM 32 hydraulic motor, with this assumed
representative also for the A2FO units. To account for the different sizes of
the displacement units, the measured losses A2FMM 32 are scaled according
the scaling rules applied in [7, 15]. The loss model used for the eLION
EMS1’s is based on measured losses of an EMS1-20 type motor. In all
cases, the measured data has been smoothened to mitigate the impact of
outlier measurement points, and the hydraulic losses extrapolated for pressure
differences above 350 [bar]. Hence, the loss models applied represent the
approximate losses of the components in consideration, and their maps are
depicted in Figure 13. Regarding the loss model of the A2FM depicted in
Figure 13, the measured flow losses account for both cross-port leakage
and drain flows. The scaling of the EMS1 assumes that the efficiency map
is invariant with respect to the motor size i.e., that all the EMS1 motors
considered have the same efficiency map as the EMS1-20, with the axes
scaled to the max. torque and speed of the EMS1 motor in consideration.
Furthermore, for the EMS1 motors it is assumed that the efficiency map is
valid for all four quadrants. The total inverter losses Pinv,loss and DC-bus
losses Pdc,loss are estimated as Equations (24), (25). Here Ri and Iinv,nom,i are
the electrical resistance and nominal current of the ith inverter, respectively,
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Figure 13 Approximate loss diagrams. Left plot: 2Q flow loss map for A2FMM 32. Center
plot: 2Q torque loss map for A2FMM 32. Right plot: Power loss map for eLION EMS1-20
component series motor.
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and Rdc, Udc =700 [Vdc] are the electrical DC-bus resistance and the DC-
bus voltage, respectively. Furthermore, Idc,nom = Σn

i=1Iinv,nom,i is the nominal
DC-bus current. Finally, the inverter, DC-bus and battery efficiencies are
assumed to be ηinv =0.98 [-], ηdc =0.98 [-] and ηbat =0.90 [-], respectively.

Pinv,loss =
n∑

i=1

Ri

P 2
m,i

U2
dc
, Pdc,loss = Rdc

P 2
inv,loss

U2
dc

(24)

Ri =

(
1

ηinv
− 1

)
Udc

Iinv,nom
, Rdc =

(
1

ηdc
− 1

)
Udc

Idc,nom
(25)

5.2 Loss Distribution & Power Consumption

From the load cycles of Figure 2 and the loss models described above, the
overall average loss distribution for the three drive systems appear as depicted
in Figure 14. From these results it is evident that significant reductions in all
losses are achieved with DEH and EDN drives compared to the SMV, except
for the friction losses. The relatively higher friction losses of the DEH and
EDN are attributed the use of more displacement machines compared to the
SMV, as well as the associated specific loads.

Furthermore, it is notable from Figure 14 that the average energy con-
sumption by the DEH and EDN drives is reduced by more than 59%

47.6

19.5 19.2

SMV DEH EDN
0

10

20

30

40

50

Av
er

ag
e 

Po
w

er
 [k

W
]

Hydraulic output power
Friction power loss

Hydraulic power loss
Battery power loss

Electric power loss

-59.7-59
.

.

.

.

. . .

.

.
.

.

.

.
.

.

Figure 14 Average losses and average total power consumption.



432 Lasse Schmidt et al.

compared to the SMV. Hence, assuming the considered load cycles generally
representative for the excavator implement, then to conduct an 8 hour shift the
required battery capacities would be approximately 381 [kWh], 156 [kWh]
and 154 [kWh] for the SMV, DEH and EDN, respectively.

Finally, the drive energy efficiencies in terms of the ratio between the
average battery power and the average hydraulic piston power, for the SMV,
DEH and EDN are 22.3%, 54.4% and 55.2%, respectively. Hence, the DEH
and EDN systems enable energy efficiencies more than 2.4 times higher than
that of the SMV.

6 Conclusion

A novel hybrid electro-hydraulic/mechanical drive network for actuation of
excavator implements is proposed, involving the linear boom, arm and bucket
functions as well as the rotary swing function. The proposed drive network
includes short circuiting of three cylinder chambers, namely the boom cylin-
der rod side chambers and the arm and bucket piston side chambers. As
a result, the three cylinders effectively involve only four control volumes,
as opposed to the conventional six volumes. The swing function is purely
electro-mechanically actuated, and with four VsD’s related to actuation of the
control volumes, the electro-hydraulic/mechanical drive network applies five
variable-speed displacement units in order to control the individual actuator
motions as well as the hydraulic system lower pressure.

The proposed electro-hydraulic/mechanical drive network is compared
to two alternative drive systems applicable in electrified machinery, with
these being a separate metering drive system supplied by a variable-speed
fixed displacement pump and a dual pump electro-hydraulic standalone drive
system. Here, the latter also involves an electro-mechanical swing function
similar to the proposed drive network. The component requirements for the
three drive systems are established, and components subsequently chosen
from the Bosch Rexroth A2 hydraulic pump and motor series as well as
the eLION electric motor series. Subsequently, steady state models utilizing
measured component losses are used to predict the power consumption and
loss distribution.

The results suggest that the proposed electro-hydraulic/mechanical drive
network is similar to the dual pump electro-hydraulic standalone drive system
in terms of energy efficiency and total displacement, whereas the electro-
hydraulic/mechanical drive network is realizable with ≈16% less installed
motor power by comparison. Compared to the separate metering drive
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system, the electro-hydraulic/mechanical drive network reduces power con-
sumption by nearly 60%, increases the total efficiency from ≈22% to ≈55%
and is realizable with ≈9% less installed displacement, ≈30% less installed
motor power and a tank volume reduction of more than ≈80%. The results
emphasize the potential significance of electro-hydraulic drive networks in
the ongoing efficiency improvements of hydraulic working machines as well
as their electrification.
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