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Fostering Trust through Gesture and Voice-Controlled Robot Trajectories
in Industrial Human-Robot Collaboration*

Giulio Campagna1, Christoph Frommel2, Tobias Haase2, Alberto Gottardi3,
Enrico Villagrossi4, Dimitrios Chrysostomou5, Matthias Rehm1

Abstract— In the Industry 5.0 era, the focus shifts from basic
automation to fostering collaboration between humans and
robots. Trust is crucial in this new paradigm, enabling smooth
interaction, especially for users with limited robotics knowledge.
This study presents a novel framework that uses human hand
gestures and voice commands to control robot movements,
aiming to enhance trust, reduce cognitive workload, and
minimize task execution time—key for efficient manufacturing.
In automated systems, swift completion of micromanagement
tasks is essential to prevent process disruption. To evaluate this
framework, we devised a testbed scenario within an automated
carbon fiber transportation and draping process, focusing
on a maintenance task as the micromanagement challenge.
Participants inspected the gripper, guided the robot along a
defined path, and performed maintenance, such as attaching
cables. Two conditions were tested: gestures and voice commands
versus a smartPAD. The results showed that gestures and voice
commands increased trust, lowered cognitive load, and shortened
execution times, improving overall manufacturing efficiency.

I. INTRODUCTION
Industry 5.0 era transformed traditional manufacturing by

adopting a human-centric approach that integrates advanced
technologies. This shift requires a redefinition of human-robot
collaboration (HRC), where trust and cognitive workload are
critical for safe and effective operations [1]. As collaborative
robots become more common, maintaining trust is essential
for productive interactions and operator safety [2]–[4].

In this study, we use Muir and Moray’s definition of
trust [5], which is the operator’s confidence in a system’s
competence and reliability to accomplish the task. In industrial
HRC, trust affects interaction quality, especially for operators
with limited robotic experience [6]. Additionally, cognitive
workload – the mental effort required for task performance
– is crucial for the effectiveness and safety of collaborative
processes [7], [8]. Previous research has investigated various
methods to enhance trust and reduce cognitive load in HRC.
Studies have investigated how robot appearance [9], [10],
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Fig. 1: Overview of the proposed framework to promote trust
and improve the manufacturing process in industrial HRC.

behavior [11], and communication strategies [12] influence
human trust. Additionally, research focused on adaptive
control systems [13] and real-time psychophysiological moni-
toring [14] to optimize robot behavior. Despite these advances,
many solutions involve complex interfaces or extensive
operator training, limiting their industrial applicability. Recent
research has delved into more nuanced trust aspects in HRC.
For instance, Campagna et al. explored using facial features
for trust evaluation [15], while another study examined
body motion data as a trust indicator [16]. Although these
methods offer real-time trust assessment, they may not directly
address intuitive robot control. To address these issues, studies
have analysed more natural interaction modalities. Gesture-
based control systems have been effective in improving
operator comfort and reducing cognitive load [17], while
voice command interfaces have shown potential for enhancing
communication efficiency in HRC [18]. However, these
approaches are often used in isolation, potentially missing
the benefits of multimodal interaction.

In this paper, we present a novel framework that integrates
hand gestures and voice commands for controlling robot
trajectories, aimed at enhancing trust and reducing cognitive
load in HRC. This approach merges these intuitive interaction
modalities into a holistic system, providing a more flexible and
user-friendly control paradigm. By combining spatial gesture
control with precise verbal instructions, our framework seeks
to create a more accessible and trust-enhancing interface for
collaborative robots. It uses the Message Queue Telemetry
Transport (MQTT) protocol for efficient data exchange,
ensuring smooth integration of gesture recognition, voice
command processing, and robot control systems (see Figure
1). To evaluate our approach, we developed a testbed scenario



centered around a maintenance task—an example of a
micromanagement operation—following the transport and
draping of carbon fiber fabric. The human operator guides
the robot along a predefined trajectory to a target position
for maintenance activities, such as attaching a cable to the
robot’s gripper. This setup underscores the importance of
trust and clear communication to avoid potential risks like
collisions or misalignment.

The framework was evaluated through a comparative study
involving two conditions: traditional smartPAD control and
the gesture and voice-assisted system. Performance metrics
included task execution time, trust levels measured by the
Trust Perception Scale-HRI [19], and cognitive workload
assessed using the NASA TLX questionnaire [20]. As an
additional analysis, we evaluated perceived intelligence and
safety using the Godspeed Questionnaire [21]. This evalu-
ation provides empirical evidence on how our multimodal
interaction approach impacts trust, cognitive workload, and
task efficiency in HRC.

The key contributions of this paper are:
• A novel framework integrating gesture and voice control

for robot trajectory guidance in industrial HRC.
• A flexible system that allows for seamless microman-

agement without disrupting automated processes.
• Empirical evidence on the impact of multimodal inter-

action on trust, cognitive workload, and task efficiency
in HRC.

• Guidelines for designing intuitive and trust-building
interfaces for collaborative robots in Industry 5.0.

II. METHODOLOGY

This work presents a framework that integrates gesture
recognition, voice commands, and adaptive robot control
to create a user-friendly interface for operators with limited
robotics experience. It is important to highlight that the frame-
work’s novelty is in its facilitation of seamless collaboration,
with detailed benefits discussed in Section IV and Section V.

A. Hand Gestures Detection

For reliable hand tracking, we employed MediaPipe
Hands [22], known for its accuracy and ease of integration.
This real-time system analyzes RGB images to predict the
hand skeleton, handling various hand appearances, sizes,
lighting conditions, and backgrounds. It accurately identifies
key landmarks such as fingertips, knuckles, and wrist points,
providing essential spatial data for gesture recognition. The
model pipeline includes: i) a palm detector using an oriented
bounding box to locate palms, and ii) a hand landmark model
that provides precise 2.5D landmark coordinates from the
cropped bounding box.

Palm Detector: A Single-Shot Detector is employed to
identify palms, which are easier to detect than full hands
with fingers due to the lack of distinctive features. Trained
on 6,000 images, the palm detector uses a Feature Pyramid
Network and focal loss optimization to handle varying scales
and numerous anchors. Feeding the landmark model with
precisely cropped hand images minimized the need for
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Fig. 2: The six right-handed gestures, viewed from the camera,
control the robot’s direction. For safety, the human operator
is required to wear gloves.

data augmentation and enhanced the accuracy of coordinate
predictions.

Hand Landmark Model: The model predicts 21 2.5D hand
keypoints, including depth relative to the wrist, using a
regression-based approach. Leveraging a topology similar
to Multi-view Bootstrapping [23], it reliably represents hand
poses, even under partial obscuration and self-occlusion. The
model also outputs hand presence probability and handedness
classification. Trained on around 30,000 real-world images
annotated with 21 keypoints, it uses synthetic hand models
for enhanced pose coverage and geometric supervision. Real-
world images provide annotated landmarks, while synthetic
images are mapped to ground-truth 3D joints. Hand presence
detection uses positive samples from annotated images
and negatives from non-annotated areas, with handedness
identified by labeling a subset of images as left or right
hands.

Following hand tracking, a gesture recognition model
was developed utilizing a Dense Neural Network (DNN),
inspired by [24]. This model identifies six right-handed
gestures for robot control (see Figure 2). Hand landmark data
were collected via MediaPipe, which provided 21 (x, y, z)
normalized coordinates from images captured at 24 Hz and a
resolution of 1368x912. The dataset comprised 9,632 samples,
distributed across six gesture classes, and was partitioned
into 60% training, 20% testing, and 20% validation sets.
Multiple DNN architectures were evaluated, with variations
in layers, neurons, dropout rates, optimizers, and learning
rates. The most effective DNN architecture begins with an
input layer that processes input vectors representing hand
landmark coordinates. To prevent overfitting, a dropout layer
with a 0.2 dropout rate is applied. This is followed by a
dense layer with 32 neurons and ReLU activation, another
dropout layer with a 0.4 dropout rate, and a dense layer
with 16 neurons and ReLU activation. The final output layer
consists of 6 neurons with softmax activation. The model was
trained using the Adaptive Moment Estimation optimizer, with
a learning rate of 0.001, beta1 of 0.9, and beta2 of 0.999.
Sparse Categorical Cross Entropy served as the loss function,
and an early stopping criterion with a patience of 20 epochs
was employed. Training stopped after 181 epochs, using a



Fig. 3: Confusion matrix for the gesture recognition model,
showing a perfect classification accuracy across all six gesture
categories with a single misclassification.

batch size of 32. The model achieved a 99.95% classification
accuracy, with precision, recall, and F1-score all reaching
100%. Figure 3 shows the confusion matrix. To improve
gesture predictions, class occurrences were counted over a
1-second interval with a detection confidence threshold of
0.7. The class with the highest frequency was selected as the
predicted gesture. Figure 4 depicts the overall framework of
the hand gesture detection model.

B. Voice Recognition System

The framework in Figure 1 features a voice assistant
that specifies the distance the robot should cover based
on the direction indicated by hand gestures and provides
feedback on voice command recognition. We use Rhasspy1,
an open-source toolkit for custom voice interfaces. Rhasspy
provides personalized wake words, speech-to-text, and text-to-
speech models, with modular design and multilingual support,
making it versatile for various applications. Unlike many
commercial voice assistants, Rhasspy processes everything
locally, ensuring data privacy. In the following, it is detailed
the framework’s key concepts, components (see Figure 5)
and the underlying mechanism.

The process starts when the human operator speaks into the
system’s microphone. PyAudio captures and streams the audio
directly. The system listens for the wake word ”Porcupine,”
and upon detection, activates and processes the subsequent
audio, which is then sent to Kaldi for Automatic Speech
Recognition (ASR) with a minimum confidence threshold of
0.7. Although trained in English, the ASR system can be
retrained for other languages. In this study, the operator uses
voice commands to control the robot’s movement through a
Natural Language Understanding (NLU) system that interprets
various commands, focusing on syntaxes such as ”Move the
robot [distance] [unit of measure]” or ”Move [distance]
[unit of measure]” to allow flexible phrasing and optional
components. Kaldi converts spoken words into text, which is
processed by Rhasspy’s intent recognition engine, Fsticuffs.
Fsticuffs uses NLU to match the transcribed text to predefined

1Rhasspy Voice Assistant: https://rhasspy.readthedocs.io/en/latest/
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Fig. 4: Overall framework for the hand gesture detection.

commands and employs fuzzy text matching for improved
accuracy, handling minor variations in user input. Upon
recognizing the intent, the Dialogue Manager triggers a
custom application to determine the appropriate action, such
as starting the robot’s motion. This application collects data,
fills in missing information with contextual clues, and requests
additional input if necessary [25]. The system then provides
feedback to the operator, confirming if the command was
recognized. If successful, it sends the target pose to the Motion
Planner and executes the motion. If not, it identifies the
issue (e.g., incorrect pronunciation) and prompts the user to
retry. Feedback is delivered via synthetic speech generated by
NanoTTS and audio playback managed by ALSA (Advanced
Linux Sound Architecture), completing the interaction loop.
Communication among components is facilitated by MQTT
and Hermes protocols. MQTT ensures lightweight, real-time
messaging, while Hermes manages dialogue flow, integrating
tasks such as intent recognition, command execution, and
feedback delivery.

C. Robot Control and Planning

Figure 1 shows the robotic cell’s control framework, fea-
turing a Central Node [26] that integrates robot control with
human command recognition. This node uses environmental
sensors, including laser scanners, to monitor the work cell,
create 3D maps, and detect individuals. If the protective
zone is breached, the robot stops to avoid collisions or
injuries. The Central Node processes the operator’s position
and commands (e.g., gestures, voice) and relays these data to
the Robot Control module. This module includes a Motion
Planner for trajectory generation and Low-Level Control that
communicates via the real-time KUKA Robot Sensor Interface
(RSI) to safely execute commands.

The Motion Planner algorithm used is a modified version of
Rapidly-exploring Random Tree Connect (RRT-Connect) [27],
tailored for safe collaboration with human operators. It
relies on two search trees, Tstart and Tgoal , which expand
from the starting configuration qstart and goal configuration
qgoal , respectively. The key steps of the algorithm can be
summarized in two main equations:

1. Finding the nearest node:

qnear = argmin
q∈T

‖q−qrand‖ (1)

https://rhasspy.readthedocs.io/en/latest/
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where qrand is a randomly sampled configuration, and T
is either Tstart or Tgoal .

2. Extending the tree:

qnew = qnear +min(ε,‖qrand−qnear‖) ·
qrand−qnear

‖qrand−qnear‖
(2)

where ε is the maximum step size, ensuring that the new
node qnew is within a fixed distance from qnear.

The algorithm alternates expanding the two trees until they
connect, forming a continuous path. RRT-Connect is preferred
for its bidirectional growth, which speeds up pathfinding
and reduces search time compared to standard RRT. To
ensure safety, a collision-free volume around the trajectory is
computed using the method described in [28] and then sent
to the Low-Level Control for execution.

The Low-Level Control module uses the ros control ap-
proach, a standard in robotics that ensures consistent interfaces
for low-level controllers and hardware. This approach enables
real-time hardware communication through custom drivers
while maintaining standardized higher-level control processes
like path planning, simplifying integration and maintenance.
The module is managed by two PCs: a Beckhoff Industrial
PC (IPC) and a Linux PC running ROS. The Beckhoff IPC,
chosen for its real-time interface capabilities, uses TwinCAT
software to provide real-time performance and run PLC
programs in IEC-61131-3 and C++. This setup consolidates
automation software and efficiently controls the robotic cell.
A custom RSI driver in TwinCAT manages operations and
executes trajectories from the external motion planner. The
Linux PC handles the nominal trajectory from the Motion
Planner, micro-interpolating the trajectory at 4 ms intervals
to comply with the RSI control interface. Using two PCs
is essential for performance: the Beckhoff IPC handles real-
time robot communication, while the Linux PC executes other
control algorithms.

III. EXPERIMENTS

This section describes the experimental procedure used to
evaluate the proposed framework’s effectiveness in enhanc-
ing trust, reducing cognitive workload, and improving the
manufacturing process in industrial HRC.

KUKA Quantek KR 
210 R3100 Ultra

Custom Gripper

Industrial 
Camera

Carbon Fiber

Headset

Mold

Laser scanner

Target

Fig. 6: The experimental scenario. The operator may use hand
gestures and voice commands, or a smartPAD, depending on
the experimental condition.

A. Task Description and Experimental Conditions

An industrial robot transports carbon fiber fabric to a mold,
where a human operator drapes the material with the robot’s
assistance to ensure it fits the mold. Both processes are
automated but must be paused for micromanagement tasks
such as maintenance checks, requiring manual robot control
via a smartPAD, which disrupts the manufacturing workflow.
To address this challenge, we developed a framework for
robot control using hand gestures and voice commands. This
approach ensures uninterrupted industrial processes and is
designed for operators with limited robot control experience.
In contrast, traditional smartPADs can complicate control due
to their unfamiliarity, highlighting the need for more intuitive
interfaces.

To validate this framework, we designed a scenario where
the operator performs a maintenance task. After inspecting
the gripper, the operator moves the robot to a target location
(see Figure 6) away from the carbon fiber to prevent damage.
We tested two conditions: (i) robot control via smartPAD and
(ii) robot control using hand gestures and voice commands.
In both cases, the robot follows the same path: it moves
260 cm right, 100 cm forward, and approximately 30 cm
downward (adjusted for operator height). The operator then
attaches a cable to the gripper and records the inspection
date. The robot is then moved upward by the same distance
and 100 cm backward to return to the mold, preparing for
the next transport and draping cycle. Hand gestures direct the
robot’s motion (see Figure 2), while voice commands specify
distances (e.g., ”Move the robot 100 centimeters”). This dual-
modality approach enhances intuitive interaction and aligns
the operator’s spatial perception with the robot’s programmed
reference frame, ensuring more precise and seamless control
in dynamic settings.

B. Experimental Setup

The experimental setup uses a KUKA Quantek KR 210
R3100 Ultra robot with a KR C4 controller. This robot,
featuring six revolute joints, a 3095 mm reach, and an external



linear axis, is equipped with a custom gripper2 that employs
suction units based on the Coanda effect for secure gripping.
The Jabra headset provides high audio quality and Active
Noise Cancellation for voice commands, while an industrial
camera (IDS Imaging Development Systems GmbH) captures
hand gestures with a GigE interface, and is configured to
1368x912 pixels, 24 fps, and 40.31 ms exposure time. The
camera is mounted on the end-effector at an optimal height
and angle for clear imaging.

Safety measures include laser scanners to detect obstacles,
emergency stop buttons, and protective gear for participants
(safety shoes, lab coats, gloves). Collision-free algorithms
(see Section II-C) and safety zones minimize risk, with the
robot’s speed limited to 250 mm/s per ISO 10218-1:2011
standards. All participants receive thorough training on safety
protocols. The setup is illustrated in Figure 6.

C. Experimental Protocol

The experiment was conducted with 22 healthy participants
(16 males, 6 females) of varying ages (M = 35.45, SD =
8.62), all recruited from the personnel at the DLR - German
Aerospace Center. Participants were selected specifically for
their limited prior experience with robotics.

The experimental protocol adhered to the Declaration
of Helsinki and received institutional review board ethical
approval. Participants were given a consent form outlining
the study’s objectives, tasks, risks, methods, and potential
benefits. They reported their gender and age, then completed
the 6-item Propensity to Trust Questionnaire [29] to establish
baseline trust in the system. Protective equipment was then
donned, and participants completed two trials per randomized
condition. After each condition, they filled out the 14-item
Trust Perception Scale-HRI [19] to measure trust in the
system, and assessed Perceived Intelligence and Perceived
Safety using the Godspeed Questionnaire [21], which were
deemed relevant for further investigation in line with the
study’s objectives. Participants also completed the NASA TLX
Questionnaire [20] to evaluate cognitive workload. Responses
were normalized to a [0,1] scale. Task execution time for
participants with limited robotics knowledge was recorded
only for the robot control segment of each trial, excluding
gripper and cable inspection. The total participant involvement
was 90 minutes, including the introductory briefing.

IV. EXPERIMENTAL RESULTS

Participants’ propensity to trust was evaluated, resulting in
a high average score (M = 0.80, SD = 0.06), with individual
scores ranging from 0.71 to 0.92. Therefore, the participant
pool was deemed consistently inclined to trust the system,
removing the need for distinctions in later analyses. Trust in
the system was analyzed based on the within-subjects design
across two conditions: (i) robot control using the smartPAD
and (ii) robot control via hand gestures and voice commands.
The Shapiro-Wilk test confirmed a normal distribution of the
difference in average trust scores between these modalities

2Developed by Abele Ingenieure GmbH, a project partner

(p = 0.193). A paired t-test revealed significantly higher trust
scores for the hand gestures and voice commands condition
(M = 0.90, SD = 0.08) compared to the smartPAD condition
(M = 0.60, SD = 0.07), with (t(21) = 12.572, p = 3.068 ·
10−11). Additionally, we investigated participants’perceptions
of the system’s intelligence and safety. In examining per-
ceived intelligence, the Shapiro-Wilk test indicated that the
differences in scores between the two control modalities did
not follow a normal distribution (p = 0.046), prompting the
use of the Wilcoxon Signed-Rank test. The statistical analysis
revealed a significant difference in perceived intelligence
scores between the hand gestures and voice assistant scenario
(M = 0.85, SD = 0.09) and the smartPAD scenario (M =
0.43, SD = 0.11). Specifically, the perceived intelligence
score for the hand gestures and voice assistant scenario
(Mdn = 0.85) was significantly higher than that for the
smartPAD scenario (Mdn = 0.45), with p = 2.384 · 10−7.
For perceived safety, the Shapiro-Wilk test showed that the
differences in scores between the two control modalities
were normally distributed (p = 0.390). A paired t-test found
significantly higher safety scores for the hand gestures and
voice commands scenario (M = 0.85, SD = 0.09) versus the
smartPAD scenario (M = 0.46, SD= 0.11), with t(21) = 13.3,
p = 1.068 ·10−11. Regarding cognitive workload, the Shapiro-
Wilk test indicated that the differences in workload scores
followed a normal distribution (p = 0.075). A paired t-test
indicated that cognitive workload was significantly higher in
the smartPAD scenario (M = 0.46, SD = 0.13) compared to
the hand gestures and voice commands scenario (M = 0.09,
SD = 0.03), with t(21) = 13.206, p = 1.221 ·10−11. Finally,
task execution time was analyzed, with the Shapiro-Wilk test
confirming that the differences in execution times followed
a normal distribution (p = 0.181). A paired t-test showed
that the average execution time with the smartPAD (M =
288.45, SD = 69.58) was significantly longer than with hand
gestures and voice commands (M = 124.20, SD = 20.63),
with t(21) = 10.581, p = 7.141 · 10−10. Figures 7 and 8
present the summarized questionnaire results and key findings
on task execution time, respectively.

V. DISCUSSION

This study provides valuable insights into the impact
of various control modalities on HRC, focusing on trust,
perceived intelligence, safety, cognitive workload, and task
execution time for operators with limited robotics expertise.
The results highlight the superiority of hand gestures and
voice commands over smartPAD controls, emphasizing the
benefits of natural and intuitive interfaces. These findings
are particularly relevant for micromanagement tasks, such
as maintenance operations, where these interaction methods
significantly improve performance and user experience.

Key outcomes include a significantly higher level of trust
when the system is controlled by gestures and voice com-
mands compared to the smartPAD. The trust score increased
by 50%, from a mean of 0.60 with the smartPAD to 0.90 with
gestures and voice commands. This improvement suggests
that users experience greater confidence and security when
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interacting with systems through more natural communication
methods, thereby bridging the gap between human operators
and machines. Participants also perceived the system as more
intelligent and safer with gestures and voice commands.
Specifically, the perceived intelligence score rose by 97.67%,
from a mean of 0.43 with the smartPAD to 0.85 with gestures
and voice commands. Similarly, the perceived safety score
increased by 84.78%, from a mean of 0.46 with the smartPAD
to 0.85 with gestures and voice commands. This heightened
perception of intelligence likely stems from the intuitive
and seamless nature of these interactions, aligning with user
expectations for advanced systems, while the increased sense
of safety indicates participants felt more in control and
reassured by the immediate feedback provided by gestures and
voice commands. Cognitive workload was significantly higher
with the smartPAD, with a mean score of 0.46, compared to a
substantially lower mean score of 0.09 for gestures and voice
commands, representing an 80.43% reduction in cognitive
effort. The higher cognitive workload with the smartPAD
reflects the mental strain caused by its less intuitive control
interface, which requires translating intended actions into
device-mediated commands. In contrast, gestures and voice
commands allow for more intuitive communication, reducing
cognitive demands and mental strain. Finally, task execution
times were notably shorter with hand gestures and voice
commands compared to the smartPAD. Tasks were completed

in an average of 288.45 seconds using the smartPAD, while
the mean time for gestures and voice commands was 124.20
seconds, representing a 56.99% reduction in task completion
time. This improvement in efficiency is driven by a reduced
cognitive workload, increased trust, enhanced perception of
system intelligence and safety, as well as optimized path
planning and automated execution. These reductions in task
execution time can significantly enhance overall performance
in manufacturing processes, increasing productivity and
streamlining operations.

VI. CONCLUSION

This study introduces a novel framework for robot trajectory
control using hand gestures and voice commands, enhancing
natural interactions, user confidence, and operational effi-
ciency. Designed to build trust, reduce cognitive workload,
and minimize task execution time—especially for operators
with limited robotics expertise—the framework ensures
seamless integration with ongoing processes, allowing tasks
like transporting and draping to resume immediately post-
maintenance. Results show that this gesture- and voice-based
control significantly improves trust, perceived intelligence,
and safety, while reducing cognitive workload and execution
times compared to traditional smartPAD controls, thereby
enhancing overall manufacturing efficiency.

The framework shows promise but has limitations: it
supports only six predefined gestures, is affected by voice
command pronunciation issues, and is restricted to single-
hand gestures. Future improvements should include enabling
more granular, multi-directional movements, adding two-
hand gestures for complex tasks, enhancing voice recognition
for varied pronunciations, and integrating real-time verbal
feedback during robot motion to improve performance.
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