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Self-Supervised Masked Convolutional
Transformer Block for Anomaly Detection

Neelu Madan, Nicolae-Cătălin Ristea, Radu Tudor Ionescu, Member, IEEE, Kamal Nasrollahi,
Fahad Shahbaz Khan, Senior Member, IEEE, Thomas B. Moeslund, and Mubarak Shah, Fellow, IEEE

Abstract—Anomaly detection has recently gained increasing attention in the field of computer vision, likely due to its broad set of
applications ranging from product fault detection on industrial production lines and impending event detection in video surveillance to
finding lesions in medical scans. Regardless of the domain, anomaly detection is typically framed as a one-class classification task,
where the learning is conducted on normal examples only. An entire family of successful anomaly detection methods is based on
learning to reconstruct masked normal inputs (e.g. patches, future frames, etc.) and exerting the magnitude of the reconstruction error
as an indicator for the abnormality level. Unlike other reconstruction-based methods, we present a novel self-supervised masked
convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level. The
proposed self-supervised block is extremely flexible, enabling information masking at any layer of a neural network and being
compatible with a wide range of neural architectures. In this work, we extend our previous self-supervised predictive convolutional
attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel
self-supervised objective based on Huber loss. Furthermore, we show that our block is applicable to a wider variety of tasks, adding
anomaly detection in medical images and thermal videos to the previously considered tasks based on RGB images and surveillance
videos. We exhibit the generality and flexibility of SSMCTB by integrating it into multiple state-of-the-art neural models for anomaly
detection, bringing forth empirical results that confirm considerable performance improvements on five benchmarks: MVTec AD,
BRATS, Avenue, ShanghaiTech, and Thermal Rare Event. We release our code and data as open source at:
https://github.com/ristea/ssmctb.

Index Terms—anomaly detection, abnormal event detection, self-supervised learning, masked convolution, attention mechanism,
transformer, self-attention.

✦

1 INTRODUCTION

THE applications of vision-based anomaly detection are
very diverse, ranging from industrial settings, where

the need is to detect faulty objects in the production line
[1], [2], to video surveillance, where the need is to detect
abnormal behavior [3] such as people fighting or shoplifting,
and even medical imaging, where the need is to detect
abnormal tissue [4] such as malignant lesions. One of the
major challenges of the anomaly detection task is that the
definition of what represents an anomaly implies a high
dependence on context. For instance, a car driven in a pedes-
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trian area is labeled as anomalous, whereas the same action
can be considered normal in a different context, e.g. when
the car is driven on the road. Due to the reliance on context
and the sheer diversity of possible anomalies, it is often very
difficult to gather abnormal examples for training. As a re-
sult, anomaly detection is commonly devised as a one-class
classification task, where the generic approach implicitly
or explicitly learns the distribution of the normal training
data. During inference, examples that do not belong to the
normal training data distribution are labeled as abnormal.
There are several categories of methods that are guided by
this generic approach, such as dictionary-learning methods
[5]–[10], change-detection frameworks [11]–[14], distance-
based models [15]–[27], probabilistic frameworks [28]–[37],
and reconstruction-based models [3], [38]–[48].

Our approach belongs to the category of reconstruction
methods, which have recently become a prominent choice
in anomaly detection [38], [39], [41], [43], [44], [46]–[48].
Reconstruction-based models implicitly learn the normal
data distribution by minimizing the reconstruction error
of the normal instances at training time. These models are
based on the assumption that the learned latent manifold
does not offer the means to reconstruct the abnormal sam-
ples robustly, due to the unavailability of such samples at
training time. Hence, the reconstruction error is directly
employed as the anomaly score. A particular subcategory
of reconstruction-based models relies on learning to predict
masked inputs [41], [42], [50], [51] as a self-supervised
pretext task. In this case, the reconstruction error with

https://github.com/ristea/ssmctb
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Fig. 1. An overview of our self-supervised masked convolutional transformer block (SSMCTB). At every location where the masked filters are
applied, the proposed block has to rely on the visible regions (sub-kernels) to reconstruct the masked region (center area). A transformer module
performs channel-wise self-attention to selectively promote or suppress reconstruction maps via a set of weights returned by a sigmoid (σ) layer.
The block is self-supervised via the Huber loss (LSSMCTB) [49] between masked and returned activation maps. Best viewed in color.

respect to the masked information is used to assess the
abnormality level of an input instance. Depending on the
input type (image or video), methods in this subcategory
mask various parts of the input, e.g. superpixels in images
[41], future frames in video [42], or middle bounding boxes
in object-centric temporal sequences [50], [51], and employ
the whole model to reconstruct the masked input. We, on
the other hand, propose to encapsulate the functionality of
reconstructing the masked information into a novel neural
block. There are two major benefits when wrapping the
reconstruction task as a low-level architectural component:
(i) it enables introducing the reconstruction of masked
information as a self-supervised task at any layer of a
neural network (not only at the input), and (ii) it eases
integrating the self-supervised reconstruction task into a
broad variety of neural architectures, regardless of whether
the respective models are reconstruction-based or not. Due
to its advantages, our block is very flexible and generic.

Our self-supervised reconstruction block consists of a di-
lated masked convolution followed by a channel-wise trans-
former module. The center area of our convolutional kernel
is masked, hence hiding the center of the receptive field at
every location where the filters are applied. In other words,
each component of the input tensor is certainly masked at
some point during the convolution operation, which means
that the entire input tensor ends up being masked. Next, the
convolutional activation maps are transformed into tokens
using an average pooling layer. Then, the resulting tokens
are passed through a transformer module [52], [53] that
performs channel-wise self-attention. The proposed block is
equipped with a transformer module to avoid the direct re-
construction of the masked area through linearly interpolat-
ing the visible regions of the convolutional kernels. The final
activation maps are multiplied with the resulting attention
tokens. Our block is designed in such a way that the output
tensor has the same dimensions as the input tensor, which
allows us to easily introduce a loss within our block to mini-
mize the reconstruction error between the output tensor and

the masked input tensor. By integrating this loss, our block
becomes a self-contained trainable component that learns
to predict the masked information via self-supervision. As
such, we coin the term self-supervised masked convolutional
transformer block (SSMCTB) to designate our novel neural
component for anomaly detection. As shown in Figure 1,
SSMCTB learns to reconstruct the masked region based on
the available context (visible regions of the receptive field),
for each location where the dilated kernels are applied.
Notably, we can graciously control the level (from local
to global) of the contextual information by choosing the
appropriate dilation rate for the masked kernels.

SSMCTB is an extension of the self-supervised predictive
convolutional attentive block (SSPCAB) introduced in our
recent CVPR 2022 paper [54]. In the current work, we
modify SSPCAB in three different ways: (i) we replace the
standard channel attention module in the original SSPCAB
[54] with a multi-head self-attention module [52], [53] to
increase the modeling capacity, (ii) we extend the masked
convolution operation with 3D convolutional filters, en-
abling the integration of SSMCTB into networks based on
3D convolutional layers, and (iii) we replace the mean
squared error (MSE) loss with the Huber loss [49], since the
latter loss is less sensitive to outliers than the former loss.
Aside from these architectural changes, we demonstrate
the applicability of our block to more domains, adding
anomaly detection in medical images and thermal videos to
the previously considered tasks based on RGB images and
surveillance videos. Moreover, we conduct a more extensive
ablation study, thus providing a more comprehensive set of
results. We also show that our module is suitable for both
convolutional and transformer-based architectures.

We introduce SSMCTB into multiple state-of-the-art neu-
ral models [42], [44], [55]–[60] for anomaly detection and
conduct experiments on five benchmarks: MVTec AD [1],
BRATS [61], Avenue [9], ShanghaiTech [3], and Thermal
Rare Event. The Thermal Rare Event data set is a novel
benchmark for anomaly detection, which we constructed
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by manually labeling abnormal events from the Seasons in
Drift data set [62]. The chosen benchmarks belong to various
domains, ranging from industrial and medical images to
RGB and thermal videos. This is to show that SSMCTB is
applicable to multiple domains. When adding SSMCTB to
the state-of-the-art models, our experiments show evidence
of consistent improvements across all models and tasks,
indicating that our block is generic and easily adaptable.
When compared to SSPCAB, we observe performance gains
in the majority of cases, showing that the multi-head self-
attention and the Huber loss are beneficial in detriment
of the standard channel attention [63] and the MSE loss,
respectively.

In summary, with respect to our previous work [54], our
current contribution is sixfold:

• We extend the 2D masked convolution to a 3D
masked convolution that considers a 3D context,
and we integrate the new 3D SSMCTB into two 3D
networks for anomaly detection [55], [56].

• We replace the Squeeze-and-Excitation module [63]
of SSPCAB with a transformer module that performs
channel-wise attention.

• We substitute the MSE loss with the Huber loss,
improving the sensitivity to outliers during self-
supervised learning.

• We conduct a more comprehensive set of experi-
ments, including a new method and two new bench-
marks from previously missing domains (medical
images, thermal videos).

• We provide an extensive ablation study, including
different variations of the proposed self-supervised
block.

• We annotate a subset (one week of video) of the
Seasons in Drift [62] data set with anomaly labels,
obtaining a new benchmark for anomaly detection
in thermal videos.

2 RELATED WORK

2.1 Transformers

Vaswani et al. [53] introduced the self-attention mechanism,
sparking the research of neural architectures relying solely
on attention, including research on vision transformers [52],
[64]–[74]. These models are now embraced at a fast pace
in the field of computer vision, certainly due to the im-
posing performance levels across a broad variety of tasks,
ranging from object recognition [52], [69], [70] and object
detection [64], [73], [74] to image generation [68], [71], [72]
and anomaly detection [75]–[78]. Unlike approaches using
only transformer-based attention [52], [64]–[70], [73], [74],
[79], we propose a novel and flexible block that employs
transformer-based attention along with masked convolu-
tion, which can be integrated into multiple architectures
that are not necessarily transformer-based. To endorse this
statement, we introduce SSMCTB into a variety of models
and conduct a series of experiments showing that our block
can bring significant performance gains. Another difference
from vision transformers is that our block performs channel-
wise self-attention, while conventional vision transformers
perform spatial attention [52]. We conduct an ablation study

to compare channel and spatial attention inside SSMCTB,
showing that channel attention provides superior perfor-
mance and faster processing.

2.2 Self-Supervision via Information Masking
The reconstruction of masked information has recently be-
come an attractive area of interest [60], [80]–[83]. Models
based on information masking are usually pre-trained on
a self-supervised reconstruction task, being later employed
for downstream visual tasks such as object detection and
image segmentation. For instance, He et al. [60] proposed
to reconstruct masked (erased) patches as a self-supervised
pretext task for pre-training auto-encoders, subsequently
using them for mainstream tasks, including object detec-
tion and object recognition. They reported optimal results
when a majority (75%) of the patches is masked. Masked
auto-encoders are directly applicable to anomaly detection.
However, we show that SSMCTB can boost the performance
of masked auto-encoders, suggesting that it can leverage
information masking in a distinct way. Wei et al. [81] aimed
at pre-training video models, proposing to mask spatio-
temporal cubes from a video and predict the features of the
masked regions. Chang et al. [82] introduced a bidirectional
decoder that learns to predict masked tokens by attending
them from all directions. The proposed method provides
an efficient substitute for generative transformers. Yu et
al. [83] used a masked point modeling task for pre-training
a point cloud transformer. They showed that the represen-
tation learned by the model transfers well to new (down-
stream) tasks and domains. Distinct from such methods, we
integrate information masking at a core operational level
inside neural networks via our masked convolutional layer.
We self-supervise our block (which incorporates masked
convolution) through a reconstruction loss and show that
modeling the context towards reconstructing the masked
information results in an effective discriminative manifold
for anomaly detection.

We underline that some recent approaches [42], [50], [84]
utilize masking as a surrogate task for anomaly detection.
We discuss these methods and explain how our approach is
different in a separate subsection below.

2.3 Anomaly Detection
Anomaly detection frameworks are usually trained in a
one-class setting, where only normal data is available at
training time, whereas both normal and abnormal examples
are present at test time. The anomaly detection methods
operating in this setting can be classified into different
categories, which are briefly presented below. Dictionary
learning methods [5]–[10] construct a dictionary of atoms
from normal instances, labeling examples that are not rep-
resented in the dictionary as abnormal. Change detection
frameworks [11]–[14] are applied directly on test videos,
measuring the degree of change between current and pre-
ceding video frames to detect anomalies. Probabilistic mod-
els [28]–[37] learn the probability density function of the
normal data, flagging examples outside the distribution as
abnormal. Distance-based approaches [15]–[27], [85] learn
a distance function between samples, such that the dis-
tance between normal instances is lower than the distance
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between normal and abnormal instances. Reconstruction-
based methods [3], [38]–[48], [56], [86] learn to reconstruct
normal examples, detecting anomalies based on the magni-
tude of the reconstruction error, as anomalies tend to have
larger errors than normal instances.
Reconstruction-based methods. Since our block belongs to
the category of reconstruction-based models, we discuss this
category in more detail next. Reconstruction-based mod-
els are often chosen for both image and video anomaly
detection [44], [50], [56], [59]. These approaches typically
employ auto-encoders and generative adversarial networks
(GANs) to learn a powerful latent manifold representing
the normal data distribution. For the video domain, some
anomaly detection approaches [17], [42], [59] incorporate
additional cues by reconstructing the optical flow to capture
motion information, enabling the detection of motion-based
anomalies such as running and jumping. Doshi et al. [87]
proposed a continual learning setup, which could be easily
extended for future normal and abnormal patterns.

As the amount of normal training data is generally high,
latent manifolds show a tendency to generalize too well,
being capable of reconstructing abnormal instances with
low error. In the context of anomaly detection, generalizing
to out-of-distribution samples, e.g. anomalies, is not desired,
although this would be mostly desirable in other applica-
tion domains. To mitigate this issue, researchers employed
various techniques, such as adding memory modules [39],
[44], [59] or pseudo-anomalies during training [58], [84].
Memory-based auto-encoders [39], [59] generally employ
an additional module to memorize the normal patterns ob-
served in the training data. Consequently, memory modules
increase the computational complexity of the model, and
the faithful reconstruction of normal samples highly relies
on the size of the memory module. Georgescu et al. [58]
proposed to optimize the model on pseudo-anomalies with
gradient ascent, while still using gradient descent to learn
the normal data distribution. This results in a powerful dis-
criminative subspace for the robust detection of the abnor-
mal samples. The pseudo-abnormal instances are samples
collected from different contexts, such as flowers, animals,
cartoons, and textures, unrelated to the object distribution
(comprising humans, cars, bicycles, etc.) observed in typical
urban surveillance scenes. Similarly, Astrid et al. [84] gener-
ated pseudo-anomalies by skipping a few frames from the
video and training an auto-encoder by maximizing the loss
for pseudo-anomalies and minimizing it for normal sam-
ples. Introducing pseudo-anomalies increases the training
time and may sometimes cause instability if the balance
between gradient descent on normal data and gradient
ascent on pseudo-abnormal data is not tuned. Different
from related reconstruction-based methods, we increase the
difficulty of the reconstruction task by masking information
wherever SSMCTB is introduced into a neural model, thus
making it harder for the model to generalize to abnormal
data. As shown by our experimental results, our block adds
a marginal computational overhead.
Masking for Anomaly Detection. Some approaches [38],
[42], [50], [75], [78], [88], [89] are already using the pre-
diction of masked inputs as a surrogate task for anomaly
detection. These models form a distinctive subcategory of
reconstruction-based methods. Liu et al. [42] proposed a

GAN for predicting a future frame based on a few past
frames, where anomalies are classified according to the pre-
diction error. Another GAN-based approach [90] performs
joint detection and localization of anomalies via inpainting.
The generator of this method learns to inpaint a patch from
the input image, while the discriminator learns to identify
if the inpainted patch is normal or abnormal. Interestingly,
the inpainting task has also been studied in conjunction with
vision transformers [78].

Generalizing over the method of Liu et al. [42], Yu et
al. [89] employed the Cloze task [91], which is about learning
to complete the video when certain frames are removed.
Georgescu et al. [50] proposed the masking of the middle
box of each temporal cube centered on an object. Anomalies
are detected based on the assumption that motion recon-
struction for an abnormal object is more difficult than for the
normal ones. Fei et al. [38] proposed the Attribute Restora-
tion Network (ARNet), where attributes such as color and
orientation of the input are removed, and the network learns
to restore those attributes. The idea is based on the assump-
tion that the anomalous data can be distinguished based
on the restoration error. Haselmann et al. [88] introduced
an approach for surface anomaly detection by erasing a
rectangular box from the center of the image and using
the interpolation error for the classification of samples into
normal or abnormal. Inspired by the success of masked
auto-encoders [60], Jiang et al. [75] proposed a masked Swin
Transformer [92] that is trained to inpaint masked regions.
To cope with the lack of abnormal samples during training,
the authors used simulated anomalies.

Unlike other models based on information mask-
ing, we propose a novel approach that incorporates the
reconstruction-based functionality into a single neural
block, which can be easily integrated into other state-of-
the-art anomaly detection models. Our experimental results
confirm that our block is a valuable addition to various
models, including both CNNs and transformers, which are
applied to anomaly detection in a wide range of domains.

3 METHOD

3.1 Motivation and Overview
A wide set of computer vision tasks, including anomaly
detection [44], [58], [59], [93], [94], are often addressed with
convolutional neural networks (CNNs) [95], [96], due to
the impressive performance levels reached by these mod-
els, sometimes even surpassing human-level accuracy. The
defining component of a CNN architecture is the convo-
lutional layer, which typically comprises multiple filters
(kernels) that activate on discriminative local patterns cap-
tured within the receptive field of the respective filters. Each
filter produces an activation map that is further given as
input to the next convolutional layer. Since each filter in
the subsequent layer processes all activation maps from the
previous layer at once, the local features extracted by the
previous layer are combined into more complex features.
This sequential processing of features over multiple convo-
lutional layers gives rise to a hierarchy of features during
the learning process. Earlier convolutional layers activate on
low-level features such as corners or edges, and later layers
gradually shift to higher-level features such as car wheels or
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Fig. 2. Our 2D masked convolutional kernel. The visible area of the
receptive field is denoted by the regions Ki, ∀i ∈ {1, 2, 3, 4}, while the
masked area is denoted by M . A dilation factor d controls the local or
global nature of the visible information with respect to M . Best viewed
in color.

human body parts, as shown by Zeiler et al. [97]. Although
the learned hierarchy of features is very useful in solving
discriminative tasks, CNNs do not have the direct means to
model the global arrangement of local features [98], since
they do not generalize well to novel viewpoints or affine
transformations [99]. The inability of grasping the global
arrangement of local features is mainly caused by the fact
that convolutional filters operate on a limited (and typically
small) receptive field, not making use of the context.

We hereby propose a self-supervised masked convolu-
tional transformer block (SSMCTB), which is aimed at learn-
ing to reconstruct masked information based on contextual
information. To accurately solve the reconstruction of its
masked input, the proposed block is required to employ the
context and learn the global structure of the local patterns.
Hence, it inherently learns to cope with the problem stated
by Sabour et al. [98], specifically the fact that CNNs lack the
proper comprehension of the global arrangement of local
features. To embed this learning capability into our block,
we structure SSMCTB as a convolutional layer with dilated
masked kernels, followed by a transformer module that
performs channel attention. We attach a self-supervised loss
function to our block in order to minimize the reconstruction
error between the masked input and the predicted output.

We emphasize that SSMCTB is quite flexible, since it
can be inserted at any level of almost any CNN or trans-
former model, generating powerful features that offer the
capability of reconstructing masked information based on
context. While the ability of learning and harnessing the
global arrangement of local patterns is potentially useful
in solving a broader set of computer vision tasks, we con-
jecture that anomaly detection is a natural and immediate
application domain for SSMCTB, hence focusing our work
in this direction. Indeed, since anomaly detection models are
typically trained on normal data only, integrating SSMCTB
into a neural model will lead to the learning of features
that recover only masked normal data. Hence, when an
anomalous sample is given as input during inference, SSM-
CTB is likely less capable of reconstructing the masked
information. This empowers the model to directly estimate
the abnormality level of a data sample via the reconstruction
error given by SSMCTB. Our claims are supported through
the comprehensive set of experiments on image and video
anomaly detection presented in Section 4.

3.2 Architecture

Our initial self-supervised block introduced in [54] was
formed of a 2D masked convolution and a Squeeze-and-
Excitation (SE) module [63]. To broaden the applicability of
our block, we now introduce a 3D masked convolutional
layer to replace the 2D masked convolution, whenever this
is needed. Moreover, we replace the SE attention module
with a modern transformer-based attention module [52],
[53] to attend to the channels given as output by the masked
convolution. We describe the individual components of
our block below, while providing a graphical overview of
SSMCTB in Figure 1.
2D Masked Convolution. Figure 2 shows our 2D masked
convolutional kernel, where the corner regions of this ker-
nel (in green color) are the learnable parameters (weights)
defining the visible regions of the receptive field. The
four learnable sub-kernels are denoted by Ki ∈ Rk′×k′×c,
∀i ∈ {1, 2, 3, 4}, where the spatial size k′ ∈ N+ of each sub-
kernel is a hyperparameter of our block, while the number
of channels c ∈ N+ always matches the number of channels
of the input tensor. Our masked region M ∈ R1×1×c (in
pink color) is located at the center of the receptive field. Each
sub-kernel Ki is located at a configurable distance d ∈ N+

(also referred to as dilation rate) from the masked region M .
To keep the number of hyperparameters to a bare minimum,
we fix the spatial size of the masked region to 1 × 1. As a
result, the spatial size k of the entire receptive field of our
2D masked convolution is k = 2k′ + 2d+ 1.

Let X ∈ Rh×w×c be the input tensor of the masked
convolutional layer, where c ∈ N+ denotes the number of
channels, and h,w ∈ N+ represent the height and width of
the input tensor, respectively. When we apply our custom
kernel at a given location (a, b) of the input tensor X , only
the input values that overlap with the sub-kernels Ki are
taken into consideration during the masked convolution
operation, resulting in a single output value. We underline
that our masked convolution is equivalent to convolving
the input independently with the sub-kernels Ki, where
each sub-kernel has a different spatial shift with respect
to the current location (a, b), and the resulting values are
summed up to produce a single output value. The output
value at position (a, b) represents the reconstruction for only
one value of the tensor M located at the same position
(a, b). To reconstruct the entire tensor M , our layer re-
quires the application of c masked convolutional filters, each
reconstructing the masked value from a distinct channel
at position (a, b). Convolving a single masked filter over
the entire input generates a complete activation map. Since
there are c masked convolutional filters, the output tensor
Z is formed of c activation maps. Our aim is to apply the
masked convolution such that every element in the input
tensor is masked exactly once, i.e. we want to mask and
predict the reconstruction for every spatial location of the
input. As such, we set the stride to 1 and apply a zero-
padding of k′ + d in each direction. With this configuration
in place, the output tensor Z has h × w × c components,
exactly as the input tensor X . To obtain the final values, the
output tensor Z is passed through Rectified Linear Units
(ReLU) [100]. Finally, we emphasize that k′ and d are the
only tunable hyperparameters of our masked convolutional
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Fig. 3. Our 3D masked convolutional kernel. The visible area of the
receptive field is denoted by the regions Ki, ∀i ∈ {1, 2, ..., 8}, while the
masked area is denoted by M . A dilation factor d controls the local or
global nature of the visible information with respect to M . Best viewed
in color.

layer.
3D Masked Convolution. Considering that anomaly detec-
tion is often applied on 3D inputs, e.g. video or medical
scans, some researchers naturally resort to employing 3D
CNNs. To this end, we extend our 2D masked convolution
to the 3D domain, broadening the applicability of SSMCTB.
We thus reformulate the 2D spatial reconstruction task into a
more difficult one, which implies learning a global 3D struc-
ture of the discovered local patterns. Let Ki ∈ Rk′×k′×k′×c,
∀i ∈ {1, 2, ..., 8}, be the learnable 3D sub-kernels depicted
in Figure 3, where k′ and c are defined above. The masked
region M is located in the center of the 3D kernel, equally
distant from the sub-kernels Ki. The size of the receptive
field of our 3D masked convolution is k × k × k, where
k = 2k′ + 2d+ 1.

To compute the feature response using the 3D masked
convolutional layer, the input X ∈ Rh×w×r×c is convolved
with our custom masked kernel, where r represents the
depth, and h, w and c are defined as before. The 3D filter
is applied analogously to the 2D one, the only difference
being that the input data and the kernel itself are 3D. The
number of 3D convolutional filters is equal to the number of
channels c, such that the spatial dimension of the output
tensor Z ∈ Rh×w×r×c is identical to that of the input
X . The 3D masked convolution has the same number of
configurable hyperparameters, these being k′ and d.
Channel-wise transformer block. To better exploit the
interdependencies between the different activation maps
produced by the masked convolutional layer, we replace
the Squeeze-and-Excitation module in SSPCAB [54] with a
self-attention transformer-based module. The new attention
module is able to capture more complex channel-wise inter-
relations through its higher modeling capacity, as it learns
to assign attention weights to the reconstructed information
corresponding to each masked convolutional filter in order
to reduce the reconstruction error of SSMCTB.

Let Z ∈ Rh×w×c be the output tensor of a 2D masked
convolutional layer with c filters. First, we apply a spatial
average pooling, obtaining Ẑ ∈ Rh′×w′×c, where h′ ≤ h

and w′ ≤ w. The average pooling layer is followed by a
reshape operation, obtaining a matrix A ∈ Rc×n, which
contains a vector of n = h′ · w′ components on each row
to represent each masked filter. Next, A is fed into a linear
projection layer to obtain the tokens T ∈ Rc×dt , which
are further summed up with the positional embeddings to
obtain the final tokens T ∗ ∈ Rc×dt .

Let f be a multi-head attention layer with H ∈ N+

heads, g a multi-layer perceptron, norm a normalization
layer, and P ,R ∈ Rc×dt some auxiliary tensors. The
operations performed inside the transformer are formally
described as follows:

P = f(norm(R)) +R, (1)

R = g(norm(P )) + P . (2)

As illustrated in Figure 1, the whole process described in
Eq. (1) and Eq. (2) is repeated L times, where L ∈ N+

represents the number of transformer blocks inside the
transformer module. For the first transformer block, R is
initialized with T ∗. In Eq. (1), the sequence of c tokens
R is normalized, fed into the multi-head attention layer
and added to itself, obtaining P . Further, P is normalized,
fed into a multi-layer perceptron and also added to itself,
according to Eq. (2).

The transformer is aimed at capturing the interaction
among all c tokens by encoding each token in terms of the
channel-wise contextual information. This is achieved via
the multi-head attention layer f . Each head j ∈ {1, 2, ...,H}
comprises three learnable weight matrices denoted as
WQj ∈ Rdt×dq , WKj ∈ Rdt×dk and W Vj ∈ Rdt×dv , where
dq = dk. The weight matrices are multiplied with the input
tokens R, producing the queries Qj , keys Kj and values
V j . In other words, the input sequence R is projected onto
these weight matrices to get Qj = R ·WQj , Kj = R ·WKj

and V j = R ·W Vj , respectively. The output Y j ∈ Rc×dv of
each self-attention head is given by:

Y j = softmax

(
Qj ·K

⊤
j√

dq

)
· V j , (3)

where K⊤
j is the transpose of Kj . The outputs returned by

the self-attention heads are simply summed into Y , i.e.:

Y =
H∑
j=1

Y j . (4)

We can now rewrite Eq. (1) as follows:

P = Y +R. (5)

The output sequence R returned by the final transformer
block is averaged along the token dimension, obtaining
R̂ ∈ Rc×1, then fed into a sigmoid layer to generate the
final attention weight assigned to each channel. Finally, the
resulting attention weights are applied to the tensor Z, ob-
taining the reconstructed output denoted by X̂ ∈ Rh×w×c,
as follows:

X̂ = Z ⊗ σ(R̂), (6)

where ⊗ denotes the element-wise multiplication, and σ
denotes the sigmoid layer. The entire processing performed
by the transformer module is analogously applied when the
preceding layer is a 3D masked convolution.
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3.3 Self-Supervised Reconstruction Loss

We devise an integrated reconstruction loss to train the
proposed SSMCTB in a self-supervised manner. To better
cope with outlier values and reduce the sensitivity of the
model to outliers, we define the self-supervised objective
as the Huber loss between the reconstructed output X̂
and the input X , replacing the mean squared error (MSE)
used by SSPCAB. The self-supervised objective enables our
model to learn reconstructing the masked information at
every location where the masked filters are applied. Let G
denote the SSMCTB function. With this notation, the self-
supervised reconstruction loss of our block can be computed
as follows:

LSSMCTB(G,X)=

{
1
2 ·(G(X)−X)

2
, if |G(X)−X|<δ

δ ·
(
|G(X)−X|− δ

2

)
, otherwise

=

 1
2 ·
(
X̂−X

)2
, if |X̂−X|<δ

δ ·
(
|X̂−X|− δ

2

)
, otherwise

,

(7)

where δ ∈ R+ is a hyperparameter representing the error
threshold that determines when to switch from the squared
loss (applied for errors below δ) to the absolute loss (applied
for errors higher than or equal to δ).

When integrating SSMCTB into some neural network F ,
we can simply add our loss LSSMCTB to the loss function
LF of the respective neural model, resulting in a new loss
function comprising both terms. Formally, the overall loss
can be computed as follows:

Ltotal = LF + λ · LSSMCTB, (8)

where λ ∈ R+ is a hyperparameter deciding the importance
of LSSMCTB with respect to LF . Naturally, the hyperparame-
ter λ can vary across neural models or visual tasks.

4 EXPERIMENTS AND RESULTS

4.1 Data Sets

We carry out experiments on five benchmarks from various
domains, considering the most popular data set choices,
e.g. MVTec AD [1], BRATS [61], CUHK Avenue [9], Shang-
haiTech [3], whenever such an option is available for a
certain domain. For the thermal video domain, we build
our own data set.
MVTec AD. MVTec AD [1] has become a standard data
set for benchmarking anomaly detection methods applied
in inspecting industrial defects. The data set contains over
5,000 images distributed over 15 different categories of
textures (10) and objects (5). It comprises 3,629 defect-free
training samples, as well as 1,725 test images with and
without defects.
BRATS. BRATS [61] is a multimodal magnetic resonance
imaging (MRI) data set for brain tumor segmentation. It is
an intrinsically heterogeneous data set that contains brain
tumors of different shape, appearance and histology. The
data set comprises manually annotated MRI scans acquired
by 19 institutions employing different clinical protocols. To
evaluate anomaly detection models, we introduce a novel
split of the data set, such that all training images are lesion-
free, i.e. all images with lesions are kept for testing. The

TABLE 1
Rare events in our thermal anomaly detection data set along with the

frequency of each event type.

Rare Event Type Frequency
Activities in restricted zones 6
Jumping 4
Reverse driving 2
Unexpected activities 2
Unexpected interactions 14
Unexpected vehicle 1
Total 29

training set includes 11,280 slices (125 scans), which leaves
27,745 slices (180 scans) for the test set.
Avenue. CUHK Avenue [9] is one of the most widely-used
data sets for video anomaly detection. It contains 16 videos
for training and 21 videos for testing. The training videos
comprise only normal events, whereas the test videos con-
tain both normal and abnormal events. The data set contains
videos from a single surveillance camera. Avenue contains
people-related anomalies such as running, walking in the
wrong direction, jumping, dancing, loitering and throwing
objects.
ShanghaiTech. ShanghaiTech [3] is one of the largest bench-
marks for video anomaly detection, comprising 330 training
and 107 test videos. As in CUHK Avenue, abnormal in-
stances appear only at test time. The data set includes videos
from multiple scenes. Examples of anomalies are related
to people, e.g. fighting, jumping and stealing, as well as
vehicles, e.g. bikes and cars in pedestrian (forbidden) zones.
Thermal Rare Event. To construct the Thermal Rare Event
data set, we sampled one week of videos (330 clips) from the
Seasons in Drift (SiD) data set [62]. The SiD data set [62] is
an unlabeled thermal surveillance data set captured from a
single view over a period of 8 months. The data set captures
activities near a harbor front during day and night. Each clip
is about 2 minutes long and contains 120 frames, being sam-
pled at 1 frame per second (FPS). Out of the 330 clips, there
are 29 clips containing rare (anomalous) events. We manu-
ally annotated these rare events at the frame level. In total,
our Thermal Rare Event data set contains 36,120 frames
for testing and 3,480 frames for training. The list of rare
events in our data set along with their respective frequencies
are summarized in Table 1. Examples of rare events from
different categories are: activities in restricted zones (people
sitting, standing, and running close to the pier), jumping
(person jumping, group jumping), unexpected activities (do-
ing yoga, smoking), unexpected interactions (running with
stroller, embarking to a boat, debarking from a boat, chasing,
dancing), unexpected vehicles (different types of trucks). We
release the Thermal Rare Event data set along with our code
at: https://github.com/ristea/ssmctb/.

4.2 Evaluation Measures
Image Anomaly Detection. Following Bergmann et al. [1],
we carry out the evaluation on MVTec AD and BRATS con-
sidering the area under the receiver operating characteristics
curve (AUROC) and the average precision (AP). To generate
the ROC curve, the true positive rate (TPR) is plotted against
the false positive rate (FPR). We evaluate both detection and

https://github.com/ristea/ssmctb/
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localization performance levels of anomaly detection meth-
ods. In anomaly detection, TPR is the proportion of images
correctly classified as abnormal, and FPR is the proportion
of normal images wrongly classified as abnormal. For the
localization task, TPR denotes the proportion of correctly
classified abnormal pixels, while FPR represents the pro-
portion of normal pixels incorrectly classified as abnormal.
For the localization task, we obtain anomaly segments by
applying a threshold to produce a binary decision for each
pixel, as described in [1]. The localization AP is obtained by
taking the mean at different threshold levels.
Video Anomaly Detection. As the majority of previous
works [101], we evaluate the detection performance of
video anomaly detection methods using the frame-level area
under the curve (AUC). To compute the AUC measure, a
video frame is marked as abnormal if at least one pixel is
abnormal. Inspired by Georgescu et al. [58], we employ both
micro AUC and macro AUC. The micro AUC is computed
by first concatenating all frames in all videos into a single
video, while the macro AUC represents the average of the
AUC scores which are independently computed for each
single video in the test set. To evaluate the localization
performance, we report the region-based detection criterion
(RBDC) and the track-based detection criterion (TBDC) pro-
posed by Ramachandra et al. [19]. RBDC considers each de-
tected region, marking it as a true positive if the intersection
over union (IOU) between the detected and the ground-
truth anomalous region is greater than α. TBDC marks
each tracked region as a true positive if the overlap with
the ground-truth anomalous track is greater than β. We set
the same values for α and β as previous works [19], [58],
i.e. α = 0.1 and β = 0.1.

4.3 Implementation Details
We choose eight state-of-the-art approaches [42], [44], [55]–
[60] for image and video anomaly detection to serve as
underlying models, on top of which we add SSPCAB [54]
and SSMCTB (ours). We alternatively integrate SSPCAB
and SSMCTB directly into the official implementations of
the chosen baselines, while preserving all hyperparameter
values, e.g. the number of epochs and the learning rate, as
specified in the corresponding papers [42], [44], [55]–[60].
Even so, we are unable to exactly reproduce the original
results for two baselines methods, i.e. those of Park et al. [44]
and Liu et al. [42]. However, our reproduced quantitative
results are still close to the originally reported results. For a
fair comparison, we compare the models based on SSPCAB
and SSMCTB with the reproduced baselines. Additionally,
when we repurpose the approach of Park et al. [44] from
the RGB domain to the thermal domain, we modify some
hyperparameters, namely the number of epochs and the
mini-batch size.

Following Ristea et al. [54], we replace the penultimate
convolutional layer with SSMCTB in most underlying mod-
els. One exception is the architecture of Georgescu et al. [50],
where SSPCAB and SSMCTB are integrated into the penul-
timate convolutional layer of the decoder instead of the final
classification network. Another exception is the masked
auto-enconder [60] based on the ViT backbone, where we
place SSPCAB and SSMCTB before the first transformer
block.

TABLE 2
Micro AUC scores (in %) obtained on the Avenue data set with different
hyperparameter configurations, varying the kernel size (k′), the dilation
rate (d), the loss type, and the attention type, while integrating SSMCTB
into the method of Park et al. [44]. The top score is highlighted in bold.

Method LSSMCTB d k′ Attention Micro AUC
Park et al. [44] - - - - 82.8

MAE

0 1

-

83.1
+SSMC 1 1 83.5

(no attention) 2 1 84.2
3 1 84.4

+SSMCTB

MAE

0 1

CA

83.7
1 1 84.9
2 1 85.5
3 1 85.9

MSE

0 1

CA

84.9
1 1 85.7
2 1 85.4
3 1 86.4

SSIM

0 1

CA

83.3
1 1 85.5
2 1 84.9
3 1 83.0

Huber

0 1

CA

84.2
1 1 87.0
2 1 86.5
3 1 86.1

Huber

0 2

CA

84.1
1 2 84.9
2 2 84.8
3 2 86.0

Huber

0 3

CA

84.5
1 3 85.0
2 3 86.4
3 3 84.3

Huber

0 1

SA

86.2
1 1 84.7
2 1 85.8
3 1 80.4

Huber 1 1 CA + SA 86.2

In our previous work [54], we conducted a set of pre-
liminary experiments to find an optimal value for the hy-
perparameter λ representing the contribution of our self-
supervised loss to the total loss defined in Eq. (7), taking
values from 0.1 to 1 at an interval of 0.1. Following our
previous work [54], we keep λ = 0.1 across all data sets.
However, for two baselines [57], [59], we notice that the
magnitude of our loss is too high with respect to the original
losses of the respective models, dominating the optimiza-
tion. Following our previous work [54], we decrease λ to
0.001 to reduce the dominant influence of our loss on these
two particular models [57], [59].

For the channel-wise transformer, we fix the activation
map size after the average pooling layer to 1× 1, the token
size dt to 64, the number of heads H to 4, as well as the
number of successive transformer blocks L to 2. We discuss
results for other transformer configurations in Section 4.7.

4.4 Preliminary Results
We conduct a series of preliminary experiments on Avenue
to determine the hyperparameters of SSMCTB, namely the
dilation rate d and the sub-kernel size k′. We perform
experiments with d ∈ {0, 1, 2, 3} and k′ ∈ {1, 2, 3}. We
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Fig. 4. Examples of image-level anomaly localization results from MVTec
AD given by DRAEM [56], before (blue contour) and after (green con-
tour) integrating SSMCTB. The ground-truth anomalies are shown in
red. Best viewed in color.

also consider alternative attention types, namely channel
attention (CA), spatial attention (SA) and both channel and
spatial attention (CA+SA). Additionally, we alternate be-
tween multiple losses to self-supervise our block, such as the
mean absolute error (MAE), the mean squared error (MSE),
the Huber loss, and the Structured Similarity Index Measure
(SSIM) loss. For the Huber loss, we set the hyperparameter
δ to the default value, i.e. δ = 1.

We employ the method of Park et al. [44] in our prelimi-
nary experiments, since this is the most lightweight method
among the chosen ones [42], [44], [55]–[60]. The correspond-
ing micro AUC scores are presented in Table 2. Except for
a single SSMCTB configuration based on spatial attention
(SA), all other SSMCTB configurations bring performance
improvements over the approach of Park et al. [44] (first
row). Our first set of preliminary experiments is aimed
at evaluating the capacity of the standalone masked con-
volution. Even without the attention module, our masked
convolution brings gains higher than 1% for d = 2 and
d = 3. While adding the attention module is definitely
useful, we conclude that it is clearly not the only factor
responsible for the reported performance gains. To compare
the losses on the one hand, and attention types on the other,
we fix k′ = 1. When alternating between MAE, MSE, SSIM
and Huber as our self-supervised loss, we generally observe
higher performance with Huber loss. We thus continue the
experiments with Huber loss. Regarding the attention type,
we note that channel attention (CA) generally leads to better
results than spatial attention (SA). Hence, for the remaining
experiments, we employ the transformer module based on
channel attention. We continue by increasing the size of the
sub-kernels, without obtaining further performance gains.
We obtain the best micro AUC (86.7%) with d = 1 and
k′ = 1, while using channel attention. We make another
attempt to further boost the performance by combining
the channel and spatial attention (CA+SA), while fixing
d = 1 and k′ = 1. This attempt is also unsuccessful. Our
final SSMCTB configuration, which we employ across all
underlying models and data sets, is based on d = 1, k′ = 1
and channel attention.

We underline that the corresponding hyperparameters
for SSPCAB were tuned in a similar manner, in our pre-
vious work [54]. Hence, we simply use the already tuned
hyperparameters for SSPCAB. Importantly, we underline
that our observations above are mostly consistent with those
reported in our previous work [54], i.e. both SSPCAB and
SSMCTB use channel attention, a dilation rate of d = 1
and sub-kernels of size k′ = 1. The only difference is that
SSMCTB is based on the Huber loss instead of the MSE

Fig. 5. Examples of image-level anomaly localization results from
BRATS given by DRAEM [56], before (blue contour) and after (green
contour) integrating SSMCTB. The ground-truth anomalies are shown
in red. Best viewed in color.

loss. We should also emphasize that it is not common for
anomaly detection data sets to have validation splits. Since
the training set contains normal instances only, keeping a
representative training subset (with both normal and ab-
normal examples) for validation is not possible. This is the
reason behind our decision to avoid hyperparameter tuning
for each model and data set. We believe that this evalua-
tion procedure is more fair because it avoids overfitting in
hyperparameter space.

4.5 Anomaly Detection in Images
Baselines. We introduce SSMCTB into two state-of-the-
art baselines for image anomaly detection on MVTec AD,
namely a self-supervised model based on natural synthetic
anomalies (NSA) [57] and a discriminatively trained recon-
struction anomaly embedding model (DRAEM) [56]. Both
baselines are very recent, attaining strong results on MVTec
AD. The NSA approach of Shülter et al. [57] generates
synthetic anomalies using Poisson image editing, blending
scaled patches of different sizes from separate images. In
this way, it generates a wide range of synthetic anoma-
lies that are similar to natural irregularities. DRAEM [56]
comprises a reconstructive network and a discriminative
network to detect and localize anomalies. The reconstructive
network is based on a simple auto-encoder architecture
which learns to reconstruct original images from artificially
corrupted images. The discriminative network is a U-Net
that learns to segment the introduced artifacts (corrupted
regions).
Results on MVTec AD. We report the results on MVTec AD
in Table 3. Considering the detection results, we observe that
adding SSPCAB and SSMCTB leads to superior results for
both DRAEM [56] and NSA [57]. Considering the localiza-
tion results, the AUROC scores of DRAEM do not show
any improvements when adding SSPCAB and SSMCTB.
However, the localization AP of DRAEM exhibits gains of
around 2% by adding SSPCAB and SSMCTB. In addition,
the localization AUROC of NSA grows when SSPCAB and
SSMCTB are introduced into the architecture.

In Figure 4, we present some examples of qualitative
results from MVTec AD, obtained by DRAEM [56], before
and after adding SSMCTB. In all shown cases, we observe
that the anomaly localization results are better aligned with
the ground-truth regions when SSMCTB is integrated into
DRAEM.
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TABLE 3
Detection AUROC and localization AUROC/AP (in %) of two state-of-the-art methods [56], [57] on MVTec AD, before and after alternatively adding

SSPCAB and SSMCTB. The best result for each model and each performance measure is highlighted in bold.

Class

Detection Localization
DRAEM [56] NSA (logistic) [57] DRAEM [56] NSA (logistic) [57]
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Carpet 97.0 98.2 96.8 95.6 97.5 96.1 95.5 95.0 95.8 53.5 59.4 55.2 95.5 97.5 95.6
Grid 99.9 100 100 99.9 99.9 100 99.7 99.5 99.7 65.7 61.1 69.7 99.2 99.2 99.2
Leather 100 100 100 99.9 99.9 100 98.6 99.5 97.6 75.3 76.0 65.5 99.5 99.5 99.6
Tile 99.6 100 100 100 100 100 99.2 99.3 99.3 92.3 95.0 95.7 99.3 99.2 99.1
Wood 99.1 99.5 100 97.5 97.7 97.8 96.4 96.8 94.8 77.7 77.1 75.6 90.7 90.4 93.5

O
bj

ec
t

Bottle 99.2 98.4 99.4 97.7 97.7 97.7 99.1 98.8 99.2 86.5 87.9 89.9 98.3 98.3 98.4
Cable 91.8 96.9 94.1 94.5 95.6 96.1 94.7 96.0 95.5 52.4 57.2 61.6 96.0 96.6 97.5
Capsule 98.5 99.3 97.1 95.2 95.4 95.5 94.3 93.1 93.4 49.4 50.2 52.0 97.6 97.2 97.9
Hazelnut 100 100 100 94.7 94.2 97.1 99.7 99.8 99.5 92.9 92.6 89.1 97.6 97.9 97.9
Metal Nut 98.7 100 100 98.7 99.0 99.5 99.5 98.9 99.3 96.3 98.1 94.7 98.4 98.6 98.3
Pill 98.9 99.8 98.8 99.2 99.2 99.5 97.6 97.5 97.4 48.5 52.4 46.9 98.5 98.8 98.4
Screw 93.9 97.9 99.0 90.2 91.1 90.4 97.6 99.8 99.5 58.2 72.0 70.1 96.5 96.2 96.4
Toothbrush 100 100 100 100 100 100 98.1 98.1 99.0 44.7 51.0 69.0 94.9 95.3 95.4
Transistor 93.1 92.9 96.0 95.1 95.6 96.2 90.9 87.0 89.1 50.7 48.0 45.8 88.0 87.1 88.3
Zipper 100 100 100 99.8 99.8 99.9 98.8 99.0 99.0 81.5 77.1 76.5 94.2 94.5 94.7
Overall 98.0 98.9 98.7 97.2 97.5 97.7 97.3 97.2 97.2 68.4 70.3 70.5 96.3 96.4 96.7

TABLE 4
Detection AUROC and localization AUROC/AP (in %) of two

state-of-the-art methods [56], [57] on BRATS, before and after
alternatively adding SSPCAB and SSMCTB. Additional results

obtained by converting DRAEM to use 3D convolutions and integrating
the 3D SSMCTB are also reported. The best result for each model and

each performance measure is highlighted in bold.

Method

AUROC
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DRAEM [56] 41.06 42.40 45.41
DRAEM + SSPCAB [54] 44.19 46.66 46.89
DRAEM + SSMCTB (Ours) 50.27 53.98 50.75
NSA [57] 53.66 74.90 61.09
NSA + SSPCAB [54] 54.91 75.30 62.37
NSA + SSMCTB (Ours) 60.09 77.09 64.55
3D DRAEM [56] 43.74 44.12 45.97
3D DRAEM + 3D SSMCTB (Ours) 53.70 58.47 52.79

Results on BRATS. In Table 4, we present the brain lesion
detection and localization results obtained by the anomaly
detection models [56], [57] on BRATS, before and after
adding SSPCAB and SSMCTB, respectively. Remarkably, we
notice that the results of both DRAEM and NSA show sig-
nificant performance improvements when integrating SSM-
CTB. Moreover, the performance gain brought by SSMCTB
is always higher than the gain brought by SSPCAB. When
taking advantage of the 3D nature of the MRI scans by em-
ploying the 3D SSMCTB, we attain even higher performance
with DRAEM.

In Figure 5, we present several examples of qualitative
results from BRATS, given by DRAEM [56], before and
after adding SSMCTB. In general, the localization results

Fig. 6. Frame-level anomaly scores of the method of Georgescu et
al. [58], before (baseline) and after (ours) integrating SSMCTB, for
test video 02 from the Avenue data set. Anomaly localization results
correspond to the model based on SSMCTB. Best viewed in color.

based on SSMCTB exhibit a higher overlap with the ground-
truth regions, explaining why SSMCTB leads to superior
performance levels.

4.6 Anomaly Detection in Videos

Baselines. We select five recent methods [42], [44], [55],
[58], [59] yielding state-of-the-art performance on Avenue
and ShanghaiTech. Liu et al. [42] proposed a GAN-based
framework to detect anomalies based on the future frame
prediction error. Park et al. [44] presented a memory-based
auto-encoder classifying anomalies based on the reconstruc-
tion error. The model comprises a memory module that
memorizes prototypes of normal samples. Liu et al. [59]
employed a hybrid framework based on flow reconstruc-
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TABLE 5
Micro-averaged frame-level AUC, macro-averaged frame-level AUC, RBDC, and TBDC scores (in %) of various state-of-the-art methods on Avenue
and ShanghaiTech. Among the existing models, we select six models [42], [44], [55], [58]–[60] to show results before and after including SSPCAB

and SSMCTB, respectively. The best result for each underlying model is highlighted in bold. The top score for each metric is shown in red.

Method
Avenue ShanghaiTech

AUC RBDC TBDC AUC RBDC TBDCMicro Macro Micro Macro
Liu et al. [13] 84.4 - - - - - - -
Sultani et al. [102] - - - - - 76.5 - -
Ionescu et al. [18] 88.9 - - - - - - -
Nguyen et al. [43] 86.9 - - - - - - -
Ionescu et al. [17] 87.4 90.4 15.77 27.01 78.7 84.9 20.65 44.54
Wu et al. [103] 86.6 - - - - - -
Lee et al. [104] 90.0 - - - - - -
Yu et al. [89] 89.6 - - - 74.8 - - -
Ramachandra et al. [19] 72.0 35.80 80.90 - - - -
Ramachandra et al. [20] 87.2 41.20 78.60 - - - -
Tang et al. [47] 85.1 - - 73.0 - -
Dong et al. [105] 84.9 - - 73.7 - -
Doshi et al. [106] 86.4 - - 71.6 - -
Sun et al. [107] 89.6 - - 74.7 - -
Wang et al. [108] 87.0 - - 79.3 - -
Astrid et al. [84] 84.7 - - - 73.7 - - -
Astrid et al. [109] 87.1 - - - 75.9 - - -
Georgescu et al. [50] 91.5 92.8 57.00 58.30 82.4 90.2 42.80 83.90
Liu et al. [42] 85.1 81.7 19.59 56.01 72.8 80.6 17.03 54.23
Liu et al. [42] + SSPCAB [54] 87.3 84.5 20.13 62.30 74.5 82.9 18.51 60.22
Liu et al. [42] + SSMCTB (Ours) 89.5 84.6 23.79 66.03 74.6 83.9 19.13 61.65
He et al. [60] 84.0 85.6 - - 74.3 81.1 - -
He et al. [60] + SSPCAB [54] 85.1 85.8 - - 74.5 81.9 - -
He et al. [60] + SSMCTB (Ours) 86.4 86.5 - - 76.1 81.6 - -
Park et al. [44] 82.8 86.8 - - 68.3 79.7 - -
Park et al. [44] + SSPCAB [54] 84.8 88.6 - - 69.8 80.2 - -
Park et al. [44] + SSMCTB (Ours) 87.0 87.7 - - 70.6 80.3 - -
Liu et al. [59] 89.9 93.5 41.05 86.18 74.2 83.2 44.41 83.86
Liu et al. [59] + SSPCAB [54] 90.9 92.2 62.27 89.28 75.5 83.7 45.45 84.50
Liu et al. [59] + SSMCTB (Ours) 89.6 93.9 46.49 86.43 75.2 83.8 45.86 84.69
Georgescu et al. [58] 92.3 90.4 65.05 66.85 82.7 89.3 41.34 78.79
Georgescu et al. [58] + SSPCAB [54] 92.9 91.9 65.99 64.91 83.6 89.5 40.55 83.46
Georgescu et al. [58] + SSMCTB (Ours) 93.2 91.8 66.04 65.12 83.3 89.5 40.52 81.93
Bărbălău et al. [55] 91.6 92.5 47.83 85.26 83.8 90.5 47.14 85.61
Bărbălău et al. [55] + 3D SSMCTB (Ours) 91.6 92.4 49.01 85.94 83.7 90.6 47.73 85.68

TABLE 6
Micro and macro AUC scores (in %) on Thermal Rare Event, obtained

while alternatively including SSPCAB [54] and SSMCTB into the
method of Park et al. [44].

Method AUC
Micro Macro

Park et al. [44] 53.2 66.5
Park et al. [44] + SSPCAB 53.6 66.6
Park et al. [44] + SSMCTB (Ours) 58.9 66.6

tion and frame prediction, using the accumulated error to
detect anomalies. Georgescu et al. [58] introduced a train-
ing scheme where the latent subspaces of appearance and
motion auto-encoders are improved by performing gradient
ascent on pseudo-anomalies during training. Bărbălău et
al. [55] extended the previous work of Georgescu et al. [50]
with two 3D transformer-based self-supervised multi-task
architectures trained on new sets of proxy tasks. Among
the two versions proposed in [55], we opt for SSMTL++v2.
We included this 3D model [55] because it serves as a good
baseline for applying our 3D SSMCTB.

We also experiment with the recently proposed masked

auto-encoder framework [60], which is based on the ViT
backbone [52]. We add this baseline model to demonstrate
the applicability of SSMCTB to vision transformers.

Results on RGB videos. We present the results on Avenue
and ShanghaiTech in Table 5. As for the image anomaly
detection experiments, we compare the results of the un-
derlying models before and after adding SSPCAB [54] and
SSMCTB, respectively. For the method of Liu et al. [42], both
SSPCAB and SSMCTB lead to performance improvements,
but the gains brought by SSMCTB are always higher than
those brought by SSPCAB. Since the methods of He et al. [60]
and Park et al. [44] are only capable of detecting anoma-
lies at the frame level, we only report their frame-level
micro and macro AUC scores. The vanilla masked auto-
encoder obtains competitive results on both Avenue and
ShanghaiTech. On Avenue, SSMCTB brings higher gains to
the masked auto-encoder than SSPCAB. On ShanghaiTech,
SSMCTB is better than SSPCAB in terms of the micro AUC,
but SSPCAB exhibits higher macro AUC gains. In summary,
both SSMCTB and SSPCAB improve the masked auto-
encoder, with SSMCTB having the upper hand. Considering
the results of Park et al. [44] on Avenue, SSMCTB leads to
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Fig. 7. Frame-level anomaly scores of the method of Georgescu et
al. [58], before (baseline) and after (ours) integrating SSMCTB, for
test video 10 from the Avenue data set. Anomaly localization results
correspond to the model based on SSMCTB. Best viewed in color.

Fig. 8. Frame-level anomaly scores of the method of Liu et al. [59],
before (baseline) and after (ours) integrating SSMCTB, for test video
02 0164 from the ShanghaiTech data set. Anomaly localization results
correspond to the model based on SSMCTB. Best viewed in color.

higher gains in terms of the micro AUC (from 82.8% to
87.0%), while SSPCAB leads to a higher macro AUC (from
86.8% to 88.6%). On ShanghaiTech, we observe higher gains
after adding SSMCTB rather than SSPCAB. Moving on to
the object-centric models of Liu et al. [59] and Georgescu
et al. [58], we observe that the top gains are mainly shared
between SSPCAB and SSMCTB. When integrating our 3D
SSMCTB into the 3D architecture presented in [55], we
observe performance improvements according to most met-
rics. Overall, SSMCTB leads to the highest performance
levels on Avenue for three metrics, namely the micro AUC
(93.2%), the macro AUC (93.9%) and the RBDC (66.04%).
At the same time, SSPCAB attains the highest TBDC score
(89.28%) on Avenue. On ShanghaiTech, it appears that the
best scores are obtained by adding the 3D SSMCTB into
the underlying model of Bărbălău et al. [55], since our 3D
SSMCTB brings performance gains for three metrics.

In Figure 6 and 7, we illustrate the anomaly detection
performance on two test videos from Avenue, before and

Fig. 9. Frame-level anomaly scores of the method of Park et al. [44],
before (baseline) and after (ours) integrating SSMCTB, for test video
39 from the Thermal Rare Event data set. Anomaly localization results
correspond to the model based on SSMCTB. Best viewed in color.

after integrating SSMCTB into the model of Georgescu
et al. [58]. Our approach produces superior frame-level
anomaly scores, being able to detect the person running
in the first video (Figure 6) and the person throwing an
object in the second one (Figure 7). Moreover, in the second
video, we also notice that SSMCTB increases the anomaly
score for the penultimate abnormal event, resolving the false
negative detection of the baseline. Similarly, in Figure 8, we
show the effect of adding SSMCTB into the architecture of
Liu et al. [59] applied on a test video from ShanghaiTech.
Once again, SSMCTB improves the frame-level detection
performance, being able to detect the person riding a bike
in a pedestrian area, which is forbidden. SSMCTB correctly
raises the anomaly scores for about 50 video frames, starting
at around frame index 150, thus reducing the false negative
rate.
Results on thermal videos. Since texture is not present in
the thermal domain, there is no need to apply very deep
architectures, as noticed by Nikolov et al. [62]. Moreover,
object detectors pre-trained on natural images do not work
equally well in the thermal domain due to the distribution
shift. To this end, the object-centric [55], [58], [59] and
very deep [42] baselines attain very poor results (micro
AUC values under 50%). Hence, we resort to employing
the architecture of Park et al. [44] as underlying model for
SSPCAB and SSMCTB. As shown in Table 6, the chosen
baseline attains a micro AUC of 53.2% and a macro AUC of
66.5%. Both SSPCAB and SSMCTB seem to have a positive
influence on the micro AUC score, but the gains of the latter
block are significantly higher (above 5%). In summary, the
results reported on Thermal Rare Event demonstrate the
utility of SSMCTB, further confirming the gains observed
on RGB video data sets.

In Figure 9, we show the anomaly detection performance
on a test video from Thermal Rare Event, before and after
integrating SSMCTB into the model of Park et al. [44].
SSMCTB leads to important gains in terms of the frame-level
scores, being able to detect the vehicle moving backwards.
Inference time. Regardless of the underlying framework
[42], [44], [55]–[60], similar to Ristea et al. [54], we add only
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TABLE 7
Inference time (in milliseconds) per example for three frameworks [42],

[56], [58], before and after integrating SSPCAB and SSMCTB,
respectively. The running times are measured on an Nvidia GeForce

GTX 3090 GPU with 24 GB of VRAM.

Method

Time (ms)

Ba
se

lin
e

+S
SP

C
A

B

+S
SM

C
T

B

+3
D

SS
M

C
TB

Liu et al. [42] 2.1 2.4 2.5 -
Georgescu et al. [58] 1.5 1.7 1.8 -
Zavrtanik et al. [56] 26.4 - - 26.6

TABLE 8
Micro AUC (in %) on Avenue by incorporating SSMCTB into different

conv blocks of the decoder proposed by Park et al. [44]. Along with the
block placement, we also vary the dilation rate d.

Method Decoder Conv Block d Micro AUC
Park et al. [44] - - 82.8

+SSMCTB

early 0 83.6
early 1 83.2
early 2 84.6
early 3 84.7
early 4 84.9

middle 0 84.3
middle 1 83.2
middle 2 84.5
middle 3 85.9
middle 4 85.7

late 0 86.2
late 1 87.0
late 2 85.9
late 3 84.6
late 4 85.8
all 4,3,1 85.1

one instance of SSMCTB, usually replacing the penultimate
convolutional layer. Considering that the channel attention
from SSPCAB is replaced with a channel-wise transformer
block in SSMCTB, we might expect a slightly higher pro-
cessing time. To assess the amount of extra time added by
SSMCTB, we present the running times before and after
integrating SSPCAB and SSMCTB into two state-of-the-art
frameworks [42], [58] in Table 7. For both baseline models,
the time added by SSMCTB is at most 0.1 ms higher than
the time taken by SSPCAB. Moreover, the computational
time of SSMCTB does not exceed a difference of 0.4 ms
with respect to the original baselines. Another important
question is how does the 3D version of SSMCTB impact the
running time. To answer this question, we take the DRAEM
model [56] and measure the running time before and after
adding the 3D SSMCTB. The reported time measurements
show that the running time increase due to the 3D SSMCTB
is still marginal, being around 0.2 ms. Hence, the processing
delays caused by the introduction of the 2D or 3D SSMCTB
versions are within the same range. In summary, we con-
sider that the accuracy gains brought by SSMCTB outweigh
the marginal running time expansions reported in Table 7.

TABLE 9
Micro AUC (in %) on Avenue by incorporating SSMCTB into the model

of Park et al. [44], while varying the size of the masked region M .

Method Size of M Micro AUC
Park et al. [44] - 82.8

+SSMCTB
1× 1 87.0
2× 2 85.6
3× 3 84.9

4.7 Ablation Study

Block placement. Across all the experiments presented so
far, recall that we introduce a single SSMCTB, which is
usually placed near the end of the architecture (penultimate
convolutional layer), as mentioned in Section 4.3. The num-
ber of blocks as well as their placement should be tuned
on some validation set, which could lead to higher perfor-
mance gains. However, anomaly detection data sets do not
commonly contain a validation set and there is no way to
keep a number of training samples for validation, as the
training set comprises only normal examples. To this end,
we employed a single configuration (one block, closer to the
output) to fairly demonstrate the universality of SSMCTB.
Certainly, this choice might not always be optimal. Hence,
we perform ablation experiments by incorporating SSMCTB
at different decoder levels of the network proposed by Park
et al. [44], considering different dilation rates (d). We vary the
dilation rate along with the block placement, because Duţă
et al. [110] observed that higher dilation rates are suitable
for earlier dilated convolutional layers, and lower dilation
rates are suitable for dilated convolutional layers closer to
the output.

In Table 8, we show the corresponding results on the
Avenue data set. We start by adding SSMCTB into the
earliest stage of the decoder (first conv block), progressively
moving the block to the layers closer to the output of the
decoder, until we reach the very last one. For each decoder
level (early, middle, late), we vary the dilation rate to find
a suitable value. We attain the best micro AUC (87.0%)
when integrating SSMCTB into the last conv block of the
decoder, while using a dilation rate of d = 1. A dilation
rate of d = 4 seems suitable when placing SSMCTB at an
earlier stage, while, for the middle stage placement, the
optimal dilation rate appears to be d = 3. Interestingly, these
results are consistent with the observation made by Duţă
et al. [110], although their observation applies to dilated
convolutions, while ours applies to masked convolutions.
Nevertheless, all the results are consistently better than the
baseline (82.8%), regardless of the block placement or the
dilation rate. We do not observe major improvements when
integrating multiple blocks, concluding that integrating a
single SSMCTB is sufficient.
Size of masked region. Increasing the size of the masked
region M can lead to a harder reconstruction task, at
each location where our masked convolution is applied.
However, it is unclear if making the task harder leads to
better results. To this end, we vary the spatial size of M ,
considering three options: 1 × 1, 2 × 2 and 3 × 3. We
present the corresponding results in Table 9. The empirical
results indicate that increasing the size of M leads to lower
anomaly detection scores. Hence, we conclude that a size of
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TABLE 10
Micro AUC (in %) on Avenue by incorporating SSMCTB into the model

of Park et al. [44], while varying the hyperparameters of the
channel-wise transformer, namely the activation map size (h′ × w′)

after the average pooling layer, the token size (dt) after the projection
layer, the number of heads (H), as well as the number of successive

transformer blocks (L).

Method h′ × w′ dt H L Micro AUC
Park et al. [44] - - - - 82.8

+SSMCTB

1× 1 64 4 2 87.0
2× 2 64 4 2 85.3
3× 3 64 4 2 85.2
4× 4 64 4 2 85.6
1× 1 16 4 2 84.6
1× 1 32 4 2 85.6
1× 1 64 4 2 87.0
1× 1 128 4 2 85.1
1× 1 64 3 2 85.6
1× 1 64 4 2 87.0
1× 1 64 5 2 87.0
1× 1 64 6 2 84.8
1× 1 64 4 1 85.1
1× 1 64 4 2 87.0
1× 1 64 4 3 84.0

1× 1 for the masked region M is optimal.
Transformer architecture. In Table 10, we present further
ablation experiments for the channel-wise transformer mod-
ule. We keep the underlying model of Park et al. [44] and
report the results on the Avenue data set. As variations
for the transformer module, we consider the following
hyperparameters: the activation map size (h′ ×w′) after the
average pooling layer, the token size (dt) after the projection
layer, the number of heads (H), as well as the number of
successive transformer blocks (L).

First, we analyze how activation maps of different di-
mensions, given as output by the average pooling layer
placed right before the transformer, influence the results. We
observe that shrinking the maps to 1×1 gives the best micro
AUC (87.0%). The optimal configuration of the average
pooling layer (producing activation maps of 1× 1) is equiv-
alent to global average pooling. For the projection layer, we
consider output dimensions in the set dt ∈ {16, 32, 64, 128}.
The optimal size for the projection layer is dt = 64. We
consider transformer modules having 3 to 6 heads. The
empirical evidence indicates that using H = 4 or H = 5
heads leads to equally good results. Finally, we experiment
with transformer modules having 1 to 3 blocks. The best
performance is achieved with L = 2 successive transformer
blocks. We underline that all transformer configurations
surpass the baseline model [44].
Huber loss hyperparameter. Huber loss is the combination
of the L1 (MAE) and L2 (MSE) losses (see Eq. (7)), where δ is
a hyperparameter representing the threshold that switches
between the two loss functions. To study the effect of δ,
we consider different values for the hyperparameter δ ∈
{0.5, 1, 2}, reporting the results in Table 11. We find that the
maximum improvement corresponds to δ = 1, but the other
values of δ also lead to superior results compared to the
baseline.
Comparison with dilated convolution. In Table 12, we com-
pare the dilated convolution against the proposed masked
convolution, alternating between the two operations inside

TABLE 11
Micro AUC (in %) on Avenue by incorporating SSMCTB into the model
of Park et al. [44], while varying the hyperparameter δ of the Huber loss.

Method δ Micro AUC
Park et al. [44] - 82.8

+SSMCTB
0.5 84.1
1 87.0
2 85.8

TABLE 12
Micro AUC (in %) on Avenue by incorporating SSMCTB into the model

of Park et al. [44], while switching between dilated and masked
convolution. Different values for the dilation rate d are tested for the two

operations.

Method d Micro AUC
Park et al. [44] - 82.8

+SSDCTB (dilated conv)
1 85.1
2 83.3
3 85.0

+SSMCTB (masked conv)
1 87.0
2 85.5
3 85.9

SSMCTB. We denote the block based on dilated convolu-
tion through the acronym SSDCTB. When comparing the
two convolutional operations, we consider multiple dila-
tion rates between 1 and 3. The experiments show that
the proposed masked convolution outperforms the dilated
convolution, regardless of the dilation rate. This confirms
that the two operations are not equivalent, essentially re-
vealing the importance of the self-supervised task based on
reconstructing the masked region M situated in the center
of the receptive field.

5 CONCLUSION

In this paper, we extended our previous work [54] by
introducing SSMCTB, a novel neural block composed of a
masked convolutional layer and a channel-wise transformer
module, which predicts a masked region in the center of the
convolutional receptive field. Our neural block is trained
in a self-supervised manner, via a reconstruction loss of its
own. To show the benefits of using SSMCTB in anomaly
detection, we integrated our block into a series of image
and video anomaly detection methods [42], [44], [55]–[60]. In
addition, we included two new benchmarks from domains
that were not previously considered by Ristea et al. [54],
namely medical images and thermal videos. Moreover, we
extended the 2D masked convolution to a 3D masked con-
volution, broadening the applicability of the self-supervised
block to 3D neural architectures. To showcase the utility of
the new 3D SSMCTB, we integrated our 3D block into two
3D networks (3D DRAEM and SSMTL++v2) for anomaly
detection in image and video, respectively. Our empirical
results across multiple benchmarks and underlying models
indicate that SSMCTB brings performance improvements
in a vast majority of cases. Furthermore, with the help of
SSMCTB, we are able to obtain new state-of-the-art levels
on the widely-used Avenue and ShanghaiTech data sets. We
consider this as a major achievement, which would not have
been possible without SSMCTB.
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In future work, we aim to apply our novel self-
supervised block on other tasks, aside from anomaly de-
tection. For example, due to the self-supervised loss com-
puted with respect to the masked region, our block could
be integrated into various neural architectures to perform
self-supervised pre-training, before applying the respec-
tive models to downstream tasks. Interestingly, the pre-
training could be performed at multiple architectural levels,
i.e. wherever the block is added into the model.
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[50] M.-I. Georgescu, A. Bărbălău, R. T. Ionescu, F. S. Khan,
M. Popescu, and M. Shah, “Anomaly Detection in Video via Self-
Supervised and Multi-Task Learning,” in Proceedings of CVPR,
pp. 12742–12752, 2021.

[51] A. Acsintoae, A. Florescu, M. Georgescu, T. Mare, P. Sume-
drea, R. T. Ionescu, F. S. Khan, and M. Shah, “Ubnormal: New
benchmark for supervised open-set video anomaly detection,” in
Proceedings of CVPR, pp. 20143–20153, 2022.

[52] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
et al., “An image is worth 16x16 words: Transformers for image
recognition at scale,” in Proceedings of ICLR, 2021.

[53] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you
need,” in Proceedings of NIPS, vol. 30, 2017.

[54] N.-C. Ristea, N. Madan, R. T. Ionescu, K. Nasrollahi, F. S. Khan,
T. B. Moeslund, and M. Shah, “Self-Supervised Predictive Convo-
lutional Attentive Block for Anomaly Detection,” in Proceedings
of CVPR, pp. 13576–13586, 2022.
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[57] H. M. Schlüter, J. Tan, B. Hou, and B. Kainz, “Natural synthetic
anomalies for self-supervised anomaly detection and localiza-
tion,” in Proceedings of ECCV, 2022.

[58] M. I. Georgescu, R. Ionescu, F. S. Khan, M. Popescu, and M. Shah,
“A Background-Agnostic Framework with Adversarial Training
for Abnormal Event Detection in Video,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 44, no. 9, pp. 4505–
4523, 2022.

[59] Z. Liu, Y. Nie, C. Long, Q. Zhang, and G. Li, “A Hybrid Video
Anomaly Detection Framework via Memory-Augmented Flow
Reconstruction and Flow-Guided Frame Prediction,” in Proceed-
ings of ICCV, pp. 13588–13597, 2021.

[60] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked
Autoencoders Are Scalable Vision Learners,” in Proceedings of
CVPR, pp. 16000–16009, 2022.

[61] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani,
J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, L. Lanczi,
E. Gerstner, M.-A. Weber, T. Arbel, B. B. Avants, N. Ayache,
P. Buendia, D. L. Collins, N. Cordier, J. J. Corso, A. Crimin-
isi, T. Das, H. Delingette, C. Demiralp, C. R. Durst, M. Dojat,

S. Doyle, J. Festa, F. Forbes, E. Geremia, B. Glocker, P. Golland,
X. Guo, A. Hamamci, K. M. Iftekharuddin, R. Jena, N. M. John,
E. Konukoglu, D. Lashkari, J. A. Mariz, R. Meier, S. Pereira,
D. Precup, S. J. Price, T. R. Raviv, S. M. S. Reza, M. Ryan,
D. Sarikaya, L. Schwartz, H.-C. Shin, J. Shotton, C. A. Silva,
N. Sousa, N. K. Subbanna, G. Szekely, T. J. Taylor, O. M.
Thomas, N. J. Tustison, G. Unal, F. Vasseur, M. Wintermark,
D. H. Ye, L. Zhao, B. Zhao, D. Zikic, M. Prastawa, M. Reyes,
and K. Van Leemput, “The Multimodal Brain Tumor Image
Segmentation Benchmark (BraTS),” IEEE Transactions on Medical
Imaging, vol. 34, no. 10, pp. 1993–2024, 2015.

[62] I. Nikolov, M. Philipsen, J. Liu, J. Dueholm, A. Johansen, K. Nas-
rollahi, and T. Moeslund, “Seasons in Drift: A Long-Term Ther-
mal Imaging Dataset for Studying Concept Drift,” in Proceedings
of NeurIPS, 2021.

[63] J. Hu, L. Shen, and G. Sun, “Squeeze-and-Excitation Networks,”
in Proceedings of CVPR, pp. 7132–7141, 2018.

[64] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,”
in Proceedings of ECCV, pp. 213–229, 2020.

[65] J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu,
A. L. Yuille, and Y. Zhou, “TransUNet: Transformers Make
Strong Encoders for Medical Image Segmentation,” arXiv preprint
arXiv:2102.04306, 2021.

[66] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and
M. Shah, “Transformers in Vision: A Survey,” ACM Computing
Surveys, 2021.

[67] N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer,
A. Ku, and D. Tran, “Image transformer,” in Proceedings of ICML,
pp. 4055–4064, 2018.

[68] N.-C. Ristea, A.-I. Miron, O. Savencu, M.-I. Georgescu, N. Verga,
F. S. Khan, and R. T. Ionescu, “CyTran: Cycle-Consistent Trans-
formers for Non-Contrast to Contrast CT Translation,” arXiv
preprint arXiv:2110.06400, 2021.

[69] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distilla-
tion through attention,” in Proceedings of ICML, pp. 10347–10357,
2021.

[70] H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang,
“CvT: Introducing Convolutions to Vision Transformers,” in Pro-
ceedings of ICCV, pp. 22–31, 2021.

[71] X. Xu and N. Xu, “Hierarchical Image Generation via
Transformer-Based Sequential Patch Selection,” in Proceedings of
AAAI, pp. 2938–2945, 2022.

[72] B. Zhang, S. Gu, B. Zhang, J. Bao, D. Chen, F. Wen, Y. Wang, and
B. Guo, “StyleSwin: Transformer-based GAN for High-resolution
Image Generation,” in Proceedings of CVPR, pp. 11304–11314,
2022.

[73] M. Zheng, P. Gao, X. Wang, H. Li, and H. Dong, “End-to-
end object detection with adaptive clustering transformer,” in
Proceedings of BMVC, 2020.

[74] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable
DETR: Deformable Transformers for End-to-End Object Detec-
tion,” in Proceedings of ICLR, 2020.

[75] J. Jiang, J. Zhu, M. Bilal, Y. Cui, N. Kumar, R. Dou, F. Su, and
X. Xu, “Masked Swin Transformer Unet for Industrial Anomaly
Detection,” IEEE Transactions on Industrial Informatics, vol. 19,
no. 2, pp. 2200–2209, 2023.

[76] Y. Lee and P. Kang, “AnoViT: Unsupervised anomaly detec-
tion and localization with vision transformer-based encoder-
decoder,” IEEE Access, vol. 10, pp. 46717–46724, 2022.

[77] P. Mishra, R. Verk, D. Fornasier, C. Piciarelli, and G. L. Foresti,
“VT-ADL: A vision transformer network for image anomaly
detection and localization,” in Proceedings of ISIE, pp. 1–6, IEEE,
2021.

[78] J. Pirnay and K. Chai, “Inpainting transformer for anomaly
detection,” in Proceedings of ICIAP, pp. 394–406, 2022.

[79] J. Xu, H. Wu, J. Wang, and M. Long, “Anomaly transformer:
Time series anomaly detection with association discrepancy,” in
Proceedings of ICLR, 2022.
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