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ABSTRACT

Modern wind turbines are monitored by sensors that generate mas-
sive amounts of high frequency time series that are ingested on the
edge and then transferred to the cloud where they are stored and
analyzed. This results in at least four challenges: (1) Limited hard-
ware makes efficient ingestion necessary to keep up; (2) Limited
bandwidth makes data compression necessary; (3) High storage
costs as all data must be stored; and (4) Low data quality due to
lossy compression methods without error bounds. Practitioners
currently use solutions that only solve some of these. In this paper,
we evaluate the Time Series Management System ModelarDB, a
solution that meets all four challenges by efficiently managing time
series across the entire pipeline. We compatre it to three commonly
used alternatives and evaluate different aspects of them in a real-
istic edge-to-cloud scenario with real-world datasets. For lossless
compression, ModelarDB achieves up to 2x better compression and
1.2x better transfer efficiency. For lossy compression, ModelarDB
achieves up to 4.6x better compression and 10x better transfer effi-
ciency, or similar compression with orders of magnitude less error.
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1 INTRODUCTION

To maintain wind turbines and optimize energy production, wind
turbine manufacturers and owners use data analytics, e.g., OLAP
queries and complex data mining such as forecasting and anomaly
detection as shown in Figure 1. Thus, wind turbines are monitored
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Figure 1: Architecture of RES data management with differ-
ent lossless and lossy compression methods used on the edge.

by many high-quality sensors that generate vast amounts of time
series at high frequencies. For example, a wind turbine generating
2500 time series sampled at 100 Hz produces over 321 GiB of data
per day assuming timestamps and values use 8 bytes each [29]. In
our decade-long experience with Renewable Energy Sources (RES)
data, we had access to real-life wind turbine datasets with Sampling
Intervals (SIs) typically ranging from 10ms to 2s. According to our
industry partners, practitioners collect data on the edge and transfer
it to the cloud for analytics. The edge nodes’ hardware is similar to
low-end commodity PCs. They collect data and help manage wind
turbines. They use a ring buffer, so old data is deleted when new
data arrives. Thus, the old data must be transferred to the cloud
for permanent storage. This is done using connections with very
limited bandwidth as they are shared between wind turbines, i.e.,
generally 512 Kbit/s to 10 Mbit/s per wind turbine. The data is stored
in the cloud for as long as possible due to business requirements and
there are no established practices for decaying data. A wind turbine
owner told us they would never purchase a wind turbine if all its
data was not available. Thus, practitioners face these challenges:
Challenge 1: Limited Hardware. Ingestion must keep up with
sampling despite limited hardware, e.g., no GPU. Thus, resource
intensive methods like autoencoders are not useable [10, 42, 48, 59].
Challenge 2: Limited Bandwidth. The bandwidth between
edge and cloud can be as low as 512 Kbit/s so compression is needed.
Challenge 3: High Storage Cost. Storing high frequency time
series in the cloud is prohibitively expensive, e.g., one year of data
for a wind turbine that generates 321 GiB daily costs ~18,510$ on
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Amazon S3 [3]. All data must be kept for a wind turbine’s lifetime
(i.e., ~20-25 years) due to business requirements such as warranty.
Challenge 4: Low Data Quality After Compression. To lower
bandwidth and storage use, lossy compression without error bounds
is often used, but the lack of error bounds can impact analytics [52].
According to our industry partners, practitioners currently use
two solutions that only solve a subset of these as shown in Table 1:
Lossless Compression through Big Data Formats (LLC). The edge
nodes store time series in big data file formats with lossless com-
pression like Apache Parquet or Apache ORC and these files are
transferred to the cloud. This provides fast ingestion and high data
quality, but very low compression factor [39] as shown in Table 1.
Unbounded Lossy Compression through Simple Aggregates (AGG).
Like LLC, but the edge nodes store simple aggregates for a static
time interval, e.g., 10-minute means. This provides fast ingestion
and high compression factor, but low data quality due to the use of
lossy compression without an error bound as shown in Table 1.
Although not used by our industry partners, we include the state-
of-the-art Time Series Management System (TSMS) [30, 31] Apache
IoTDB (IoTDB) [53, 54] as it supports lossless and lossy compres-
sion and data transfer. To optimize data size and quality, the TSMS
ModelarDB (MDB) [32-35] is developed and evaluated in research
projects with practitioners [1, 52]. MDB uses error-bounded model-
based compression, i.e., using models from which the original values
can be reconstructed within a user-defined pointwise relative error
bound (possibly 0%). MDB’s efficiency comes from two key insights
about RES data. (1) for some time series it is okay to trade a small
amount of error for significantly better compression while for oth-
ers it is not. Thus, MDB supports both lossless and error-bounded
lossy compression. (2) the time series have long subsequences that
can be efficiently represented using simple functions, e.g., polyno-
mials, while others cannot. Thus, MDB implements multiple types
of models and automatically uses the best one for each subsequence.
MDB can be configured to use different query engines and data
stores, e.g., it can be configured to be lightweight on the edge and
scalable in the cloud. On the edge, it efficiently compresses data
points into segments with metadata and models. These segments
are transferred to the cloud, thus significantly reducing the amount
of bandwidth and storage required. Clients can query MDB using
SQL. Thus, MDB provides a complete data management pipeline
across edge and cloud. More details about MDB are in Section 3.
In this paper, we evaluate how MDB performs in the environ-
ment shown in Figure 1 using real-life datasets provided by our
industry partners. We compare it to LLC, AGG, and IoTDB using
the following research questions which are based on our long ex-
perience with RES data and collaboration with industry partners in
the MORE project [1] and with a major wind turbine manufacturer:

Challenge 1 Challenge 2 Challenge 3 Challenge 4

LLC X X
AGG X
1oTDB

MDB

Table 1: Challenges solved by each of the evaluated solutions.

RQ1: How does a high frequency wind turbine dataset compress
with the evaluated solutions? RQ1.1: How does MDB compare against
the lossless solutions in terms of compression factor? RQ1.2: How
does MDB compare against the lossy solutions in terms of compression
factor and data quality? RQ1.3: How does the sampling interval of a
high frequency wind turbine dataset affect MDB?

RQ2: How is the transfer efficiency of the four solutions?

RQ3: How well does MDB preserve the data quality of a high
frequency wind turbine dataset? RQ3.1: What is the compression
error of a high frequency wind turbine dataset when compressed
using MDB? RQ3.2: What is the impact of MDB’s lossy compression
on the result of downstream analytics?

In this paper, we make the following contributions: We realize a
part of the vision in [29] by evaluating four solution for the practical
problem of efficiently managing high frequency wind turbine data
across edge and cloud with a focus on MDB and report key insights.

The rest of the paper is structured as follows. Section 2 contains
preliminaries. Section 3 describes MDB. Section 4 describes the
evaluation setup, i.e., the solutions, evaluation aspects, evaluation
metrics, and hardware used. Section 5 discusses the results and
presents insights. Section 6 is related work and Section 7 concludes.

2 PRELIMINARIES

A time series is a collection of data points ts = ((¢1,v1), (t2,02),...)
sorted in ascending order by time. A data point (t;,v;) consists of
a timestamp t; and a value v; € R" for a fixed n. If n = 1, the time
series is univariate and if n > 1, the time series is multivariate. If
the time elapsed between consecutive data points is constant, the
time series is regular and has the sampling interval SI = tjy1 — t;.
A signal is the univariate time series we get when we for each
data point (t;,v;) in a time series where v; = (51, ...,0;n) € R ex-
tract (t;,v;,;) for a given j such that we get ((¢1,01,j), (£2,02,), . . .).
Time series compression is the process of encoding a bounded
time series ts = ((t1,01), ..., (tn,vn)) into another representation
¢ by using a function C such that ¢ = C(ts, €). For decompression,
another function 9 must exist such that D(C(ts, €)) gives a time
series ts” = ((11,01), . .., (tn, v;,)) where the relative pointwise error

/

Vj—0.
e; < € for e; = —~ when v; # 0 and ¢; = 0 when v; = 0] = 0. We
call e the error bound and when ¢s” = ts, the compression is lossless.

3 MODELARDB-BASED SOLUTION

MDB [32, 34, 35] is a TSMS that compresses time series to segments
with metadata and models on the edge, transfers the segments to
the cloud, and executes SQL queries across edge and cloud. MDB
consists of a Java library interfaced with query engines and data
stores. For example, MDB can use the lightweight RDBMS H2 as
its query engine and data store on the edge, and Apache Spark and
Apache Cassandra as its query engine and data store in the cloud.

We use H2 as query engine and data store on the edge, and
Apache Spark as query engine and Apache ORC files written to
a local file system as data store in the cloud. To measure MDB’s
compression, we measure the size of its Apache ORC files in the
cloud. Apache ORC is used instead of Apache Cassandra for a more
direct comparison to LLC and AGG as they also use Apache ORC.

MDB’s architecture has three sets of components as shown in
Figure 2 with suitable query engines and data stores shown in color.
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Figure 2: MDB’s architecture on the edge and in the cloud.

Data Ingestion. These components ingest data points and com-
press dynamically sized subsequences to segments using modified
versions of Poor Man’s Compression-Mean (PMC) [39], Swing Filter
(Swing) [14] and Gorilla’s lossless compression method for floating-
point values [46]. We call methods that fit models to time series
model types. PMC returns a constant function, Swing returns a lin-
ear function, and Gorilla returns XOR’ed values packed into bytes.
These model types are efficient enough to address Challenge 1 (Lim-
ited Hardware). MDB ingests data points one at a time and use the
first model type to fit a model to them until the error bound is
exceeded. Then it switches to the next model type and so on. After
evaluating all model types, the model with the best compression
factor is stored in a segment with metadata. An example that only
uses Swing is shown in Figure 3. Gorilla never exceeds the € as it is
lossless. Thus, a user-configurable length bound with a default of
50 is used. Due to its model-based compression and error bound,
MDB addresses Challenge 4 (Low Data Quality After Compression).
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Figure 3: MDB’s model-based compression, redrawn [32].

Query Processing. These components execute SQL queries on
locally stored segments, e.g., small queries on recent data on the
edge and large queries on data from many edge nodes in the cloud.
MDB can compute common aggregates directly from segments
instead of from reconstructed data points using UDFs and UDAFs.

Segment Storage. These components manage segments in a
local data store and transfer them to another MDB instance using
Apache Arrow Flight. Transferring and storing time series as highly
compressed segments allow MDB to address both Challenge 2 (Lim-
ited Bandwidth) and Challenge 3 (High Storage Costs), respectively.

4 EVALUATION SETUP

4.1 Baseline Solutions

LLC. Time series written to Apache Parquet or Apache ORC with
their default Snappy compression by Apache Arrow v11.0.0 [16].

AGG. Like LLC, but the mean is computed for different fixed
time periods suggested by our industry partners, see Section 4.2.3.

IoTDB. Apache IoTDB v1.3.1 with its recommended configu-
rations for lossless compression [28]. For lossy compression IoTDB
has RLE and TS_2DIFF [26]. Their error is bounded by a pointwise

decimal precision limit. We use TS_2DIFF as it provided ~2x better
compression than RLE in our experiments. For each dataset, see
Section 4.2.1, we use the precision limits for which IoTDB stores
values without corruption, e.g., with the active power signal from
WTM and precision=7, 377.95465 became -51.54208. For PCD we
use precision=1-6 and for MTD and WTM we use precision=1-5.

4.2 Evaluation Aspects

4.2.1 Dataset. Three real-life datasets from our industry partners
are used in the evaluation. See Table 2 for a summary. Power Con-
troller Dataset (PCD) and Multiple Turbines Dataset (MTD) cannot
be shared due to NDAs. Our results for Wind Turbine Measurements
(WTM) [11] can be reproduced as it is a subset of MTD.

PCD. Data from a wind park power controller in a wind park for
~2 years and 4 months. This multivariate time series has SI=150ms,
10 signals, and ~480M data points. The time between consecutive
data points can deviate slightly from 150ms, so PCD is made regular
through preprocessing as MDB only supports regular series [44].

MTD. Data from wind turbines in several wind parks with a
mean period of recording of 11 months. These multivariate time
series has SI=2s, 10 signals, and ~258M data points. Four signals are
transformations of other in the dataset. These transformed signals
are removed as their results very closely match their source signals.

WTM. A subset of MTD published as part of [12]. It is 432,000
data points from one wind turbine collected over 10 days.

Dataset Length SI  Signals Size (ORC) Period
PCD  ~480M 150ms 10 13.3GiB  ~28 months
MTD  ~258M 2s 6 4.2GiB  ~11 months
WTM 432,000 2s 10 10.3MiB 10 days

Table 2: Summary of real-life datasets used in the evaluation.

The datasets mostly contain signals on generated power, wind,
and wind turbine configuration, e.g., nacelle direction. Several sig-
nals have high periodicity, e.g., the wind signals, and some are
correlated with weather forecasts, e.g., generated power. There are
signals generated from other, e.g., cosine or sine of signals with
degrees and cumulative aggregation of generated power over 1m
or 10m intervals. The signals on generated power mostly follow a
bimodal distribution. The wind signals follow a normal distribution.
There are a few mostly constant signals, e.g., upper and lower power
limits which are used to control the generated power. The datasets
are used for downstream analytics as discussed in Section 5.3.2.

4.2.2  Error Bound. For MDB, we use these error bounds proposed
by our industry partners: 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.5%, 1%. We
also use 5% and 10% to achieve more complete and deeper insights.

4.2.3 Sampling Interval. To measure the impact of different Sls, we
downsample the datasets using the SIs and number of data points
in Table 3. These SIs were also suggested by our industry partners.

4.24 MDB Parameters. MDB can be tuned for wind turbine data
using the length bound and batch size parameters. Length bound
is the maximum length of a Gorilla segment. For high frequent
wind turbine data, data points often have similar values to adjacent



Dataset SI No. Data Points to 1
PCD  1.052.14.9510.05 (s); 1 10 (min) 7 14 33 67 400 4000
MTD 610 30 (s); 1 10 (min) 35153003000

WTM 610 30 (s); 1 10 (min) 3 5 15 300 3000

Table 3: Sampling intervals for aggregation/downsampling.

data points. Thus, PMC and Swing often compress them better
than Gorilla. However, short subsequences of data points with
irregular values occur and they compress better with Gorilla. Thus,
a relatively low length bound of 50 is used so MDB uses Gorilla
for these subsequences, but quickly reverts to PMC and Swing.
Batch size is the number of segments written to disk or transferred
together. Due to the low bandwidth, batch size is set to 1000 to
reduce the overhead per segment and amount of data to resend on
failure. In Appendix A, the combination of parameters is evaluated
and length bound 50 gives the best compression factor in 85% of
cases and batch size 1000 gives the best ingestion time in 50% of
cases.

4.3 Metrics

To measure the effectiveness of compression methods, we use Com-
pression Factor (CF) which is the ratio between the size s of the
original dataset and the size s’ of the compressed dataset: CF = s/s’.
The Transfer Efficiency is given by the number of data points trans-
ferred from the edge node to the cloud node per second. To measure
the quality of reconstructed datasets, we use the Mean Absolute
Percentage Error (MAPE) defined as MAPE = % 27 ei where n is

the number of data points and e; is the error at the ith data point.

4.4 Infrastructure

Our test infrastructure has an edge node and a cloud node. The
edge node has 2 CPU Cores and 4 Threads, 4 GiB RAM, and an
HDD. Thus, it is similar to the one in [29]. The cloud node has 16
CPU Cores and 32 Threads, 256 GiB RAM, and 8 SSDs. They both
run Ubuntu 20.04 LTS. The edge node’s network interface was also
limited to 512 Kbit/s and 2.5 Mbit/s to simulate the scenario in [29].

5 FINDINGS AND INSIGHTS

5.1 Compression Effectiveness

In this section, we analyze MDB’s compression and compare it to
LLC, IoTDB, and AGG. Then, we analyze the impact of SI on MDB.

5.1.1 MDB against the
lossless solutions. We first
compare LLC and IoTDB
to MDB with €=0%, i.e.,
lossless compression. Fig- 5000
ure 4 shows the file sizes o
of the compressed data-
sets. Since Apache ORC
compresses better than
Apache Parquet for all da-
tasets, in line with previ-
ous work [32, 34], and they have similar compression times [18,

~ 20000
15000
10000

File Size (in MB

Figure 4: Size of €=0% solutions.

32, 34], only Apache ORC is used below for LLC. The results show
that MDB provides 1.5x, 1.4x and 1.3x better lossless compression
than Apache ORC for PCD, MTD and WTM, respectively. MDB
also provides 1.2x and 1.1x better compression for PCD and MTD
than IoTDB, respectively. Only for the small WTM, IoTDB provides
1.4x better compression than MDB.

Discussions with our industry partners revealed that while guar-
anteed data quality is desired, a small pointwise error bound is toler-
able. Thus, we compare MDB’s error-bounded lossy compression to
the lossless solutions. Figures 5a and 5b show MDB’s improvement
in CF over LLC and IoTDB when € > 0. MDB’s improvement in CF

over LLC is computed as CFypp/CFr1 ¢ and similarly for [oTDB
CFmpB/CFric  _ CFrorpB

CFmps/CFrorpe_ CFric
Note that Figure 5a uses a log scale for the y axis. For PCD, €=0.01%
leads to more than 2x better compression than LLC. MDB’s improve-
ment in CF over LLC for PCD grows to 6x, 8.4x, 29.6x and 48.9x at
€=0.5%, €=1%, €=5% and €=10%. In Figure 5b, the improvements in
CF for MTD and WTM are much smaller (up to 3.3x for €=10%).

To explain the significant difference in CF between PCD and
MTD, we analyze MDB’s use of model types for the datasets. The
amounts of values compressed by each model type can be seen in
Figures 5c¢ and 5d. WTM originates from the same source as MTD
and has similar results. Thus, we refer to WTM’s results in the
extended version B, where we also report the mean and median
length of segments. The results for PCD show that as € increases,
the use of PMC (Figure 5c) and the mean length of PMC segments
increase, while the median length decreases. PMC uses 32 bits and
Swing uses up to 128 bits for each segment, while Gorilla uses 1-32
bits for each value. At higher error bounds, PMC constructs few
long segments with thousands of values, so the mean length is very
long, while most segments are short (up to 20 values) (Appendix C).
This explains why PCD, mostly represented by PMC, results in
significantly higher CF compared to the other datasets. Measures of
dispersion for the datasets also show that there is less variability in
PCD values compared to the other datasets and this leads to higher
use of PMC for PCD since the values are close to each other.

Gorilla and Swing are more heavily used for MTD and WTM
at higher error bounds, which also explains the smaller impact of
€ on those datasets as segments with those model types require
significantly more bits and have shorter mean length than PMC.
Figures 5c and 5d also show that even for e=0%, PMC is significantly
used for representing PCD (16.2% of the values) and MTD (26.2% of
the values), while lossless Gorilla represents the rest. Using a tiny
error bound of 0.01% significantly increases the use of model types
for lossy compression which explains the significant increase in CF
between compressing with €=0% and €=0.01%.

To conclude, we answer RQ1.1 as follows. For lossless compres-
sion, MDB outperforms both LLC and IoTDB. The results showed
that for PCD, allowing a tiny € such as 0.01% can significantly improve
the compression, while at higher error bounds such as 5%, MDB is
29.6x better than LLC. We saw that the dataset with the lowest SI
(i.e., PCD) is compressed significantly better by MDB than the other
datasets. For PCD, MDB mostly used PMC which had much longer
segments than the other model types. For MTD, Swing is more used
than PMC for higher error bounds showing that different datasets

(and thus they differ by a constant



55107
—— PCD (over LLC)
,,,,, PCD (over 10TDB)

—=— MTD (over LLC)
—=— WTM (over LLC)
————— MTD (over lTDB)
-+== WTM (over IcTDB)

[ N N

Improvement in CF
-
<L

10°
N P %Q S & R P %m NS
Q Q S & S \) NN N S
S QQ S 0 Q &Q SR O ° N
Error Bound Error Bound
(a) PCD (b) MTD and WTM

- [k DR ==

S L
® QQ %QQ@QQQQQ

Data Points %

S s S
N N Q@% N Qg Qg N &
NN

Error Bound Error Bound

(c) PCD (d) MTD

Figure 5: (a-b) Improvement in MDB’s CF over LLC and IocTDB
for error bounds above 0%. (c-d) Distribution of values com-
pressed by MDB’s model types for PCD and MTD.

%

DB
AGG=1.055 (7x)
~ AGG=2.1s (14x)
e AGGH4955 (330
AGG10055 (679)
AGG=1m (400x)
~ AGG-1om (1000%) 10°

238

Compression Facto
g

S NP
S™ RN )
¥ SEESST e
RO

Error Bound

Error Bound

(a) PCD (b) MTD
5 80 12
S 70 1 MDB ()
& 60 W 16TDB (Precision)
< 50 8
@2 40 6
3
£ 30 4
220 I ) I
S 10
[SHt =-mm il I 0
09 X% N © 6 %% 9N
N QQ @6 Q S’m m"’e\ NN 3‘39@9@@%@\@”%

(c) PCD (d) MTD

Figure 6: (a-b) MDB (bars) and AGG (lines) CFs for PCD and
MTD. x-axis (i.e., error bound) is only used for MDB. AGG
is independent of the error bound. (c-d) MDB and IoTDB’s
lossy compression’s CFs for PCD and MTD.

and error bounds use different model types for compression. This
shows the effectiveness of MDB’s multi-model compression.

5.1.2  MDB compared to lossy solutions. Figures 6a and 6b compare
the CFs of MDB and AGG for PCD and MTD. The CFs for MDB are
shown as bars for different values of €. As AGG’s error is indepen-
dent of ¢, the CFs for AGG are shown as horizontal lines. Figure 6a
shows that MDB with €=1% compresses better than aggregating
by 7 values (i.e., 7x aggregation) for PCD. MDB at €=5% and €=10%
provides comparable CFs to 33x and 67x aggregation, respectively.
Compression of MTD (Figure 6b) and WTM (Appendix B) with
MDB at €=10% provides comparable CFs to 3x aggregation. Fig-
ures 6¢-6d show that IoTDB with precision=6 provides comparable
compression to MDB at €=0% (i.e., lossless compression) for both
PCD and MTD. For PCD, IocTDB with precision=1 achieves a CF
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Figure 7: CFs and resulting errors for MDB and AGG on PCD.

that is in between what MDB achieves for €e=1% and €=5%. For MTD,
we can see that [oTDB with precision=2 achieves CF=8 that is com-
parable to MDB at €e=10%, while with precision=1 it compresses
1.5x better.

In Figure 7, we compare MDB and AGG’s MAPE and maximum
pointwise error (MPE) for PCD. MAPE for AGG is 3-8 orders of
magnitude higher than for MDB, while the MPE is 9-17 orders of
magnitude higher. As an example, the MPE of AGG with SI=10.05s
is equal to ~two hundred trillion, while MDB with e=10% provides
the same CF and guarantees that the MPE is no more than 10%.

We also compressed the datasets with MDB with € > 10% to
match AGG’s CF with very high SIs. The results show that MDB
with €>10% introduces a much smaller error than AGG with the
same CF for MTD (Appendix B). Also for MTD and WTM AGG
leads to extremely high errors (Appendix B). In addition to very
high error, AGG generates undefined errors when v; = 0 due to
division by zero. We excluded these values when computing errors.
In contrast, to maintain the pointwise €, MDB stores v; = 0 without
any error.

IoTDB’s lossy compression provides low MAPEs. Values close
to zero are trivially represented by 0. This results in a MPE of 1
for all datasets and precision limits, which is 10x higher than MDB
at €=10%. IoTDB’s lossy compression can in some cases result in
very large query errors due to rounding of decimal points, see
Section 5.3.3. For PCD, IoTDB’s MAPEs with precisions 1 and 6
match MDB’s MAPEs at e=10% and €=1%, respectively. However,
we saw that MDB with €=10% and €=1% provides 3x and 4.6x better
compression than IoTDB’s lossy compression with precision 1 and 6,
respectively. For MTD, IoTDB’s MAPE at precision=5 matches MDB
at €=0.01% and with precision=1 IoTDB provides similar MAPE to
MDB at €=5%. IoTDB’s MAPE results for WTM are similar to MTD.

We answer RQ1.2 as follows. MDB provides comparable CF to
AGG, however, in contrast to MDB, AGG does not provide any data
quality guarantees leading to significant reduction in the quality of
compressed values. Unlike MDB’s pointwise relative error-bound,
AGG removes informative outliers and fluctuations in a dataset that
are often critical to certain analytical tasks [32, 34]. Compared to
IoTDB’s lossy compression, MDB provides higher CF and similar
data quality. Compared to AGG, MDB achieves as good a com-
pression factor as AGG, but with errors that are many orders of
magnitude smaller, making MDB the far better solution.



5.1.3 Impact of SI on MDB. To evaluate the impact of SI on MDB,
we downsample the datasets as described in Section 4.2.3 and com-
press them in MDB using different € values. We also compress the
downsampled datasets with LLC for comparison. Figure 8 shows
how the CFs change for PCD and MTD as we increase SI. As SI
increases, MDB’s CFs decrease for both datasets showing a nega-
tive correlation between MDB’s CF and the SI. As PMC and Swing
exploit constant and linear patterns, high frequency datasets and
higher €, where the difference between two consecutive values
tends to be smaller, create more opportunities for storing many
values in one segment. For PCD (Figure 8a) with e=0%, the impact
of the SI on CF is less significant compared to e=10% where the CF
decreases from 79.1 to 7.8 and 2.3 when the SI is increased from
150ms to 1m and 10m, respectively. The CF for PCD, which has
the lowest SI (150ms), is affected most as we increase both € and SI.
Analyzing all three datasets’ measures of dispersion revealed that
increasing SI increases variability among the values which makes
MDB’s compression less effective. However, we can see that MDB
at all error bounds compresses better than LLC for all SIs with the
only exception being the extreme case of MDB at €=0% for MTD
with SI=10m, where the data volumes are small. As an example,
for PCD with SI=10m MDB at €=0% still compresses 1.19x better
than LLC. The results also show that the SI of a dataset almost has
no impact on the LLC’s CF. For MTD with SI=10m, MDB at e=0%
provides slightly lower compression than LLC due to the very small
size of the dataset where there is an overhead from MDB’s segment
metadata. The results for WTM (Appendix B) are similar to those
for MTD.

We answer RQ1.3 as follows. MDB provides the best CF for data-
sets with short SI such as PCD. For datasets with higher SI where the
variability between the values is high, MDB’s compression becomes
less effective and the impact of € decreases when the SI is high.

5.2 Transfer Efficiency

We now evaluate how many values can be transferred from edge to
cloud by the solutions when the bandwidth is limited to 512 Kbit/s
(Challenge 2). The challenge is exacerbated for high frequent data
and thus we use PCD. We do the experiment with 2 days of data. For
AGG, we use SI=1.05s (i.e., 7x aggregation) that has the lowest com-
pression error. For LLC and AGG, we implemented a Java program
for ingesting data points into Apache ORC format. The transfer to
the cloud is done by scp. For IoTDB, we created a Java program that
ingests the data using the recommended native API on the edge.
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Figure 9: Values ingested and transferred per second for PCD.

The data is transferred to the cloud using IoTDB’s Pipe feature with
an iotdb-thrift-async-connector which is recommended for
high transfer performance [27]. For all four solutions, we thus both
ingest and transfer data. For LLC and AGG, the time for ingestion is
negligible. MDB needs more time, but as shown in Figure 9a, MDB
ingests from 1.4 to 3 million values/second with higher speeds for
higher error bounds where the segments get longer. This is much
faster than what can be transferred over the network.

Figure 9b shows the number of values handled per second when
the ingested data is also transferred from edge to cloud. With LLC
around 19,000 values are transferred per second. For €=0%, MDB
transfers 1.2x faster than LLC. IoTDB with lossless compression
transfers 1.05x more values than MDB with €=0%. This is because
IoTDB can ingest and transfer in parallel while MDB cannot do
this yet. When €>0%, MDB transfers more values per second and
this is correlated with the increase in CF shown in Section 5.1.
AGG transfers 1.05x more values per second than MDB with e=1%.
AGG, however, produces unbounded errors that are many orders of
magnitude higher than MDB and thus fails in terms of Challenge
4. With €=5% MDB transfers 38x, 6x and 3x more values than LLC,
AGG and IoTDB with precision=1, respectively, and with e=10%
MDB transfers 1.2e+6 values per second, i.e., 10x and 5x more
than AGG and IoTDB with precision=1, respectively (not shown in
Figure 9(b)). With an increase in bandwidth from 512 Kbit/s to 2.5
Mbit/s we saw similar, but ~ 5x higher throughput.

We answer RQ2 as follows. LLC, can transfer around 19,000 val-
ues per second with 512 Kbit/s bandwidth while MDB at €=0% can
transfer 1.2x more values than LLC. In addition, MDB can transfer
even more values through the use of error-bounded lossy compression.
As an example, MDB’s with €=1% can transfer 6x more values than
LLC with 512 Kbit/s bandwidth. MDB with €=1% matches the trans-
fer efficiency of AGG and has up to ~12 orders of magnitude better
data quality. Compared to IoTDB’s lossless compression, MDB with
€=0% has a slightly lower transfer rate, but a higher CF and is thus as
good as a state-of-the-art solution for lossless compression. For lossy
compression, MDB with €=5% transfers 5x more and compresses 1.8x
better than IoTDB with precision=1. The overhead of ingestion is
insignificant compared to the transfer time.



5.3 Data Quality

In this section, we measure the compression error of MDB using
MAPE. We also measure the amount of values represented with no
error by MDB. Finally, we analyze the impact of lossy compression
on the quality of downstream analytics for the different solutions.

5.3.1 Compression Error. Figures 10a-10b show the distribution of
MARPE for all signals of PCD and MTD, while the results for WTM
are provided in D. Whiskers of box plots represent the minimum
and maximum values. Whiskers that span all the way down to the
x axis represent zero. PCD in comparison to the other datasets
shows a higher MAPE. This is related to the higher use of PMC and
Swing to compress PCD for all €. In addition, lower MAPE for MTD
and WTM is due to the significantly higher use of Gorilla even
when we allow for some error. At €=0.01% the maximum MAPE
for PCD is 0.47x of €, while for MTD and WTM the maximum
MAPE:s are 0.15x and 0.11x of €, respectively. PCD’s lowest MAPE
is 0 for all € meaning that a particular signal (PowerLowerLimit)
is represented losslessly for all €. Also certain periods when park
operation is halted and no power is produced lead to the generation
of constant values for most signals. This shows the effectiveness of
MDB with constant signals. As we increase e, there is a decrease
of PCD’s MAPE in relation to €. At €=0.1%, PCD’s highest MAPE
is 0.42x of €, while at e=1% and 10%, it decreases to 0.37x and
0.29x, respectively. Contrary to PCD, the difference between € and
compression error gradually decreases for MTD (Figure 10b) and
WTM. As an example, the highest MAPE for MTD increases from
0.27x of € at €=0.1% to 0.34x of € at €=10%. The results for WTM
are very similar. The increase in the compression error for MTD
and WTM is due to the longer median segment length for all model
types (Appendix C), while the decrease in the compression error
for PCD happens because it is mostly represented by short PMC
segments, which gives a good chance for approximating values
with smaller error.

We also implemented a tool to determine the amount of values
losslessly compressed by MDB [2]. Figure 10c shows that with
€=0.01%, MDB represents 71.9%-95.0% of the values losslessly, while
17.1%-34.3% of the values are compressed losslessly with e=10%.

We answer RQ3.1 as follows. With our datasets MDB preserves
the data quality even better than the guaranteed pointwise €. The
model types have different impacts on the data quality. Higher use of
Swing results in higher MAPE than PMC, while Gorilla compresses
losslessly. Thus, PCD has a lower MAPE at higher error bounds
than the other datasets. However, among all datasets and error
bounds, the MAPE is less than half of the €. Thus, MDB preserves
data quality much better than the €, which allows for compressing
with higher error bounds to maximize the compression effectiveness.

5.3.2  Downstream Analytics. MDB provides efficient integration
with the data science libraries like NumPy and pandas. Data scien-
tists can query both the edge nodes and cloud nodes for scalable
analytics using the Apache Arrow Flight interface. The data is re-
turned in Apache Arrow format which can easily be converted to
NumPy arrays and pandas dataframes. Through Apache Spark SQL,
MDB provides full expressive power for advanced OLAP queries
such as rollup, cube by, window functions and grouping sets. MDB
efficiently computes simple aggregates and aggregates in the time
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Figure 10: (a-b) MAPE of PCD and MTD for different ¢. (c)
Amount of values compressed with zero error for all datasets.

dimension directly on compressed segments [34]. In [52], MDB is
used as a part of the MORE (Management of Real-time Energy data)
platform [1]. The study uses the MTD for evaluation and MDB is
used for providing lossily compressed data for Incremental Machine
Learning (IML) models to detect so-called yaw misalignment in real-
time. Similarly, in [12], MDB’s implementation of PMC and Swing
along with the dataset WTM are used for time series forecasting.

5.3.3 Downstream Analytics Accuracy. We evaluate the impact of
lossy compression on MIN, AVG and STDEV aggregations for each
signal in each dataset. Results for COUNT, MAX and SUM aggre-
gations are available in the extended version (Appendix D). We do
the aggregations for each signal and compute the Relative Query
Error (RQE) as |(Q — Q”)/Q| where Q is the query result from the
original dataset and Q' is the query result from the decompressed
dataset. If Q = Q’, then RQE is 0. We ignore cases when Q = 0 # Q’
to avoid division by zero. For MIN we use the predicate signal >
0 (and refer to it as MIN*) as MDB and IoTDB represent 0 losslessly.
Results for MIN without a predicate are given in Appendix D. Ta-
ble 5 shows the median and max RQEs for MIN*, AVG and STDEV
over all signals for each dataset. Due to space constraints, we show
only results for MDB, IoTDB and AGG that are comparable by CF.
The remaining results are available in D. COUNT is exact in MDB
and thus its RQEs for AVG and SUM are identical, while for AGG,
COUNT and SUM can be computed using the SI. IoTDB’s results
for SUM are also very low. All solutions have low RQEs for MAX
(Appendix D) as all results are higher than 0 and outliers tend to
appear consecutively.

With MDB, all queries generate lower RQE than the € and the
median RQE is much smaller than the e. Similarly, IoTDB provides
low RQEs for AVG and STDEV, while for MIN*, its encoding format
(i.e., TS_2DIFF) represents small values as 0 due to rounding to
the configured precision. This results in very large RQEs. As an
example, for PCD with precision=1, [oTDB’s lowest possible value
for MIN™ is 0.1, while querying the original dataset returns small



Query | SELECT MIN (signal) WHERE signal > 0 SELECT AVG (signal) SELECT STDEYV (signal) Query | SELECT MIN (signal) WHERE signal > 0 SELECT AVG (signal) SELECT STDEV (signal)
Median(error) Max(error) Median(error) ‘Max(error) Median(error) Max(error) Median(error) Max(error) Median(error) Max(error) Median(error) Max(error)
MDB ¢ 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 MDB ¢ 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1
(CF=14x) |(CF=47x)| | (CF=14x) | (CF=47x)|| (CF-14x) |(CF=47x)|| (CF=14x) | (CF=47x)|| (CF-14x) |(CF=47x)| | (CF=14x) |(CF=47x) (CF=5.5x)| (CF=7.5x)| | (CF=5.5x)| (CF=7.5x)| | (CF=5.5x)| (CF=7.5x)| | (CF=5.5x)| (CF=7.5x)| | (CF=5.5x)| (CF=7.5x)| | (CF=5.5x)| (CF=7.5x)
ROE 4e9 | de9 2e8 | 28 3e-d | 0.005 0.0008 | 0.007 8e5 | 3e-d 4e-4 | 0.001 RQE 3e8 | 3e8 0002 | 002 Ge-d | 0.003 0004 | 001 Te-4 | 0.004 0.007 | 0.03
T6TDB 2 1 H 1 B 1 2 1 H 1 B 1 ToTDB 3 2 3 B 3 2 3 2 3 2 3 2
Precision| (CF-13x) | (CF-26x)| | (CF=13x) | (CF-26x)| | (CF-13x) |(CF=26x)|| (CF~13x) | (CF-26x)| | (CF=13x) | (CF-26x)| | (CF-13x) |(CF-26x)| | Precision| (CF=6x) | (CF=8x) || (CF=6x) | (CF=8x) || (CF=6x) | (CF=8x) || (CF=6x) | (CF=8x) || (CF=6x) | (CF=8x) || (CF=6x) | (CF=8x)
QE | 28e+12 | 28e+13 |[ 1.7e+36 | 17e+37 || 0.005 | 0008 |[ 0017 | 002 |[ 0.002 0005 |[ 0011 | 012 E | 45 | 268 |[ 19e+6 | 19e+7 || 2e6 | 5e-6 || 0.002 | 0003 |[ 5e-7 | 5.6e-6 || 0002 | 0.004
AGGSI | 10 | 49 1055 | 49 105 | 49 1055 | 495 1055 | 495 R | ‘ 65 105 65 105 65 105 65 105 65 105 65 105
(CF=10.5%)| (CF=50x)| | CF-10.5x)| (CF=50x)| | (CF=10.5%)| (CF=503)| | (CF=10.5%) (CF=50x)| | (CF=10.5%)| (CF=50x)| | (CF~10.5%)| (CF-50x) (CF=8x) | (CF=13x) || (CF=8x) | (CF-15x) || (CF=8x) | (CF=13x) || (CF=8x) | (CF-13x) || (CF=8x) | (CF=13x)| | (CF=8x) | (CF-13x)
RQE [ 16 [ 14 |[82e10 | 1er10 [ 3e6 | Se-6 || 3ed [ 6ed |[ Se6 | 1e5 [[ 003 [ o1 RQE | 06 | 3 || 656382 | 673499 |[ 9e-5 | 2e-4 || 0008 | 002 || 8ed | 0002 |[ 004 | 005

Table 4: Relative query errors (in %) of OLAP queries on PCD (left) and MTD (right).

values like 3.5e-15. This results in very large RQEs such as 2.8e+13.
MDB’s pointwise € provides finer control over the error for lossy
compression. AGG suffers from a similar issue as [oTDB with MIN™.
For example, with SI=4.95s for PCD it has 1e+10 RQE, while for
AVG and STD, it produces accurate results similar to IoTDB and
MDB. Table 5 also shows the CFs of each method and we can see
that for PCD, the dataset with the highest frequency, MDB hits the
sweet spot between compression and query accuracy by providing
the best overall quality for OLAP queries and better compression
than IoTDB’s lossy compression. For MTD, MDB provides the best
overall query accuracy and comparable compression to IoTDB. AGG
can be used for achieving a very high CF, however, it also results in
unbounded errors for both data quality and OLAP query accuracy.
IoTDB provides better CF for a dataset with higher SI and its lossy
compression’s query accuracy highly depends on the configured
precision limit and the range of values in the dataset.

The impact of error-bounded lossy compression methods includ-
ing PMC and Swing on the accuracy of state-of-the-art time series
forecasting models is studied in [12]. The study uses MDB’s imple-
mentation of PMC and Swing. The study finds that error-bounded
lossy compression can be performed with an € up to 30% for PMC
and 25% for Swing before significantly reducing the accuracy of
forecasting models. The results in [52] show that the IML models
trained with MDB’s lossily compressed data using 2% < € < 10%
provide 1.05x and 1.26x better f1-scores than the models trained
with 400x (i.e., lmin) and 4000x (i.e., 10min) AGG data, respectively.
10min AGG data is an industry standard method of data prepro-
cessing for yaw misalignment detection [20]. Compressing with
€=2%, the lowest € used in the study, provides the same f1-score as
2x AGG. As for compression, e=10% provides similar compression
to 400x AGG. Both studies also mention that in some cases, the use
of lossy compression even improves the accuracy of the models.

We answer RQ3.2 as follows. MDB’s error-bounded lossy com-
pression produces much lower RQE than the € for all our datasets and
queries. All solutions perform well for aggregate queries with AVG
and STDEV. For MIN*, MDB’s error-bounded lossy compression
produces significantly better results than IoTDB and AGG. MDB can
efficiently be integrated into scalable data science infrastructures as
manifested in [52]. Studies [12, 52] show that error-bounded lossily
compressed data can effectively be used for time series forecasting
and yaw missalignment detection in real-life scenarios.

6 RELATED WORK

Many time series compression methods have been proposed, this
survey [10] splits them into five categories: Dictionary-based, Func-
tional Approximation, Autoencoders, Sequential methods, and Others.

Dictionary-based methods like [38, 40, 43, 47] build dictionaries
of subsequences and represent time series using them. Achieving
high dictionary search speed and low size are the main challenges.

Functional Approximation methods like [13, 22, 23, 36, 57] split
time series into segments and approximate each segment using a
function of time. They can be used for online compression as they
do not have a training phase and are also computationally efficient.

Autoencoders like [21, 42, 48, 58, 59] are related neural networks
with an Encoder and a Decoder. They cannot do online compression
on the edge as they are resource intensive [10] and require a GPU.

Sequential methods like [5, 8, 41, 46, 49, 50] apply several simple
compression methods sequentially. They can be used online as they
do not have a training phase and are also computationally efficient.

Others like [15, 25] are methods that do not fit into a category.

An evaluation [24] of model-based compression methods [4, 6,
7,14, 17, 37, 39] for sensor data, found that APCA [37] and SF [14]
provided the best compression factor for time series with little noisy,
while APCA [37] and GAMPS [17] were good for noisy time series.
They also found that a dynamic segment size is very important to
achieve a high compression factor and very low compression error.

An evaluation [56] of lossless time series compression meth-
ods [5, 9, 19, 46, 51, 55] in IoTDB [53, 54], found that TS_2DIFF [55]
achieves higher compression factors for datasets with a large delta
mean, while Gorilla [46] achieves higher compression factors for
datasets with a small delta mean and value variance. Gorilla also pro-
vides lower compression and decompression time than TS_2DIFF.

While these studies evaluate lossy and lossless compression
methods, they do not combine them or use big real-life datasets.

7 CONCLUSION

We show that ModelarDB (MDB) addresses all four challenges of
managing high frequency wind turbine data across edge and cloud:
Limited Hardware, Limited Bandwidth, High Storage Costs, and Low
Data Quality After Compression. Compared to solutions used in in-
dustry and with real-life high frequent wind turbine datasets, MDB
has a higher compression factor and transfer efficiency than LLC
and matches AGG’s compression factor and transfer efficiency but
adds orders of magnitude less error. Compared to IoTDB, MDB has
a higher compression factor but slightly worse transfer efficiency
with losless compression. However, with lossy compression, MDB
has a higher compression factor and transfer efficiency than IoTDB
for the very high frequency dataset.

We found that MDB’s focus on compression factor instead of
compression speed is beneficial due to the limited bandwidth from
the edge to the cloud, and that MDB provides a good compromise
between compression factor and data quality since the models
generally have much less error than the error bound. Thus, MDB is



excellent at managing high frequency wind turbine data across the
edge and cloud.

In future work, we will design new model types and improve the
model fitting strategy by exploiting properties of the time series.
Both will be added to a full reimplementation of ModelarDB [45].
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A LENGTH BOUND AND BATCH SIZE
OPTIMIZATION

In order to find the length bound that provides the highest CF,
we ingest the datasets PCD and MTD using the following length
bound parameters: 25, 50, 100, 300 and 500. The results for PCD
and MTD can be seen in Figures 11a-11b. We can see that for PCD,
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Figure 11: CFs for different length bound parameters for PCD
and MTD

the length bound of 25 and 50 provide the best CF for all error
bounds. For MTD, the length bound of 50 values provides the best
CF for € 0%, 0.01%, 0.05%, 0.1% and 1%, while the length bound of
25 values provides the best CF for € 5% and 10%. Thus, we use the
length bound 50 that provides the best CF for most datasets and
error bounds. To find the best batch size that provides the shortest
ingestion time, we ingest datasets using the following batch sizes:
500, 1000, 5000, 10000, 50000 and 100000 and error bounds: 0%, 1%,
5% and 10%. As batch size only impacts the ingestion time, we
perform the experiment only for PCD that is the only dataset used
for transfer efficiency experiment in Section 5.2. The experiment
is performed in the same experimental setup as in experiments in
Section 5.2. Figure 12a shows the ingestion time results. We can see
that MDB with batch size of 1000 ingests most data points when
0% < € < 1% and with batch size 50,000 it ingests most data points
when 5% < € < 10%. Given that the most of the error bounds
used in our experiments are in the range of 0% < € < 1%, we use
the batch size 1000 in our experiments. To conclude, the length
bound 50 provides the best compression effectiveness in 85% of
combinations and batch size of 1000 provides the best ingestion
time in 50% of combinations.
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Figure 12: Values ingested per second (in 1e6) for different
batch size parameters for PCD and on the edge.
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Figure 15: CFs and resulting errors for MDB and AGG on
MTD.
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Figure 16: CFs and resulting errors for MDB and AGG on
WTM.
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Figure 17: Impact of ST on MDB’s CF for WTM.
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Figure 18: Mean segment length of each model type for PCD
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Figure 19: Mean segment length of each model type for MTD
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Figure 20: Mean segment length of each model type for WTM
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Figure 21: Median segment length of each model type for
PCD
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Figure 22: Median segment length of each model type for
MTD
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D DOWNSTREAM ANALYTICS ACCURACY

Query SELECT MIN (signal) WHERE signal > 0 SELECT AVG (signal) SELECT STDEV (signal)
Median(error) Max(error) Median(error) Max(error) Median(error) Max(error)
MDB (¢) 0.0005 | 0.001 0.1 0.0005 | 0.001 0.01 0.1 0.0005 | 0.001 0.05 0.1 0.0005 | 0.001 | 0.01 0.05 0.1 0.0005 | 0.001 0.05 0.1 0.0005 | 0.001 | 0.01 0. 0.1
Dataset CF=4.2 | CF=5 | CF=14 | CF=47 | CF=79 || CF=4.2| CF=5 | CF-14 CF=4.2 | CF=5 | CF=14| CF=47 | CF=79 || CF=4.2| CF=5 | CF=14| CF=47 | CF=79 || CF=4.2 | CF=5 | CF=14| CF=47 | CF=79 || CF=4.2 | CF=5 | CF=14| CF=47 | CF=79
PCD 2e-9 4e-9 4e-9 4e-9 5e-9 2e-8 2e-8 2e-8 6e-6 8e-6 | 3e-4 | 0.005 0.01 2e-5 5e-5 [0.0008 [ 0.007 | 0.002 le-! 8e-" 3e-4 de-4 2.3e-5 | 4e-5 | de-4 | 0.001 0.002
MTD 2e-8 3e-8 2e-8 3e-8 3e-8 5e-8 5e-8 0.002 9e-7 2e-6 | 5e-5 6e-4 0.003 3e-5 le-4 | 8e-4 | 0.004 0.01 2e-6 le-4 Te-4 0.004 4e-5 6e-5 | 0.001 | 0.007 0.03
4 3 2 1 4 3 2 1 5 4 3 2 1 4 2 1 3 3 2
Dataset CF=5 | CF=74] CI CF=26 || CF=3.7| CF=5 | CF=7.4| CP=13 | CP=26 || CF=537 | CF=5|CF=7.4| CF=13| CF=26 CF=5 CF=13 | CF=26 CF=74 CF=3.7| CF=5 | CF=7.4| CF=13
PCD 2.8e+9 |2.8e+10(2.8e+11|2.8e+12| 2.8e+13 | | 1.7e+33|1.7e+34|1.7e+35[1.7e+36| 1.7e+37 de-7 de-6 | 3e-4 | 0.005 0.008 0.01 | 0.015 0.017 0.02 2e-4 0.01 0.01 | 0.011 | 0.011
MTD 0.04 0.9 45 268 1865 763362 | 754973 | 1.9e+6 | 1.9e+7 | 1.9e+8 0 8e-8 | 2e-6 5e-6 6e-5 4e-6 | 3e-5 | 0.002 | 0.003 0.02 0 8e-8 | 5e-7 | 5.6e-6 5e-5 le-6 le-5 | 0.002 | 0.004
AGG (ST) 1.05s 10.05s Im 10m 1.05s 10.05s 1m 10m 4.955 | 10.055| 1m 10m 1.05s | 4.95s | 10.055| Im 10m 1.05s | 4.95s | 10.05s| Im 10m 1.05s | 4.95s | 10.05s [ Im 10m
Dataset CF=10.5 CF=95 | CF=563| CF=5572| | CF=10.5 CF=95 | CF=563 | CF=5572| ClI 0| CF=95| CF=563| CF=5572| | CF=10.5| CF=50) CF=563|CF=5572| | CF=10.5| CF=50| CI 5| CF=563| CF=: CF=10.5| CF=50| CF=95 | CF=563| CF=5572|
PCD 23 5 112 8.2e+10| 1e+10 [1.2e+11|1.1e+13|1.8e+13 5e-6 | 5e-6 | 3.6e-5 5e-4 3e-4 | 6e-4 0.002 | 0.005 5e-6 le-5 | le-5 le-d4 Te-4 0.03 0.1 0.3 1.1 4.1
AGG (ST) 30s Im 10m 65 10s 30s Im 10m 10s 30s Im 10m 65 10s Im 10m 65 10s 30s Im 10m 65 30s 1m 10m
Dataset CF=39 | CF=77 | CF=707 CF=8 | CI 3 | CF=39 | CF=77 | CF- CF=13| CF=39| CF=77 | CF=707 CF=8 |CF=13| Ci CF=77 | CF=707 CF=8 |CF=13| CF=39| CF=77 | CF=707 CF=8 |CF=13| CF=39| CF=77 | CF=707
MTD 7.5 14 50 656382 | 673499 | 2.3e+6 | 3.5e+6 | 5.3e+7 2e-4 | Te-4 | 0.001 0.005 0.008 | 0.02 | 0.06 0.07 0.2 8e-4 |0.002 | 0.005 | 0.012 0.04 0.04 0.05 | 0.08 0.1 0.12
Query SELECT MIN (signal) SELECT MAX (signal) SELECT SUM (signal
Median(error) Max(error) Median(error) Max(error) Medianerror) Max(error)
MDB (¢) 0.0005 | 0.001 | 0.01 0.1 0.0005 | 0.001 | 0.01 0.05 0.1 0.0005 | 0.001 | 0.01 0.05 0.1 0.0005 | 0.001| 0.01 0.05 0.0005 | 0.001| 0.01 0.05 0.1 0.0005 | 0.001 | 0.01 0.05
Dataset CF=4.2 CF=14 CF=79 CF=4.2 | CF=5 | CF=14| CF=47 | CF=79 CF=4.2 | CF=5 | CF=14| CF=47 | CF=79 || CF=4.2 | CF=5 | CF=14| CF=47 CF=4.2 | CF=5 CF=47 | CF=79 || CF=4.2 | CF=5 | CF=14| CF=47
PCD 0 0 0 0 0 3e-4 5e-4 | 0.004 | 0.047 0.07 0 0 de-4 | 0.019 0.067 de-4 7e-4 | 0.009 | 0.049 6e-6 8e-6 | 3e-4 | 0.005 0.01 2e-5 5e-5 [0.0008| 0.007 0.002
MTD 0 0 0 0 0 4.9e-4 | 9e-4 | 0.009 | 0.049 0.099 0 0 0 0.014 0.06 4.9e-4 | 9e-4 | 0.009 | 0.049 9e-7 2e-6 | 5e-5 6e-4 0.003 3e-5 le-4 | 8e-4 | 0.004 0.01
[DB (Precision) 5 4 3 2 1 5 4 3 2 1 2 1 4 3 2 1
Dataset B CF=3.7 | CF=5 |CF=7.4| CF=13 | CF=26 CF=3.7 | CF=5 |CF=7.4| CF=13 | CF=26 CF=13 | CF=26 CF=5 |CF=7.4| CF=13 | CF=26 CF=5 .
PCD 0 0 0 0 0 0 0 0 0 2e-3 0 0 0 le-6 | 8e-7 3e-6 2e-6 8e-6 | de-6
MTD 0 0 ] 0 0 0 0 0| o 0| o0z 0 0| o 0 0 0 0 0 0 0 7e8 | 3e7 | 4e7 | 3e6 2¢6 | 3e-6
AGG (SI) 1.055 | 4.95s 1.055 | 4.95s | 10.05s 1.055 | 4.95s | 10.05s | 1Im 10m 1.055 | 4.95s | 10.055| 1m 10m 1.05s | 4.95s | 10.05s 4.95s | 10.05s 10m
Dataset CF=10.5|CF=50 CF=10.5|CF=50| CF=95 CF=10.5|CF=50| CF=95 | CF=563| CF=5572| | CF=10.5| CF=50| CF=95 | CF=563 ] CF=50| CF=95 CF=50| CF=95 3| CF=5572
PCD 0.08 0.2 0.21 0.21 0.23 0.6 1 1 1 1 0.003 | 0.006 | 0.007 | 0.016 0.2 0.06 0.14 | 0.17 0.19 0.3 3e-6 5e-6 | 5e-6 6e-4 | 9e-4 0.005
AGG (SI) 65 10s 30s Im 10m 65 10s 30s Im 10m 65 10s 30s Im 10m 65 10s 30s Im 10m 65 10s 30s 10s 30s 10m
Dataset CF=8 |CF=13| CF=39| CF=77 | CF=707 CF=8 |CF=13| CF=39| CF=77 | CF=707 CF=8 |CF=13| CF=39| CF=77 | CF=707 CF=8 |CF=13| CF=39| CF=77 | CF=707 CF=8 |CF=13| CF=39| CF=77 | CF=707 CF=8 |CF=13| CF=39 CF=707
MTD 0 0 0 0 0 223 246 955 1396 13169 6e-4 2e-3 | 8e-4 0.02 0.05 0.14 0.3 0.5 0.5 0.6 9e-5 2e-4 | Te-4 | 0.001 0.005 0.008 | 0.02 | 0.06 0.2

Table 5: Relative query errors (in %) of OLAP queries on PCD and MTD.

it can be computed by the number of aggregated values.

COUNT is exact for both MDB and IoTDB and for AGG

This section illustrates the complete results of running the OLAP queries with lossy compressed data by MDB, IoTDB and AGG. We run
the following queries: MIN, MIN(signal) WHERE signal > 0, MAX, AVG, SUM and STDEV for PCD and MTD.
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