Aalborg Universitet

Heat Roadmap Europe 1

First Pre-Study for the EU27

Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg; Möller, Bernd; Nielsen, Steffen; Lund, Henrik; Trier, Daniel; Persson, Urban; Nilsson, Daniel ; Werner, Sven

Publication date: 2012

Document Version Accepted author manuscript, peer reviewed version

[Link to publication from Aalborg University](https://vbn.aau.dk/en/publications/a855df3d-d211-45db-80de-94ee528aca8d)

Citation for published version (APA):

Connolly, D., Mathiesen, B. V., Østergaard, P. A., Möller, B., Nielsen, S., Lund, H., Trier, D., Persson, U., Nilsson, D., & Werner, S. (2012). Heat Roadmap Europe 1: First Pre-Study for the EU27. [http://vbn.aau.dk/en/publications/heat-roadmap-europe-2050-second-prestudy-for-the-eu27%28306a5052-a882-](http://vbn.aau.dk/en/publications/heat-roadmap-europe-2050-second-prestudy-for-the-eu27%28306a5052-a882-4af9-a5da-87efa36efeaa%29.html) [4af9-a5da-87efa36efeaa%29.html](http://vbn.aau.dk/en/publications/heat-roadmap-europe-2050-second-prestudy-for-the-eu27%28306a5052-a882-4af9-a5da-87efa36efeaa%29.html)

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

FIRST PRE-STUDY FOR THE EU27

Aalborg University

David Connolly Brian Vad Mathiesen Poul Alberg Østergaard Bernd Möller Steffen Nielsen Henrik Lund

Halmstad University

Urban Persson Daniel Nilsson Sven Werner

PlanEnergi

Daniel Trier

ACKNOWLEDGEMENT

The work presented in this report is partly as a result of the research activities of the Strategic Research Centre for 4th Generation District Heating (4DH), which has received funding from The Danish Council for Strategic Research.

PREFACE

Although the heating and cooling sector is very large in size and already provides low and nocarbon solutions, it has largely been overlooked in all scenarios exploring the energy future towards 2050. The Energy Roadmap 2050 published by the European Commission rightly acknowledges that *renewable heating and cooling is vital to decarbonisation* and that *a costoptimal policy choice between insulating buildings and systematically using waste-heat needs to be* found. Yet, the Roadmap omits a thorough analysis of the heating and cooling sector.

Against this background, during early 2011, Euroheat & Power, Aalborg University and Halmstad University further discussed the possibility for developing a major European research project called Heat Roadmap Europe, focusing on the future European heat and cooling market and its interactions with other parts of the energy market. In order to prepare for a full project proposal, a pre-study research project was established. The five major purposes of the pre-study were identified as:

- **Now Validation of the proposed research methodology.**
- Indication of possible results from a future full research study.
- **Early warning information to policy-makers about the quality of official EU energy** roadmaps with respect to the expansion of district heating systems.
- Giving an alternative future projection to many all-electric future heat scenarios.
- **Information leaflet for tentative partners in a future research consortium concerning Heat** Roadmap Europe.

The Aalborg and Halmstad universities have performed this pre-study in cooperation according to a methodology based on energy modelling and mapping of local conditions reflecting the possible future district heating opportunities.

May 2012,

Henrik Lund Sven Werner

Professor at Aalborg University Professor at Halmstad University

EXECUTIVE SUMMARY

This pre-study presents the findings concerning a considerable expansion of the district heating sector within the current EU27 member states until 2050. Heat deliveries are presumed to grow by a factor of 2.1 until 2030 and by a factor of 3.3 until 2050.

The current energy policy context is that the latest energy communication from the European Commission (*Energy Roadmap 2050*) contains only a very modest growth in the future for district heating systems and additional industrial heat use from industrial CHP plants. A small increase is foreseen for industrial demands, while heat deliveries to the residential and service sectors are expected to decrease. In total, the heat delivered is expected to increase by less than one per cent per year, giving a total increase of 20% until 2030 and of 40% until 2050.

In this prestudy, more ambitious growth rates are assessed for district heating in the EU27 between 2010 and 2050. The chosen methodology in this pre-study contains a combination of hour-by-hour energy modelling of the EU27 energy system and mapping of local conditions, which is essential for district heating analysis. However, the link between these two actions has not been fully utilised in this pre-study due to the limited working time available: The mapping action has only indicated the input to the energy modelling action.

MAPPING OF LOCAL CONDITIONS

Currently, 60 million EU citizens are served by district heating systems in their daily life. But the existing district heating systems supply only part of the heat demands in the cities they serve. Cities with at least one system have a total population of 140 million inhabitants and approximately 57% of the EU population lives in regions that have at least one district heating system. Hence, more district heat can be delivered in the future by expanding existing district heating systems.

Only less than half of the calorific value of waste incinerated in 414 waste-to-energy plants is recovered as electricity or heat. This gives a driving force for increasing the heat recycling from the existing plants. Further waste-to-energy plants can be implemented, as almost 100 million tonnes of non-recycled waste is deposited in landfills.

One quarter of the European population lives in urban areas that could be reached by geothermal heat through future district heating systems. This includes major cities such as Hamburg, Berlin, Munich, Frankfurt am Main, Hanover, Stuttgart, Aalborg, Groningen, Amsterdam, Rotterdam, Paris, Lyon, Strasbourg, Barcelona, Budapest, and Bratislava.

Other local conditions considered are heat demands in urban areas, thermal power generation for using combined heat and power, biomass availability, and solar district heating.

The vision for the mapping of local conditions is to present the most suitable regions (hot spots) for future expansion of district heating systems by combining information about heat demands with information about available heat sources for each region within the EU27. Due to uncertainties relating to the quality of carbon dioxide emissions reported from various industrial and energy plants in the E-PRTR database, the most interesting hot spots for district heating cannot yet be presented in numbers. However, this major question mark can be eliminated by correcting these current deviations in the database.

In summary, the mapping part of the pre-study indicated that the market shares for district heating for buildings can be increased to 30% in 2030 and 50% in 2050.

ENERGY SYSTEM ANALYSIS FOR 2010

To begin, this pre-study focused on the existing EU27 energy system. A detailed breakdown of the energy consumed for the EU27 is available from the International Energy Agency, which was updated until 2009 at the time this study was being carried out [\[1,](#page-62-0) [2\]](#page-62-1). Therefore, the 2009 EU27 energy balance was used to represent the 2010 reference point in this pre-study. Using an historical year is important since historical data represents the actual operation of the energy system and it is documented in much more detail than forecasted scenarios: hence, the historical data can be used as a baseline for estimating future data which is not available. From the EU27 energy balance from the IEA, it is evident that district heating accounts for approximately 12% of the total residential and services heat demand in 2009. This 2010 historical reference is modelled on an hour-by hour basis in this pre-study using the energy system analysis tool EnergyPLAN.

Using the EnergyPLAN tool, a first draft evaluation of expanding district heating in Europe is carried out in this Heat Roadmap Europe (HRE) pre-study, from the present 12% to first 30% and afterwards to 50% of the heating of buildings. The benefits are illustrated in two steps. Step 1 shows the potential energy efficiency improvements connected to CHP while step 2 shows the additional potential of increasing the use of industrial waste heat, waste incineration, geothermal and solar thermal resources. Both steps are calculated for the present European energy system for the year 2010 as well as for a scenario representing the implementation of current EU27 energy policy until 2050.

According to the IEA EU27 energy balance for 2009, which was used to profile the heating sector in 2010, the 38% (50% minus 12%) of heating for buildings in question is today heated by electric heating or individual boilers burning coal, oil, natural gas or biomass. In step1 these buildings are converted to district heating using the following assumptions:

- Coal, oil and natural gas boilers are replaced accordingly, while no replacement of biomass boilers are assumed. Firstly, biomass boilers are typically outside the reach of district heating and secondly, biomass replaced by district heating may again be used to replace oil and natural gas in other buildings.
- **Moreover to simplify the calculations in the pre-study, no electric heating has been replaced,** although that can prove to be an important part of the district heating expansion.
- **The production of district heating will come partly from** *existing* **power and CHP plants** assuming an average efficiency in the present situation of 32% electric and 52% thermal output and partly from *new* Combined Cycle (CC) CHP plants with an efficiency of 47% electric and 44% thermal output. The CC plants will burn natural gas equivalent to the oil and gas saved in the individual boilers being replaced.

 \blacksquare The share of peak load boilers in all systems is assumed to be on the same level as the existing average of approximately 9-13%. In the case of 50% district heating this means that a small share of large-scale heat pumps in district heating areas will have to be added in order to be able to balance the electricity supply.

The idea of these assumptions is to illustrate the potential energy efficiency improvements using the same amounts of biomass as well as oil plus natural gas. The results are illustrated in **Figure 1**. As can be seen, the expansion of district heating and CHP will decrease the fuel consumption for heating buildings in Europe substantially. Today 12% of heat is supplied by district heating which consumes a little less than 250 TWh/year of fuel, while the remaining individual boilers consume around 3100 TWh/year. The total of approximately 3350 TWh/year will decrease by 40% to around 2000 TWh/year if a 50% district heating share is reached. The fuel used by the boilers to be replaced by district heating if expanded to 50%, is today approximately 1550 TWh/year of coal, oil, and natural gas. In a system with district heating and CHP the fuel consumed by the total energy system will decrease by 1300 TWh/year (see **Figure 2**), meaning that the same heating can be provided with a net use of only 250 TWh/year of fuel. The net use of 250 TWh/year requires the following changes to the system: Fuel for CHP is increased in existing systems by 1360 TWh/year and in new CC-CHP systems by 1560 TWh/year while the electricity from the CHP plants replaces 2670 TWh/year of production from the condensing power plants. In the power and CHP plants, the burning of natural gas is increased by net 1460 TWh/year equivalent to the oil and gas saved in the individual boilers while the net influence on the use of coal is a decrease of 1210 TWh/year.

EU 27 Primary Energy Supply for Heating Buildings in 2010 at **Different DH Penetrations**

Figure 1: Primary energy supply and carbon dioxide emissions from hot water and the heating of buildings in the 2010 EU27 energy system at present and if district heating and CHP were expanded to 30% or 50%.

EU27 Primary Energy Supply & CO2 in 2010 at Different DH **Penetrations**

Figure 2: Primary energy supply and carbon dioxide emissions for the entire EU27 energy system in 2010 at present and if district heating and CHP were expanded to 30% or 50%.

In total, **Figure 2** indicates that the expansion of district heating will decrease the European primary energy consumption by 7%, fossil fuels by 9%, and the carbon dioxide emissions by 13% while still supplying the exact same energy services. Again it should be noted that the potential for fuel savings is most likely higher than calculated in this pre-study, since there are additional alternatives which could also be implemented. For example, there is also a substantial amount of electric heating in the EU27 energy system which can be converted.

Step 2 illustrates further benefits of district heating by implementing the following investments:

- Increase waste incineration from now 105 to 1198 TWh/year in 2050
- Increasing the use of geothermal heat from now approximately 2 to 111 TWh/year in 2050
- Increase the use of solar thermal heat from now 0.04 to 55.5 TWh/year in 2050
- Increase the use of industrial excess heat from 53 to 219 TWh/year in 2050

The results are shown in **Figure 3**.

Since these investments represent the replacement of fuels rather than efficiency improvements, such benefits will only slightly decrease the primary energy consumption further. However the share of fossil fuels as well as the carbon dioxide emissions will be reduced substantially. If both step 1 and 2 are implemented, then the total fossil fuels in Europe are reduced by 13% and the carbon dioxide emissions by 17%, as illustrated in **Figure** 4.

Figure 3: Primary energy supply and carbon dioxide emissions from hot water and the heating of buildings in the 2010 EU27 energy system at present and if district heating and CHP were expanded to 30% or 50%, in combination with the expansion of industrial waste heat, waste incineration, geothermal, and solar thermal heat for district heating.

EU27 Primary Energy Supply & CO2 in 2010 at Different DH **Penetrations & Utilising RE Resources**

Figure 4: Primary energy supply and carbon dioxide emissions for the entire EU27 energy system in 2010 at present and if district heating and CHP were expanded to 30% or 50%, in combination with the expansion of industrial waste heat, waste incineration, geothermal, and solar thermal heat for district heating.

REFERENCE SCENARIO FOR 2030 AND 2050

Additional to the above estimation of district heating benefits in the present 2010 EU27 system, the analyses has also been carried out for a reference scenario representing the implementation of current EU27 energy policy until 2050: this is based on the Current Policy Initiatives (EU CPI) scenario in the "*Energy Roadmap 2050*" report. This scenario represents a business-as-usual forecast for the EU27 energy system if existing policies are followed. Some interesting trends included in the EU CPI scenario are the following:

- **Nuclear power is gradually reduced during the period to 2030, but subsequently begins to** increase back to 2010 levels in 2050 once again.
- The EU 20-20-20 targets for renewable energy, greenhouse gas emissions, and energy savings for 2020 are achieved.
- **EXI** Existing CHP and Power plants are being replaced with new plants over the years resulting in a gradual increase in the average efficiencies of the European power sector.
- **The specific heating demand for buildings is decreased due to energy conservation** improvements in the buildings, but the heat demand in industry increases substantially.

ENERGY SYSTEM ANALYSIS FOR 2010, 2030 AND 2050

The results of these analyses are illustrated in **Figure 5** and **Figure 6** with regard to primary energy supply and carbon dioxide emissions. In the diagrams the expansion of district heating is compared to the CPI reference (EP CPI in the graphs refers to the model of the CPI scenario constructed in the EnergyPLAN tool). As can be seen the fuel consumption for heating is expected to decrease in the CPI reference mainly due to energy savings. If district heating is expanded at the same time then substantial fuel savings and carbon dioxide reductions will be achieved due to a combined increase in energy efficiency in electricity and heat production. This is evident in **Figure 7** by the increased use of CHP, surplus heat, and renewable resources in the HRE scenarios.

Figure 5: Primary energy supply and carbon dioxide emissions from hot water and the heating of buildings in the 2010, 2030, and 2050 EU27 energy system under a business-as-usual scenario and if district heating and CHP is expanded to 30% in 2030 and to 50% in 2050, in combination with the expansion of industrial waste heat, waste incineration, geothermal, and solar thermal heat for district heating.

EU27 Primary Energy Supply & CO2 from 2010 to 2050 **EU CPI vs HRE RE**

Figure 6: Primary energy supply and carbon dioxide emissions for the entire EU27 energy system in 2010, 2030, and 2050 under a business-as-usual scenario and if district heating and CHP were expanded to 30% in 2030 and 50% in 2050, in combination with the expansion of industrial waste heat, waste incineration, geothermal, and solar thermal heat for district heating.

District Heating Production for Heating Buildings from 2010 to 2050

Figure 7: District heating production for the entire EU27 energy system in 2010, 2030, and 2050 under a business-as-usual scenario and if district heating and CHP were expanded to 30% in 2030 and 50% in 2050, in combination with the expansion of industrial waste heat, waste incineration, geothermal, and solar thermal heat for district heating.

JOBS AND INVESTMENT COSTS FOR EXPANDING DISTRICT HEATING SYSTEMS.

This pre-study also includes a rough estimate of costs which indicate that, assuming the same fuel prices as forecasted in the *Energy Roadmap 2050* report, the implementation of the district heating expansion scenario will decrease the total costs of heating buildings in Europe by approximately €14 billion/year in 2050, as illustrated in **Figure 8**. Even more importantly, implementing the district heating alternative will transfer money from importing fossil fuels to investments in district heating pipelines, CHP plants, geothermal, solar thermal, industrial waste heat, and waste incineration. Thus a substantial number of jobs will be created in the investment phase. This pre-study only includes a first rough estimate of job creation which is around 8-9 million man years: this equates to approximately 220,000 new jobs on average over the 38 year period from 2013 to 2050. It must however be emphasized that 220,000 jobs is a rough estimate of the minimum number of work places being created and the 220,000 jobs solely arise from the additional investments. The real number will be higher because:

- **Multiplier effects of the jobs created are not included.**
- Additional jobs are not included to account for the fact that when the energy costs of Europe decrease, European industry will become more competitive.
- **Additional jobs from industrial innovation due to the investments in new energy technologies** are not included.

Annual EU27 Costs for Heating Buildings from 2010 to 2050

Figure 8: Socio-economic costs for the entire EU27 energy system in 2010, 2030, and 2050 under a business-as-usual scenario and if district heating and CHP were expanded to 30% in 2030 and 50% in 2050, in combination with the expansion of industrial waste heat, waste incineration, geothermal, and solar thermal heat for district heating.

CONCLUSIONS

The major findings from this Heat Roadmap Europe pre-study exploring the future district heating possibilities can be summarised by the following eight conclusions:

 The first conclusion is that more district heating in Europe will reduce the energy system costs considerably since local heat recycling and renewable energy use will reduce expensive energy imports, while also increasing the efficiency of both the electricity and heat sectors. The pre-study calculations indicate that the overall annual cost reduction in the heating sector will be about €14 billion by 2050, if more district heating is implemented compared to the Energy Roadmap 2050 CPI reference. This corresponds to a relative cost decrease of 11%. At the current energy import prices, the direct socioeconomic payback is estimated to be two to three years for heat distribution pipes put into the ground giving more recycled heat. In addition, there is a balance-of-payment benefit that has not been quantified in this study.

 \blacksquare The second conclusion follows from the first conclusion: Since fossil fuels are substituted with local resources, the reduced primary energy supply from fossil fuels will also give considerably reduced emissions of carbon dioxide for all heat demands served by district heating systems. The reduced energy import will also increase the future security of supply and give more positive balances of foreign exchange.

continued on next page

- \blacksquare The third conclusion is that more district heating will generate local labour since intensive investments will replace expensive imports of fossil fuels to Europe. An estimate indicates that approximately 8-9 million man-years will be created in Europe during the 40 year period, due to investments in heat recycling, renewable energy supply, and extended and new heat grids. This represents a rough estimate of the minimum number of jobs and should be quantified more thoroughly in the future.
- \blacksquare The fourth conclusion concerns the future European electricity supply system. With a high proportion of variable renewable electricity supply, a smart energy system is crucial so that all sectors can contribute to a balance between supply and demand. One of the proven flexible partners is district heating systems which can provide balancing power in both directions. For example, electric boilers and large heat pumps together with thermal storages can absorb critical excess electricity generation, while combined heat and power plants can actively support the electricity supply system during power deficits. Therefore, district heating can enable higher penetrations of intermittent electricity production on the European electricity grid.
- \blacksquare The fifth conclusion is about the importance of communicating the local possibilities for district heating to urban and regional planners. The planned continuation of this pre-study should contain a creation of an interactive internet tool providing the local conditions for district heating for each administrative region in the EU27.
- \blacksquare The sixth conclusion is about the methodology applied in this pre-study, which is a combination of energy modelling and mapping of the local conditions using a high geographical resolution: The high resolution also recognises future possibilities for local activities managed by local organisations. This methodology is crucial for district heating analysis since the potential for expansion is dependent on local heat resources and demands. Therefore, this methodology should be elaborated in the planned continuation of this pre-study, while also making a tighter connection between the energy modelling part and the local mapping part.
- \blacksquare The seventh conclusion concerns traditional energy modelling based on national energy balances. Their low geographical resolution tends to exclude specific local possibilities. Hereby, they favour generic possibilities available everywhere such as electric and gas alternatives associated to major international energy companies. Hence, these traditional energy tools may only capture some of the alternatives available. Traditional energy tools also tend to work with a low time resolution in their analyses. However, it is important to use a high time resolution to capture the daily variations in the energy system in order to verify the true variability in energy demand and supply, especially in a future energy system with high penetrations of intermittent resources.
- \blacksquare The eighth and final conclusion refers to the availability of data within the current IEA and future Energy Roadmap 2050 reports. At present, there is a lack of detailed data for the heat sector in these energy balances. For example, all fuels consumed by CHP plants are recorded together and not subdivided by condensing mode, extraction mode, and backpressure mode. In the future, it would be beneficial if the details within these energy balances could be increased for the heat sector. In line with this, we would like to thank the European Commission for providing all of the data possible during the limited timeframe of this study

FINAL RECOMMENDATION

This pre-study has demonstrated the potential increase in energy efficiency and renewable energy consumption associated with district heating, so a full research study is recommended to further elaborate on the methodology applied in this pre-study.

TABLE OF CONTENTS

NOMENCLATURE

1. INTRODUCTION

1.1 CURRENT HEAT MARKET CONTEXT

The current heat market for residential and service sector buildings within EU27 is about 3200 TWh/year according to **Figure 9**. The market share for district heating in this heat market for buildings is 12%, giving heat deliveries of about 380 TWh/year. District heat is also used for lowtemperature heat demands in the industry. These heat deliveries are about 230 TWh/year. These two major customer groups add up to the total volume of heat sold from district heating systems to about 610 TWh/year. Further 220 TWh/year is delivered from industrial CHP plants to industrial demands. Hence, the total turnover in the EU27 heat balance for final consumption amounts to about 830 TWh/year. The exact division between district heating systems and industrial CHP plants is very diffuse in international heat statistics. Hereby, it is also difficult to identify the real extent of district heating in EU27, but the simple division estimated above will be used in this pre-study.

Currently, the heat market for buildings is dominated by two thirds of heat supply from fossil fuels according to **Figure 9**. This gives a future opportunity for district heating to expand by substituting fossil fuels in order to reduce primary energy supply and carbon dioxide emissions. This expansion can be fulfilled by expanding heat recycling and renewable energy use in existing and new district heating systems. A proper assessment by energy modelling is still missing for this possible expansion for the whole EU27. However, some assessments have been performed for some countries and cities. One country example is the two Varmeplan Danmark reports for Denmark [48, 49] and one city example is the renewable plan for the Munich district heating system [50], introducing geothermal heat as the future base load.

The main purpose with this pre-study is to pave the road for a proper assessment of a future expansion of district heating within EU27. The focus is on more heat deliveries to the residential and service sector buildings.

Figure 9: Composition of the origin for heat supply to residential and service sector buildings in EU27 during 2008. Labels refer to the standard commodity groups used in the IEA energy balances. Heat denotes mainly heat from district heating systems. Data sources: IEA energy balances for 2008 complemented with some external estimation. One EJ is 10¹⁸ Joule, equivalent to 1 million TJ or 278 TWh.

1.2 CURRENT EU ENERGY POLICY CONTEXT

The European Union does not have a specific energy policy or directive concerning district heating. However, the specific directives for combined heat and power, industrial emissions, emissions trading, energy performance in buildings, renewable energy, waste management, energy taxation and energy efficiency (forthcoming) are examples of the EU regulatory framework for district heating.

The latest projection within the EU energy policy context concerning future heat deliveries from district heating systems and industrial CHP plants is the specific *Energy Roadmap 2050* communication [3], published in December 2011. This communication followed the more general communication from March 2011 called *A Roadmap for moving to a competitive low carbon economy in 2050* [51]*.* However, the description of the heat sector is not complete in this future projection, since the complete energy balance for the whole heat sector is missing in the corresponding impact assessment report [40].

EU27 - Projected heat deliveries according to

Figure 10: Expected heat deliveries for each of the seven main scenarios in the *Energy Roadmap 2050* **communication [40] compared to available heat statistics from Eurostat and IEA for the recent years. We have estimated the current total use level by adding some missing heat deliveries from industrial CHP plants to industrial purposes in the current statistics. This addition has been made in order to reduce the confusion created by the current routines for international heat statistics.**

The development of the heat deliveries in each of the seven scenarios elaborated in *Energy Roadmap 2050* is presented in **Figure 10**. The diagram is somewhat confusing with respect to the future development. The first years in the projection lack some heat deliveries from industrial CHP plants to industrial purposes since they are based on existing heat statistics lacking these heat deliveries. On the other hand, the energy modelling from 2015 and onwards includes all CHP heat deliveries. Hereby, the diagram gives a false optimistic view of the real expected development. Therefore, we have added our own estimations of the total heat deliveries for the period of 2002- 2008, estimated with additional input from the specific Eurostat statistical reports concerning CHP

heat generation in EU27. The average of these years amounts to about 830 TWh/year, the same level earlier identified in the preceding sub-section about the heat market context.

The expected development becomes then an increase with almost 20% until 2030 and with almost 40% until 2050 in the *Energy Roadmap 2050* reference scenario, indicating an annual expansion rate lower than 1% per year. However, this expansion is unevenly distributed among the two major customer groups. Heat deliveries to industrial purposes are expected to increase with 48% until 2030 and with 87% until 2050, while heat deliveries to residential and service sector buildings are expected to decrease with 13% until 2030 and with 22% until 2050.

Two questions arise directly from analysing the projection of the heat deliveries in *Energy Roadmap 2050*: Have local synergy options been considered at all? To what extent have substitution of electricity and gas use by excess heat recovery been conceived?

The conclusion is then that the European Commission does not foresee any radical expansion of the heat deliveries from district heating systems and industrial CHP plants in the future. Since all decarbonisation scenarios give lower heat deliveries than in the reference scenario, the European Commission has not identified district heating and industrial CHP as a major future decarbonisation tool within the energy system. Hence, *Energy Roadmap 2050* has not estimated the outcome from a radical expansion of European district heating systems.

A major explanation for the absence of a scenario with more district heating in the *Energy Roadmap 2050* communication is that the PRIMES model have been used for the energy system analysis. As we have identified from studying the background references for Annex II, the PRIMES model do no aggregate local conditions and possibilities relevant for expanding district heating systems. The PRIMES model is also a market equilibrium solution based on current energy technologies. Then by its nature, the model favours business-as-usual scenarios, giving fewer possibilities for radical technological changes.

1.3 OUR BASIC METHODOLOGY

For this pre-study, we have used a methodology based on a combination of energy modelling and mapping of local conditions reflecting the possible future district heating opportunities. This approach is not completely new. The same methodology was used in the Heat Plan Denmark (Varmeplan Danmark) project [48, 49] with a very high geographical resolution for the mapping of local conditions.

The link between the energy modelling part and the mapping part is rather weak in this pre-study. The aim with a planned full study is to explore how this link can be stronger. The mapping part is only used as an indicator of how intensive an expansion of district heating can be in 2030 and 2050.

The main target area for the analysis is the aggregated area of the European Union with 27 member states (EU27). Since the mapping of local conditions concerns all countries within the European Union; the mapping information can be used for separate analyses for each country.

1.4 ENERGY SYSTEMS ANALYSIS TOOL: ENERGYPLAN

EnergyPLAN was deemed suitable as an energy system analysis tool for this pre-study. EnergyPLAN has been developed and expanded on a continuous basis since 1999 at Aalborg University, Denmark [\[3\]](#page-62-3). Approximately ten versions of EnergyPLAN have been created and it has been downloaded by more than 1200 people. The current version can be downloaded for free from [\[4\]](#page-62-4) while the training period required can take a few days up to a month, depending on the level of complexity required.

EnergyPLAN is a user-friendly tool designed in a series of tab sheets and programmed in Delphi Pascal. The main purpose of the tool is to assist the design of national or regional energy planning strategies by simulating the entire energy-system: this includes heat and electricity supplies as well as the transport and industrial sectors. All thermal, renewable, storage/conversion, transport, and costs (with the option of additional costs) can be modelled by EnergyPLAN. It is a deterministic input/output tool and general inputs are demands, renewable energy sources, energy station capacities, costs, and a number of different regulation strategies for import/export and excess electricity production. Outputs are energy balances and resulting annual productions, fuel consumption, import/export of electricity, and total costs including income from the exchange of electricity. The energy system is modelled on an hourly basis over a period of one year, which ensures that the system can be operated reliable even with high penetrations of intermittent renewable energy. In the programming, any procedures which would increase the calculation time have been avoided, and the computation of one year requires only a few seconds on a normal computer. Finally, EnergyPLAN optimises the operation of a given system as opposed to tools which optimise investments in the system.

Previously, EnergyPLAN has been used to analyse the large-scale integration of wind [\[5\]](#page-62-5) as well as optimal combinations of renewable energy sources [\[6\]](#page-62-6), management of surplus electricity [\[7\]](#page-62-7), the integration of wind power using Vehicle-to-Grid electric-vehicles [\[8\]](#page-62-8), the implementation of smallscale CHP [\[9\]](#page-62-9), integrated systems and local energy markets [\[10\]](#page-62-10), renewable energy strategies for sustainable development [\[11\]](#page-62-11), the use of waste for energy purposes [\[12\]](#page-62-12), the potential of fuel cells and electrolysers in future energy-systems [\[13,](#page-62-13) [14\]](#page-62-14), the potential of thermoelectric generation (TEG) in thermal energy-systems [\[15\]](#page-63-0), and the effect of energy storage [\[16\]](#page-63-1), with specific work on compressed-air energy storage [\[17,](#page-63-2) [18\]](#page-63-3) and thermal energy storage [\[3,](#page-62-3) [5,](#page-62-5) [19\]](#page-63-4). In addition, EnergyPLAN was used to analyse the potential of CHP and renewable energy in Estonia, Germany, Poland, Spain, and the UK [\[20\]](#page-63-5). EnergyPLAN has been used to simulate a 100% renewable energysystem for the island of Mljet in Croatia [\[21\]](#page-63-6) as well as the countries of Ireland [\[22\]](#page-63-7) and Denmark [\[23,](#page-63-8) [24\]](#page-63-9). Other publications can be seen on the EnergyPLAN website [\[4\]](#page-62-4), while an overview of the work completed using EnergyPLAN is available in [\[25\]](#page-63-10) and a comparison with other tools is available in [\[26\]](#page-63-11).

1.5 MAPPING LOCAL CONDITIONS

A major setback in standard generic energy modelling is that national conditions constitute the basis for analysis. By such an approach, energy assets, demands, and distribution structures are viewed from an aggregated perspective not permitting insight into unique local circumstances and conditions. Such perspectives may be well suited when considering cross-border technologies and energy carriers, e.g. electricity and gas grids, since such commodity flows are integrated and visible in international energy statistics. But, for analyses aiming to include genuinely local technologies, e.g. district heating and cooling systems, such perspectives generally tend to be too blunt to detect and capture synergy options strictly limited to the local dimension.

The ambitious European targets to increase energy efficiency in future power and heat distribution and use acts as a force to address local conditions in a more systematic and thorough sense than previously elaborated. The main reason for this is simply that only local conditions disclose obtainable synergies between local heat assets and prevailing heat demands. Only at the local level, the excess heat from various activities and sources can be utilised by recovery and distribution in district heating systems. For this reason, one fundamental idea for the planned Heat Roadmap Europe Project is to deliberately break-up national boundaries and use local conditions as a foundation for the analysis, as it strives to identify, map, and quantify feasible and costeffective synergy locations in Europe.

For this purpose, we have used the NUTS3 regions defined by Eurostat as primary level of analysis for mapping local conditions in order to get relevant input to the energy modelling. These administrative regions are available for 34 European countries with 1461 defined regions. The 27 Member States of the European Union consists of 1303 NUTS3 regions, see Figure 11. However, the population in each NUTS3 region varies considerably according to **Figure 12**. About 90 NUTS3 regions have more than one million inhabitants. By using these predefined administrative regions, other statistical variables are easily available from the Eurostat databases.

Figure 11: The NUTS3 regions of Europe, of which 1303 are located within the EU27.

Figure 12: The distribution of the population in each NUTS3 region.

2. REFERENCE SCENARIO FOR 2010, 2030 AND 2050

2.1 CHOICE OF REFERENCE SCENARIO

Before evaluating an alternative energy roadmap for Europe based on district heating, a reference scenario needs to be defined. This reference scenario should represent a business-as-usual development which alternative scenarios can be benchmarked against. To begin, a review of other energy strategies was carried out to identify a suitable reference scenario for this study.

Firstly, it was evident that the most detailed historical breakdown of the EU27 energy system is created by the International Energy Agency (IEA) in their annual energy balances reports [\[1,](#page-62-0) [2\]](#page-62-1). At the time this project was being completed, the most recent energy balance available from the IEA for the EU27 was based on the year 2009. Hence, the year 2009 is used in this study as the 2010 reference energy system. The IEA data acts as a crucial baseline in this study, since the detailed breakdown of the EU27 energy system available for 2009 can act as a guideline when making assumptions for the energy balances in forecasted years. Since the IEA do not create forecasted energy balances, a separate energy balance needed to be identified as the reference for the future years.

A brief description of some of the most recent reports regarding low or zero carbon emission goals for future years is seen in Annex I. This also includes the role of district heating in each of the reports. Most of the reports state that combined heat & power (CHP) and/or district heating are important, but fail to quantify to which extent these options can be used to move towards a low or zero carbon emission energy system. In the few reports where it is more than just briefly mentioned, it still is not included as a major role. The reason for neglecting CHP may not be a lack of relying on the technology, but the absence of suitable models to include it. In the Energy Roadmap communication [\[27\]](#page-63-12) from the European Commission, the following statement is seen:

"*An analysis of more ambitious energy efficiency measures and cost-optimal policy is required. Energy efficiency has to follow its economic potential. This includes questions on to what extent urban and spatial planning can contribute to saving energy in the medium and long term; how to find the cost-optimal policy choice between insulating buildings to use less heating and cooling and systematically using the waste heat of electricity generation in combined heat and power plants*."

This quote clearly reflects the need for an energy scenario which includes smart electricity and heat grids, storages, CHP, and district heating to an extent that can elucidate the full potential of these technologies. To neglect this unresolved significant part of the energy solution might result in unnecessary costs for decarbonising the European energy system or even a failure in reaching the emission goals for the European Union.

The EC published in March 2011 *A Roadmap for moving to a competitive low carbon economy in 2050* [51], which analysed cost-effective ways of reducing greenhouse gas emissions. It was intended to act a basis for developing sector specific initiatives and roadmaps such as the *Energy Roadmap 2050* which was published in its final version in December 2011. After completing the review of existing energy strategies, the Current Policy Initiatives (CPI) scenario from the *Energy*

Roadmap 2050 report was deemed the most suitable forecast for this study. The report is the latest of the documents described in Annex I and the CPI scenario includes the current European energy policies. It represents an update of another scenario (called "Reference scenario") in the same report which means that besides the EU 2020 targets for renewable energy sources and greenhouse gas reductions as well as the Emissions Trading Scheme Directive, the CPI scenario includes the latest developments in energy prices, energy taxation, efficiencies, infrastructure and policy (such as Germany's decision on a phase-out of nuclear power and Italy cancelling their nuclear programme, although the report does assume that the amount of level of nuclear plants in the EU27 will increase again to the current level after decreasing towards 2030).

The CPI scenario is based on the assumption that there will be no changes in European energy policies beyond the publication of the report. It is described not as a forecast but a projection of what will happen if the market forces at all times determines the energy solution in the present economic, technological and political situation¹. The PRIMES model – which is described in Annex II – was used to develop the projections in *Energy Roadmap 2050*.

Another key reason for choosing the *Energy Roadmap 2050* is that this is the research which EU policy is based on: it is the European Commission's own prediction of the future energy system in Europe. However the EU27 energy balances available for the CPI scenario are not as detailed as the IEA 2009 EU27 energy balance. Hence, the IEA energy balance can act as a proxy when detailed assumptions are necessary for the scenarios in this study.

To summarise, three years will be considered in this pre-study: 2010, 2030, and 2050. The IEA EU27 energy balance for 2009 will be used to create the 2010 reference, while the CPI scenario from *Energy Roadmap 2050* will be used to create the business-as-usual forecasts for 2030 and 2050. These forecasts will be referred to as *EP CPI 2030* and *EP CPI 2050* respectively.

Finally, there are two key differences between the scenarios in the *Energy Roadmap 2050* and this pre-study. The first key difference is the energy tool utilised: in the *Energy Roadmap 2050* report, the PRIMES tool was used to develop the forecasts for the EU27 along with individual forecasts for each of the member states. PRIMES use a market equilibrium tool, which operates using a five year time-step over a duration time of 50 years. Hence, it is a combination of macro-economic forecasts with technical restrictions on the energy system, where the primary goal is to establish how various policies will influence the evolution of the energy system being considered. The focus in this pre-study is different and hence, a different energy tool is utilised.

In this pre-study, the aim is not to establish forecasts, but instead to perform a detailed technical analysis of the EU27 energy system to establish the role district heating based on hourly calculations over a duration time of one year. Therefore, the optimisation will be based on technical performance instead of market conditions and the operation of the system will be evaluated on an hourly basis. The evaluation of heating systems and the interaction between wind power, nuclear, CHP plants and heat pumps requires an hourly resolution to evaluate the high

1

¹ Average growth rate is assumed to be 1.7% p.a. The oil price is 106 US\$/barrel in 2030 and 127 US\$/barrel in 2050 (in year 2008 dollars). This is higher than the IEA Technology Perspectives where the expectations for the economic growth are 3.1% p.a. on an average between 2007 and 2050.

level of interaction between the electricity, heat, and transport sectors in a future smart energy system. Such systems cannot be analysed with resolutions that do not reflect the intermittent resources and their connection with the demands. For these reasons the analysis tool called EnergyPLAN (EP), which has been described in detail in section 1.4, will be used in this pre-study for both the reference forecasts (henceforth referred to as *EP CPI*) and the Heat Roadmap Europe scenario.

The second key difference between the *Energy Roadmap 2050* report and this pre-study is the resolution considered when defining the district heating alternatives. The approach in this prestudy has been to analyse specific local conditions within the EU27 member states to assess the overall EU27 potential for district heating. This has been performed using a detailed database of existing district heating networks, heat loads, and potential heat supplies along with some mapping tools to see how they fit together.

2.2 FINAL ENERGY CONSUMPTION WITH CURRENT EU POLICIES

As outlined in **Figure 13**, the energy consumed in industry increases the most from 2010 to 2050, while the residential, services, and agricultural sectors either decrease or show negligible growth. The transport sector increases slightly between 2010 and 2030, but subsequently decreases between 2030 and 2050. It is important to note here that the decrease in transport energy consumption between 2030 and 2050 may not reflect a decrease in transport demand. For example, there is a large increase in more efficient transport technologies between 2030 and 2050, specifically in relation to electric vehicles which increase by 220% over this period. Hence, although the energy demand for transport reduces, the overall transport demand may not. Quantifying this would require a more detailed assessment of the transport sector, similar to the analysis completed in the CEESA project [\[28\]](#page-64-0).

■ IEA 2010 ■ EU CPI 2030 ■ EU CPI 2050

Figure 13: Final energy consumption by sector in the reference scenarios for 2010, 2030, and 2050.

In relation to fuel, the total energy consumption is divided by fuel in Figure 14. Here it is evident that electricity consumption increases by approximately 20% from 2010 to 2030 and by approximately another 20% between 2030 and 2050. The largest reductions are in oil and gas, which suggests that conventional thermal combustion technologies (such as boilers) are replaced by electricity. Other interesting trends include a relatively large increase in solar thermal, biomass/waste, biofuels, and heat.

However, as outlined in **Figure 15** and earlier presented in section 1.2, the increase in heat consumption is entirely related to industry and not to the residential or services sectors. Once again this suggests that low-temperature district heating applications (which is primarily space heating) are not utilised, but instead individual oil and gas boilers are replaced with electricity. This demonstrates the importance of this study, which will focus specifically on the role of lowtemperature district heating in the future EU27 energy system.

■ IEA 2010 ■ EU CPI 2030 ■ EU CPI 2050

Figure 14: Final energy consumption by fuel in the reference scenarios for 2010, 2030, and 2050.

Energy Roadmap 2050 reference scenario customer groups for district heating and industrial CHP heat

Figure 15: Expected customer groups for district heating and industrial CHP heat in the *Energy Roadmap 2050* **reference scenario. Source: [40]. We have added the current deliveries of industrial CHP heat to industrial for 2005 and 2010 missing in the** *Energy Roadmap 2050* **impact assessment.**

2.3 MODELLING THE REFERENCE SCENARIOS IN ENERGYPLAN

After profiling the reference energy scenarios using the statistics from the IEA and the *Energy Roadmap 2050* project, these years then needed to be modelled in the EnergyPLAN tool. While doing so, a number of key assumptions were made in relation to the heating sector. Firstly and most significantly, profiling the growth in industrial CHP proved very difficult within the timeframe of this study. This was primarily due to the different methodologies and lack of data for industrial CHP fuel consumption, electricity production, onsite heat consumption, and heat sold. For example, the IEA energy balance does not outline the heat consumed onsite for industrial CHP, but instead this is documented within the final energy consumption of industry. In contrast, the data from the *Energy Roadmap 2050* documents all fuel consumed by industrial CHP together with nonindustrial CHP fuel consumption. Hence, these datasets had to be treated differently when profiling industrial CHP in the different years.

Also, in this study only district heating for the residential and services sectors is considered, so all fuel consumed for district heating relating to industry was removed from the district heating simulations and documented separately as an industry fuel consumption. Since two separate datasets were being used, both with limited data and different documentation methodologies, this process also required a number of assumptions relating to CHP efficiencies and fuel mixes.

In addition, no data was obtained during this study in relation to the electricity and heat sold by industrial CHP to the electric and district heating grids respectively. However, these statistics were available in the IEA energy balance for 2009 and hence, it was assumed that both the electricity produced and heat consumed would increase proportionally with the total final heat demand for industry outlined in **Figure 15**. As a result, industrial CHP produces approximately 10% of total electricity production in 2050.

Since industrial CHP increased, so did the heat sold to district heating grids by industry. However, not all of this heat is used by the residential and services sectors for low-temperature district heating applications since some of this heat is used by industry. It was not possible to establish from any statistics available what proportion of this heat is reused in industrial processes and hence, it was assumed that industry consumed same proportion of the total heat demand that industry made up. In other words, industry reused the same proportion of heat that it represented in **Figure 15**.

Another important assumption in the pre-study relates to centralised power plants (PP) and CHP. In the statistics, the fuel consumption recorded under CHP includes the fuel consumed by CHP plants operating in condensing power plant (PP) mode. As a result, the total efficiency for CHP is unrealistically low: for example, in 2009 the heat efficiency of CHP would be approximately 20% if all fuel documented under CHP was allocated as fuel consumed during CHP mode, whereas typically the heat efficiency of CHP is approximately 50%. This assumption was verified when the IEA energy balance for Denmark was analysed: here all fuel for power plants was recorded as CHP even though they often operate in PP mode only. Hence, to divide the fuels recorded under CHP into fuels for CHP in PP mode and fuels for CHP in CHP mode, 50% heat efficiency was assumed for CHP plants to estimate their total fuel consumption and the remainder was allocated to PP mode.

The final significant assumption relating to the modelling concerns the various plant efficiencies. Using the detailed breakdown in the IEA EU27 2009 energy balance, the efficiency of different units could be estimated: for example, the power plant efficiency was estimated at approximately 39%. In the 2030 and 2050 scenarios, the efficiency of PP is progressively increased by 3% and 6% respectively, to account for technological developments. A detailed breakdown of the data used and how it was interpreted is available in Annex III, while an overview of the key results is provided below.

2.4 VERIFICATION OF THE EU CPI SCENARIO

Based on these assumptions, the reference scenarios for 2010, 2030, and 2050, could be modelled in the EnergyPLAN tool for this HRE study. As displayed in **Figure 16**, the resulting simulations in EnergyPLAN were very similar for 2010: the primary energy supply (PES) is only 0.5% larger in the EP IEA scenario than in the IEA statistics. For 030, the EU CPI scenario is the same, but as displayed in **Figure 16**, for 2050 there is a concerning difference since the PES is 2.7% larger in the EP CPI scenario than in the EU CPI statistics. Hence, this warranted a further investigation.

Figure 16: Primary energy supply by fuel in the reference scenarios according to the statistics and the EnergyPLAN models.

From the hourly simulations in the EnergyPLAN tool for the EU CPI scenario, it is evident that the difference in 2050 is most likely caused by the critical excess electricity production (CEEP). CEEP is the amount of intermittent renewable electricity which is produced, but cannot be used for a variety of reasons such as grid stabilisation issues, supply exceeding demand, or a lack of flexibility (demand and supply side) within the energy system. In the 2050 EP CPI simulation, there is approximately 220 TWh of CEEP and no imports required. This outlines the benefits of Energy Plan's hourly modelling, since it indicates that the 2050 EU CPI scenario is not technically feasible unless 220 TWh of CEEP is created: this is approximately 5% of the total electricity production and 20% of total wind production.

Since renewable energy is not providing this electricity in the EP CPI scenario, it must be produced by other power plant units. Based on the assumed power plant efficiency in the analysis of 48.5%, the extra fuel required is approximately 455 TWh (see the 2050 dataset in Annex III). When the relatively small losses created due to pumped hydroelectric energy storage are also considered, then the total additional fuel required from power plants is approximately 484 TWh, which is very similar to the extra fuel demand recorded in the simulation of 510 TWh (see the 2050 dataset in Annex III). The remaining difference of 25 TWh is small enough to be caused by modelling differences. As a result, it seems that the hourly analysis in EnergyPLAN has uncovered some balancing issues in the electricity sector within the EU CPI scenario, so the EU27 energy system could require more flexibility if the intermittent renewable energy targets forecasted are to be realised.

In summary, the 2010 and 2030 EP CPI reference models are very similar to the statistics, with a maximum difference of approximately 0.5%. The 2050 EP CPI reference is different and after analysing the hourly operation of the system, the most likely cause of this is the additional 222 TWh of CEEP in the energy system. This CEEP is most likely due to large amount of non-adjustable base load combined with a large proportion of intermittent renewable energy production in the 2050 EU CPI scenario, but this could not be evaluated in detail in the timeframe of this study. More details about the EP CPI reference models are presented later, when they are compared to the district heating alternatives.

Finally, it is important to recognise the role of the EP CPI reference models created in this section. These simply act as the baseline to which the district heating scenarios are compared and so the district heating alternatives will not benefit from the CEEP differences outlined here. However, to ensure that this is the case, the new district heating alternatives in this pre-study will be modelled in both the historical 2010 energy system as well as the forecasted EU CPI scenarios for 2030 and 2050.

3. HRE SCENARIO FOR 2030 AND 2050

This section contains mainly the mapping of local conditions relevant for the expansion of district heating systems. It ends with the positions used as input to the EnergyPLAN model in the HRE scenario.

3.1 CURRENT DISTRICT HEATING SYSTEMS AND THEIR LOCATIONS

District heating systems can to be found all over Europe today, but levels of expansion differ significantly between EU27 Member States. While occupying dominating national heat market shares between 40-60% in some Scandinavian and Baltic Member States, district heating systems cover currently 12% of the European heat market for buildings in the residential and service sector. The corresponding market share for the industrial sector is about 9% [39]. The European district heating systems have networks containing distribution pipes with a total trench length of almost 200,000 km. Total revenues for heat sold are about €30 billion per year.

Since district heating mainly is an urban occurrence, due to the dependency on concentrated heat demands for feasible heat distribution, it is relevant to express levels of expansion in terms of urban heat market shares. As a European average, district heat constitute about 15% of current urban heat markets, while these fractions can reach as high as above 90% in some cities with mature district heating systems.

The spread and dissemination of European district heating technology can be seen in Figure 17, where each red dot marks a city with at least one district heating system in operation. The map is based on the current content in the Halmstad University District Heating and Cooling Database. Some current numbers from the database are summarised in Table 1. The database is not complete, since about 6000 district heating systems currently operate in Europe, of which 5400 are located within EU27. The deficit consists mainly of small systems in Germany, France and Poland.

This overview shows that it is possible to track NUTS3 regions which have existing experience of district heating systems in operation. An expansion of existing systems in these regions should be possible.

Table 1: Overview of numbers of district heating systems in Europe according to the current content of the Halmstad University DHC database.

Figure 17: District heating systems in Europe by city size and for cities having more than 5000 inhabitants. The map shows 2428 cities with 2779 systems. Source: Halmstad University DHC Database.

3.2 URBAN AREAS WITH HEAT DEMANDS

A key parameter in the project is to produce reliable assessments of low temperature heat demands for space heating and domestic hot water preparation in each NUTS3 region, since these heat demands constitute the main target for district heat distribution. Low temperature heat demands for space heating and domestic hot water preparation in residential and service sectors can be estimated for each NUTS3 region from average specific heat demands unique for each EU27 Member State, by subsequently relating these to total population counts within each NUTS3 region in respective Member State. To distinguish further the share of NUTS3 region residential and service sector heat demands that constitute a basis for district heat distribution, the project will exploit the features of the European CORINE 2000 GIS database to reveal the concentration of heat demands in urban areas. In this database, the European land area is defined according to different land cover types, and hence, it is possible to identify the proportion of urban areas within each NUTS3 region. An excerpt from this database is presented in Figure 18, showing the land cover types in Belgium. An overview of these proportions is presented in Annex IV in **Figure 38**.

Figure 18: The land cover types for Belgium as an example from the CORINE database.
In 2010, about 73% of all 502 million EU27 residents lived in urban areas, according to United Nations World Urbanization Prospects [37], indicating that the major part of residential and service sector low temperature heat demands are located in urban and city areas. This condition is in itself a strong argument for increased use of district heating in Europe. The forecast for the future indicate further that urban population fractions in EU27 will continue to increase and are estimated to be 75% in 2020 and 84% in 2050. Although, it should be noted that such aggregated estimates for the entire EU27 are to be considered as indicative only. The reason for this being that no harmonised definition of "urban area" currently is available, why Member States employ national definitions.

In the extension of this project, as the results will be disseminated to regional energy planners and local authorities, the features of the European CORINE 2000 GIS database will provide additional benefit. Information on land cover types and - especially - urban tissue distribution will be important when sub-penetrating the NUTS3 region level to out-line feasible distribution distances from available heat sources to existing and future district heating systems. By thus offering spatial guidance and geographical support when identifying and analysing European synergy opportunities and locations, the European CORINE 2000 GIS database constitute a corner-stone in the tool-package of the project. Specific urban areas are also available in the EU Urban Atlas program.

3.3 CURRENT EXCESS AND RENEWABLE HEAT STREAMS BY REGIONS

In the Ecoheatcool study [30], the future possible heat resources from combined heat & power, waste-to-energy, heat recycling of industrial excess heat, geothermal heat, and biomass was quantified on an aggregated level for 32 European countries. Those findings can be summarised as:

- **Approximately 17% of all residual heat from thermal power generation was recycled into** district heating systems or used directly for industrial demands
- Only 1% of the European biomass potential was used in district heating systems for urban heat demands
- **Approximately 7% of the calorific value of non-recycled waste was utilised as heat in district** heating systems
- **Dance 1** Only 3% of the direct available industrial excess heat was recycled into district heating systems
- Less than 0.001% of the geothermal resources suitable for direct use was utilised in district heating systems

Hence, there is no shortage of available heat resources in short and medium term. The Heat Roadmap Europe project aims at finding the locations for these future heat resources in order to facilitate an expansion of district heating in Europe.

To provide an alternative projection of future European heat supply in contrast to the generic model approach of the *Energy Roadmap 2050*, key parameters to identify in the Heat Roadmap Europe project will be the availability of alternative local heat resources and current excess heat streams. Thus using a bottom-up approach to include local conditions, the project aims at

establishing balances between demands (local heat demands in residential and service sectors) and sources (available local excess heat and renewables) in each NUTS3 region.

In combination with spatial information and geographical data for each locality and activity, the project aims at finding regions with exceptional good conditions for establishing new and expanding existing district heating systems. However, the idea of using GIS based spatial planning for finding district heating opportunities is not new. This approach was used in Sweden in 2003 in order to identify more aggregated heat loads for higher utilisation of industrial excess heat and combined heat and power [41]. A similar project in the UK gathered information about industrial heat loads [42]. The knowledge gained in that project is now available as interactive Internet maps for the CHP development [43] and the recently released National Heat Map [44]. A similar approach has also been used to give an overview of the European power plant infrastructure [45]. Hence, both information availabilities and presentation methods have made it possible to leave national energy balances in favour of local energy balances in future energy modelling.

Current excess and renewable heat streams are found mainly in thermal power generation, wasteto-energy incineration facilities, energy intensive industrial processes, geothermal fields, biomass availabilities, and annual solar irradiancies. An overview is given below with respect to available information sources about their locations with respect to NUTS3 regions.

3.3.1 COMBINED HEAT AND POWER

The possibility of combined heat and power is based on the need of thermal power generation in the European power balance. Recycling of heat from these plants will reduce their heat losses to the environment and substitute the current use of fossil fuels for space heating and hot water preparation in buildings. The locations of major thermal power stations using fuel combustion are presented in Annex IV in **Figure 40**. However, many of these installations already operate as combined heat and power plants.

3.3.2 WASTE-TO-ENERGY (WTE)

Waste incineration with energy recovery belongs to the fourth recovery step of the waste management hierarchy after prevention, re-use, and recycling in the Waste Framework Directive. The primary purpose with waste incineration is to avoid the environmental problems associated with landfills, the fifth and final step in the waste management hierarchy. As presented in **Figure 19**, the use of landfills is still very extensive for municipal solid waste in many EU Member States, since 92 million tonnes of municipal solid waste reached landfills during 2010 according to [46]. Also industrial waste streams are available for waste incineration. Less than half of the current waste supplied to the Swedish WTE plants is municipal solid waste.

order categories. Source: [46].

The locations of the 414 WTE plants currently operating within EU27 are presented in Annex IV in **Figure 41**. These plants receive about 65 million tonnes of waste per year, representing a calorific heat value of between 180 and 200 TWh. Currently, less than half of this calorific heat value is recovered as electricity and heat. During 2009, only 45 TWh heat was recycled from these European WTE plants according to the Eurostat heat balance.

Hence, more heat can be recycled from WTE plants, both from better utilisation of existing plants and establishment of new WTE plants.

3.3.3 INDUSTRIAL EXCESS HEAT

Industrial excess heat is normally recycled from five typical energy intensive industrial sub-sectors (chemical/petrochemical; iron and steel; non-ferrous metals; non-metallic minerals; and pulp and paper production) and oil refineries. Current recycling of industrial excess heat is difficult to discover since it is not reported in international energy statistics. The only bodies that report these heat streams are national district heating associations gathering own national statistics. An overview of these heat streams is presented in [39] for 2008: 0.3 TWh in France, 4.9 TWh in Sweden, 0.8 TWh in Denmark, 0.9 TWh in Germany, and 0.03 TWh in Italy. These volumes add up to 6.9 TWh for the whole EU27. But this estimation is probably an underestimation, since the situation in many other countries is unknown.

The locations for major industrial plants having excess heat are presented in Annex IV in Figure 42. Many of these plants are located near to urban areas giving the possibility of transferring the excess heat to heat consumers in district heating systems.

3.3.4 GEOTHERMAL HEAT

European Geothermal Energy Council (EGEC) reported recently [47] that 212 district heating systems in Europe use partly input from geothermal heat. According to Eurostat energy statistics, systems in Belgium, Denmark, Germany, Lithuania, Hungary, Austria, and Slovakia utilised 0.7 TWh during 2009. But systems also appear in France, Poland, Romania, and United Kingdom. The French systems used 0.8 TWh during 2009 according the national SNCU statistics. About thirty of them are situated in the Paris region. New major geothermal projects are implemented in Paris in France, Den Haag in Netherlands, and Vienna in Austria. EGEC foresees an expansion in many countries until 2014 according to Figure 20.

The geothermal conditions vary by location in Europe. The estimated temperatures at a depth of 2000 metres are presented by NUTS3 region in Annex IV in Figure 43. By joining population statistics with Figure 43, we can conclude that 4 % of the EU27 population live in NUTS3 regions with geothermal temperatures above 200ºC. The corresponding population proportions are 8 % for temperatures between 100 and 200ºC and 19% for temperatures between 60 and 100ºC. With an urban population of 73%, the proportion of the EU27 population that can be reached with a geothermal district heating systems is about 26%. These areas include major cities as Aalborg, Hamburg, Berlin, Munich, Frankfurt am Main, Hanover, Stuttgart, Groningen, Amsterdam, Rotterdam, Paris, Lyon, Strasbourg, Madrid, Barcelona, Budapest, and Bratislava.

3.3.5 BIOMASS

Biomass is currently used as original energy source in many European district heating systems. Fuel sources are mainly forestry and agricultural waste. According to the Eurostat heat balance for 2009, 67 TWh heat with biomass origin was supplied into district heating systems. Sweden had a lead position with an input of 24 TWh, while other significant supply appeared in Austria, Denmark, and Finland.

The long term demand of biomass for pulp & paper and other community resource demands will certainly be serious competitors for the overall biomass resource. However, in typical forestry areas, the availability of forestry wood waste can be sufficient for local district heating systems. A map-based overview of the European forestry areas is presented in Annex IV in **Figure 44**.

Figure 20: Number of geothermal district heating systems in Europe by country: Firstly as existing systems in 2011 and secondly as planned additions for 2014. Source: [47].

Solar district heating in Denmark

Figure 21: Overview of existing and planned solar collector fields connected to district heating systems in Denmark. Source: PlanEnergi.

3.3.6 SOLAR HEAT

Some solar thermal installations in conjunction to district heating systems appear in Denmark, Germany, Austria, and Sweden. Denmark had a lead position with a solar heat supply of 0.03 TWh during 2009 according to the Eurostat heat balance. Denmark has also seen an increasing interest in more installations according to Figure 21. This large Danish interest has given lower installations cost for large solar collector fields, giving the possibility for other countries to benefit from this trend.

The regional conditions for solar district heating depends on the location in Europe, since the global solar irradiation is about twice in Southern Europe compared to Northern Europe. The global irradiation for optimal angle by NUTS3 region is presented in Annex IV in Figure 45.

3.3.7 CONCLUSION WITH RESPECT TO AVAILABLE LOCAL HEAT RESOURCES

The main conclusion from this sub-section is that it should be possible to gather a future matrix of various local heat resources as columns and NUTS3 regions as rows from available information sources. Hereby, the local conditions for expansion of district heating can be estimated for each NUTS3 region with respect to heat sources.

3.4 POSSIBLE EXTENSIONS OF DISTRICT HEATING SYSTEMS

As presented in Figure 17, district heating is widely used in Europe today, although typically at moderate expansion levels. But, the wide presence of district heating systems today acts in favour of future extensions of existing systems, since it is a greater leap to introduce a completely new technology than it is to extend and expand an existing one. Technology know-how, component manufacturers, and business models are already present in many EU27 Member States, why possible extensions of current district heating systems are to be considered achievable from a pure practical point of view.

Additionally, from an economic point of view, it has been established in a recent work [38] that urban district heating can threefold at competitive and directly feasible conditions from current urban heat market shares of approximately 20% up to market shares of 60%! In this work, focusing on city areas in France, Germany, the Netherlands, and Belgium, the current average urban district heating heat market share (21%) was slightly higher than the EU27 average (15%), indicating that average European extension possibilities are greater still. The main study result from [38] is depicted in **Figure 22**, where it can be seen that beneficial extension possibilities up to 60% urban district heating heat market shares are equally present in all four studied Member States. This high level of district heating extension further corresponds to a marginal distribution capital costs of only 2.1 €/GJ (7.6 €/MWh).

One of several important aspects of the methodology in [38] is that it utilises local conditions, e.g. population and heat densities on sub-city levels, to produce the resulting estimates of specific investment costs for district heat distribution. By this methodology feature, high resolution modelling of feasible extensions or new establishments of district heating systems can be

performed for unique city districts, where the concentration of residential and service sector heat demands are taken into account for each assessment.

In conjunction with information from the Eurostat Urban Audit, the European CORINE 2000 GIS database (mentioned in section 3.2), and other relevant data sources, modelling of specific investment costs for district heating systems are made possible by this methodology.

Figure 22: Current marginal distribution capital cost levels and corresponding urban district heating heat market shares in four studied European countries in 2008 [38].

Why do Europeans prefer imported energy instead of heat recycled from the neighbour?

Figure 23: The simple socio-economic comparison between current import prices of fossil fuels and the heat distribution cost for connecting heat surpluses with heat demands. Current import price of crude oil has been set to 110 US\$ per barrel.

It is worthwhile to linger for a moment on the suggested average annual cost of 2.1 €/GJ (7.6 €/MWh) for feasible and competitive urban district heat distribution from this work. This specific investment cost represents a high level of European district heating extension and it can be compared to the current cost of heat from oil and natural gas. Given the current crude oil price for import to EU27 (April 2012) of 110 US\$/barrel, the corresponding heat costs for imported crude oil and natural gas are presented in Figure 23. These import costs are substituted, when heat are recycled into district heating systems. The annual average cost for heat distribution according to [38] is included as the third bar in Figure 23. Hence, this cost for connecting heat sources with heat demands is much lower than the substituted costs, giving a very profitable situation. When comparing the investment cost for heat distribution with the substituted costs, the socio-economic payback becomes only 2-3 years.

3.5 MOST PROMISING NUTS3 REGIONS (HOT SPOTS)

The main objective in the full Heat Roadmap Europe project will be to outline and map synergy opportunities within the European NUTS3 regions with respect to local heat resources and excess heat recovery in district heating systems. In essence, this objective will be pursued by combining data on current district heating systems and available heat resources with low temperature heat demands in residential and service sectors, hereby identifying European heat 'hot spots' for further analysis and evaluation. The key questions to be answered in this analysis are:

- Which European NUTS3 regions or agglomerations of NUTS3 regions have large volumes of low temperature heat demands in residential and service sectors?
- Which European NUTS3 regions or agglomerations of NUTS3 regions have large volumes of excess heat and local heat resources?
- At acceptable investment cost levels for district heating systems, how much excess heat and local heat resources in identified NUTS3 regions will be recoverable and possible to utilise?
- What is the magnitude of fossil fuel substitution by this excess heat recovery and local heat resource utilisation, and what are the resulting reductions in greenhouse gas emissions

Several methodology issues are present in this part of the project and initial pre-study work has been to define the concept of excess heat hot spots. A first step was to establish a straight forward ratio concept describing the fraction of existing excess heat in a NUTS3 region by the total volume of residential and service sectors low temperature heat demands in this NUTS3 region:

> E E L

In the planned full project, existing excess heat, including excess heat from large combustion installations, waste-to-energy facilities, and energy intensive industrial activities (including fuel supply and refineries), is thought to be divided by all low temperature heat demands for space and tap water heating in any given NUTS3 region to produce the excess heat ratio. Since, during the pre-study, not all collected input data from these activities were found reliable, the excess heat ratio map in Figure 24 is established on the basis of excess heat from energy intensive industrial activities only (including fuel supply and refineries). As an example still, this map shows that excess

heat ratios within the 1303 EU27 NUTS3 regions very well may escalate beyond one and above, indicating that existing volumes of industrial excess heat are larger than total volumes of low temperature heat demands in residential and service sectors.

Figure 24: NUTS3 regions with respect to industrial excess heat by heat demand ratios.

But, by this concept design no distinction is made regarding the actual magnitude of neither existing excess heat nor low temperature heat demands. Hence, the excess heat ratio may reach high values in sparsely populated areas where only moderate volumes of existing excess heat are present. Since the main purpose by using the excess heat ratio is to identify densely populated areas with existing and available excess heat, the pre-study work has subsequently continued by developing and analysing measures by which the excess heat ratio concept can be adjusted to take into account the population and heat density of each NUTS3 region.

NUTS data © EuroGeographics for the administrative boundaries

In this continued work, an excess heat hot spot has been defined as an area in which favourable conditions for the establishment of district heating may exist: adequate heat demands, low investment costs in infrastructure as well as sufficient heat potentials from waste incineration, thermal power plants, and industry. An excess heat hot spot is furthermore defined by its

neighbourhood and how well neighbouring areas are suitable as heat sources or sinks to be connected with each other. Hence, the clustering of similar NUTS3 regions as well as the distancedefined characteristics of large-scale district heat developments has to be included in an excess heat hot spot analysis.

A second analysis for further reference thus charts the density of urban areas as a general measure of agglomerated heat markets. Using the European CORINE 2000 GIS database data of the urban tissue, a continuous density map has been prepared using a Kernel function (which includes a weight proportional to the square root of distance) and the ground area of CORINE 2000 polygons weighted with a factor 1.5 for dense, continuous urban areas, and 0.5 for industrial areas compared to non-continuous urban areas. A search radius of 50 km has been applied, in which all weighted areas are summarised. The resulting map, see Figure 25, shows areas with a density above what has been assumed a suitable threshold. It becomes imminent how urban areas are interconnected in Europe.

Figure 25: Weighted Kernel density of urban areas by CORINE 2000 polygons. The high density areas are likely candidates for district heating regardless heat demand or supply.

In this pre-study, an analysis was also carried out as an experiment to chart areas in Europe which may be excess heat hot spots for activities aiming at the development of district heating. First a series of spatial statistics was carried out for the mapping of conditions for district heating on the NUTS3 region level mentioned above. Using the Anselin Local Moran's I (pronounced as the letter i) method, using heat demand density as a set of weighted features, statistically significant "hot spots", "cold spots", and spatial outliers were found. The analysis was performed for a fixed distance of 50 km, and resulted in the identification of areas where the surrounding NUTS3 regions have similar heat density values (either high values or low values). The resulting map can be seen in Figure 26. Some few interesting areas can be identified around the bigger cities of England, some highly populated areas of Germany, and in Paris and its neighbourhood, as well as Copenhagen. It shows that the method is highly sensitive to the size of NUTS3 regions.

Figure 26: A cluster analysis using the Anselin Local Moran's I method with a fixed distance of 50 km reveals areas with similarly high heat demand densities, which form clusters of statistical significance around a few high density areas.

A similar analysis to identify clusters of NUTS3 regions with similar heat demand densities is the Getis-Ord Gi* (pronounced G-i-star) method for excess heat hot spot analysis. This method may tell where features with either high or low values of heat demand cluster spatially, i.e. where there are similar conditions for the development of district heating. As statistically significant hot spots, those areas are identified where features will have a high value and be surrounded by other features with high values as well. The Getis-Ord Gi* tool returns a chart, Figure 27, which shows a more differentiated picture than by cluster analysis, in which also the neighbouring NUTS3 regions are included. The hot spots found are basically the same.

Figure 27: The Getis-Ord Gi* hot spot analysis reveals a similar but more differentiated picture of hot spots based on the heat demand density of NUTS3 regions.

Multi-criteria models offer a different type of analysis where a series of input criteria are based on scaled and graded measures, which individually describe suitability. The criteria are weighted into

a composite suitability map, which then contains the weighted criteria. This way a series of parameters can be included in a suitability map, which otherwise are difficult to compare in a quantitative manner.

It was assumed that for the successful installation of a district heating system, four conditions must be met to a certain degree: sufficient heat demand density; sufficient heat supply including excess heat, geothermal or solar heat; as well as an adequate agglomeration of similar areas in clusters.

The resulting map, see Figure 28, is highly sensitive to the chosen scaling and weighting, hence subject to debate and further analysis. Multi-criteria modelling allows for highly complex representations of the input parameters to such analysis and is a powerful tool for the exploration of likely district heating areas. It may be combined with economic and energy system data for increased credibility.

Figure 28: A sample of a hot spot analysis by means of multi-criteria modelling, which includes urban tissue, heat density, Getis-Ord Gi* "hot spot" z-score, industrial excess heat, geothermal potential as well as solar heating potential.

To conclude, the pre-study work has considered several methods by which to identify and evaluate NUTS3 regions as excess heat hot spots for future district heating developments. Although the prestudy was not able to collect all input data to complete such analysis with the required degree of detail and credibility at this stage, the work has resulted in an exploration of methods to be used in the subsequent full excess heat hot spot analysis. In short, the methodological sequence to identify beneficial NUTS3 regions where heat synergy opportunities are present and favourable, consist of the following steps:

- Identification of NUTS3 region excess heat hot spots by use of excess heat ratios, weighted by e.g. population and heat densities and supported by multi-criteria modelling and CORINE 2000 urban tissue information
- In-depth analyses of identified NUTS3 excess heat hot spot regions to locate low temperature heat demand concentrations and assess distances to available excess heat sources and local heat resources
- Estimations of investment costs for extensions of present and/or establishment of new district heating systems that will utilise available excess heat sources and local heat resources for heat distribution to residential and service sector buildings
- **Quantification of possible excess heat recovery and local heat resource utilisation by NUTS3** regions, and magnitude estimates of substituted fossil fuels currently used for heating purposes per NUTS3 region.

3.6 THE MAIN ALTERATION OF THE HRE SCENARIO COMPARED TO THE EU CPI **SCENARIO**

The amounts of heat delivered for end use in the two scenarios analysed are presented in Figure 29. The main alteration in the HRE scenario is the amounts of heat delivered to buildings, since the deliveries to industrial purposes is the same. The assumed market shares for district heating were set to 30% in 2030 and 50% in 2050. The assumptions were based on indications from the mapping part previously presented in this section.

Figure 29: Estimated heat sales in the Heat Roadmap Europe scenario compared to the EU CPI scenario.

4. ENERGY SYSTEM ANALYSIS OF THE HRE SCENARIO

The district heating alternatives relate to the residential and services sectors only, which means they require the replacement of conventional boilers with district heating. Based on the analysis in section 3, two district heating alternatives were considered: one where district heating represents 30% of the heat demand in the residential and services sectors and another where is represents 50%. Both of these scenarios were modelled in the 2010 reference scenario, while in the forecasted EU CPI scenarios, it was assumed that there would be 30% district heating in 2030 and 50% in 2050.

Since district heating will replace urban boilers, it was assumed that the district heating would replace oil, gas, and coal boilers based on the proportion of the heat demand they served in the IEA 2010 reference. Biomass boilers were not replaced since they are typically outside the reach of district heating and since biomass replaced by district heating may again be used to replace oil and natural gas in other buildings. Moreover no changes have been made to electric heating.

The production of district heating will come partly from existing power and CHP plants assuming an average efficiency in the present situation of 32% electric and 52% thermal output and partly from new Combined Cycle CHP plants with an efficiency of 47% electric and 44% thermal output. The CC plants will burn natural gas equivalent to the oil and gas saved in the individual boilers being replaced.

The CHP and boiler capacities are increased in the alternatives until the system operates in a similar way to the operation to the current system. In numerical terms, this means the CHP capacity was adjusted until the peak boilers provided approximately 9-13% of the heat demand. Note that in the 50% district heating alternative, this means that a small share of large-scale heat pumps has to be added in order to be able to balance the electricity supply. The boiler capacity was assumed to be 20% larger than the maximum heat demand and the thermal storage capacity was assumed to equal eight days of average district heating consumption.

Moreover the new CHP plants will be able to replace future power stations. The systems have been adjusted so that the reserve power capacity in all systems will be 30% additional to the peak production on the power plants.

Using the hourly EnergyPLAN reference models (and not the data from the statistics) discussed in section 2, the district heating alternatives outlined in section 3, and these assumptions, the implications of district heating are quantified here in terms of PES and carbon dioxide emissions.

4.1 DISTRICT HEATING IN 2010

In this section, the implications of district heating are quantified for the IEA 2010 reference scenario with 30% and 50% district heating in the residential and service sectors. The benefits are illustrated in two steps. Step 1 shows the potential energy efficiency improvements connected to CHP while step 2 shows the additional potential of increasing the use of industrial waste heat, waste incineration, geothermal and solar thermal resources. The idea of these assumptions is to

illustrate the potential energy efficiency improvements using the same amounts of biomass as well as oil plus natural gas.

The results for step 1 are illustrated in Figure 30. As can be seen the expansion of district heating and CHP will be able to decrease the fuel consumption for heating the buildings in Europe substantially. Today 12% is district heating consuming a little less than 250 TWh/year of fuels while the remaining individual boilers consume around 3,100 TWh/year. The total of approximately 3,350 TWh/year will decrease by 40% to around 2,000 TWh/year. The fuel used by the boilers to be replaced by district heating if expanded to 50%, is today approximately 1,550 TWh/year of coal, oil and natural gas. In a system with District heating and CHP the fuel consumption of the total system will be decreased by 1,300 TWh/year meaning that the same heating can be provided with a use of only net 250 TWh/year of fuel. The net use of 250 TWh/year requires the following changes to the system: Fuel for CHP is increased in existing systems by 1,360 TWh/year and in new CC-CHP systems by 1,560 TWh/year while the electricity from the CHP plants replace production on the power plants of 2,670 TWh/year. In the power and CHP plants the burning of natural gas is increased by net 1,460 TWh/year equivalents to the oil and gas saved in the individual boilers while the net influence on the use of coal is a decrease of 1,210 TWh/year.

In total the expansion of district heating will decrease the European primary energy consumption by 7%, fossil fuels by 9% and the carbon dioxide emission by 13% supplying exactly the same energy services as illustrated in **Figure 31**.

EU 27 Primary Energy Supply for Heating Buildings in 2010 at **Different DH Penetrations**

Figure 30: Primary energy supply and carbon dioxide emissions from hot water and the heating of buildings in the 2010 EU27 energy system at present and if district heating and CHP were expanded to 30% or 50%.

EU27 Primary Energy Supply & CO2 in 2010 at Different DH **Penetrations**

Figure 31: Primary energy supply and carbon dioxide emissions for the entire EU27 energy system in 2010 at present and if district heating and CHP were expanded to 30% or 50%.

Figure 32: Primary energy supply and carbon dioxide emissions from hot water and the heating of buildings in the 2010 EU27 energy system at present and if district heating and CHP were expanded to 30% or 50%, in combination with the expansion of industrial waste heat, waste incineration, geothermal, and solar thermal heat for district heating.

EU27 Primary Energy Supply & CO2 in 2010 at Different DH **Penetrations & Utilising RE Resources**

Figure 33: Primary energy supply and carbon dioxide emissions for the entire EU27 energy system in 2010 at present and if district heating and CHP were expanded to 30% or 50%, , in combination with the expansion of industrial waste heat, waste incineration, geothermal, and solar thermal heat for district heating.

Step 2 illustrates further benefits of district heating by implementing the following investments:

- Increase waste incineration from now 105 to 1198 TWh/year in 2050
- Increasing the use of geothermal heat from now approximately 2 to 111 TWh/year in 2050
- Increase the use of solar thermal heat from now 0.04 to 55.5 TWh/year in 2050
- Increase the use of industrial excess heat from 53 to 219 TWh/year in 2050

The results are shown in **Figure 32**.

Since these investments represent the replacement of fuels rather than efficiency improvements, such benefits will only slightly decrease the primary energy consumption further. However the share of fossil fuels as well as the carbon dioxide emissions will be reduced substantially. In total (both step 1 and 2) the total fossil fuels in Europe are reduced by 13% and the carbon dioxide emissions by 17% as illustrated in Figure 33.

4.2 DISTRICT HEATING IN 2030 AND 2050

Using the same assumptions as the 2010 analysis, district heating was also simulated in the forecasted EU CPI scenarios for 2030 and 2050. As described in section 2.4, the name of the EU CPI reference model created in the EnergyPLAN tool is the EP CPI scenario. Hence, this is the reference which the district heating alternatives are compared against in this section. The 30% DH alternative is implemented in 2030 and the 50% DH alternative in 2050.

4.2.1 PRIMARY ENERGY SUPPLY AND CARBON DIOXIDE EMISSIONS

Here, step 1 was not implemented separately since the 2010 analysis has already demonstrated the benefits of energy efficiency and renewable resources individually. Instead both steps have been implemented together.

The results of such analyses are illustrated in Figure 34 and Figure 35 with regard to primary energy supply and carbon dioxide emissions representing the heating of all buildings in Europe. In the diagrams the expansion of district heating is compared to the CPI reference. As can be seen the fuel consumption for heating is expected to decrease in the CPI reference mainly due to energy savings. If district heating is expanded at the same time then substantial fuel savings and carbon dioxide reductions will be achieved. The variety of new heat sources used to meet these new district heating demands is outlined in Figure 36, where it is clear that an expansion in district can also enable a significant expansion in renewable heat production.

Primary Energy Supply & CO2 for Heating Buildings from 2010 to

Figure 34: Primary energy supply and carbon dioxide emissions from hot water and the heating of buildings in the 2010, 2030, and 2050 EU27 energy system under a business-as-usual scenario and if district heating and CHP is expanded to 30% in 2030 and to 50% in 2050, in combination with the expansion of industrial waste heat, waste incineration, geothermal, and solar thermal heat for district heating.

Figure 35: Primary energy supply and carbon dioxide emissions for the entire EU27 energy system in 2010, 2030, and 2050 under a business-as-usual scenario and if district heating and CHP were expanded to 30% in 2030 and 50% in 2050, in combination with the expansion of industrial waste heat, waste incineration, geothermal, and solar thermal heat for district heating.

District Heating Production for Heating Buildings from 2010 to 2050

Figure 36: District heating production for the entire EU27 energy system in 2010, 2030, and 2050 under a business-as-usual scenario and if district heating and CHP were expanded to 30% in 2030 and 50% in 2050, in combination with the expansion of industrial excess heat, waste incineration, geothermal, and solar thermal heat for district heating.

4.2.2 ENERGY SYSTEM COSTS

Using the EP CPI models simulated in EnergyPLAN, it is also possible to estimate the annual costs of the energy systems in 2010, 2030, and 2050. The fuel prices in the *Energy Roadmap 2050* report were also used here, which are illustrated in Table 2 while all of the assumed technology costs are outlined in Annex V. The socio-economic comparison in HRE does not include externalities i.e. environmental and health costs. It includes changes in the investments and in operation and maintenance costs while also taking into account the lifetime of the different technologies in the energy systems. The costs of carbon dioxide quotas are not included. In HRE a real interest rate of 3% is used excluding inflation for the evaluation of the socio-economic consequences.

Table 2: Fuel prices assumed for each year [\[29\]](#page-64-0).

The annual costs for the heating sector were calculated for the IEA 2010, EP CPI 2030, and EP CPI 2050 reference scenarios along with the Heat Roadmap Europe district heating alternatives with 30% district heating in 2030 (i.e. HRE RE 2030) and with 50% district heating in 2050 (i.e. HRE RE 2050).

The results indicate that the annual cost of the EU heating sector was approximately €130 billion in 2009, which under the EP CPI business-as-usual scenario will increase to approximately €140 billion in 2030 and subsequently reduce slightly to €136 billion in 2050, primarily due to increased energy savings in buildings. At present the most significant component of this is fuel, which demonstrates the importance of energy efficiency technologies such as district heating.

Annual EU27 Costs for Heating Buildings from 2010 to 2050

Figure 37: Socio-economic costs for the entire EU27 energy system in 2010, 2030, and 2050 under a business-as-usual scenario and if district heating and CHP were expanded to 30% in 2030 and 50% in 2050, in combination with the expansion of industrial waste heat, waste incineration, geothermal, and solar thermal heat for district heating.

In contrast, as illustrated in **Figure 37**, with the implementation of the district heating expansion scenario, the heating sector costs will decrease to €128 billion/year in 2030 and continue to decrease to €122 billion/year in 2050. Therefore, the total costs of heating buildings in Europe will be approximately €14 billion/year lower in 2050 if the district heating alternatives presented in this pre-study are implemented. Even more significant though is the fact that implementing the district heating alternative will transfer money from importing fossil fuels to investments in district heating pipelines, CHP plants, geothermal, solar thermal, industrial waste heat, and waste incineration. This will result in the creation of jobs within the EU which otherwise would not be created. A rough estimate of the number of jobs that will be created is presented in the next section.

4.2.3 JOB CREATION IN THE HRE 2050 RE SCENARIO

When fully implemented in 2050, the increase to 50% district heating decreases the annual heating sector costs in Europe by approximately €14 billion. However in order to reach this point, a number of additional investments have to be made. These investments are listed in Table 3 below.

Table 3: Additional investments required in the HRE 2050 RE scenario compared to the reference 2050 EP CPI scenario over the 38 year period between 2013 and 2050.

The additional investments in district heating, new CC-CHP, heat pumps, solar, waste and geothermal sum up to a total of €570 billion. However, some investments will also decrease, i.e. all the re-investments in individual boilers and savings in new power plants which can be replaced by the new CC-CHP plants. The saved investment in individual boilers here has been calculated as the difference between individual boilers and individual district heating units.

As a basis for the cost calculations a new natural gas boiler of €4000 is replaced with a district heating unit of €2000 representing a heat demand of 15 MWh/year. Consequently the saved costs are calculated as approximately €2000 per 15 MWh/year moved from individual boilers to district heating. Savings in power plants has been calculated on the basis of a 30% reserve capacity in all scenarios.

As can be seen in Table 3, the total net additional investments add up to €406 billion in the 38 year period from 2013 to 2050. However since the lifetime exceeds for some of the investments, reinvestments has to be partially included as listed in the next column (Adjusted).

Including re-investments the net additional investment sums up to 518 billion in the 38 year period from 2013 to 2050 equal to around 13.6 billion a year in average. A first rough estimate of job creation has been made on the following assumptions:

- 20% of all investments are import which will create no jobs in Europe
- \blacksquare The rest of the additional investment cost will create 20 man-years per million euros

Under these assumptions the additional jobs can be calculated as 8-9 million man-years in total during the period from 2013 to 2050 or approximately 220,000 jobs. It must however be emphasized that 220,000 jobs is a rough estimate of the minimum of work places being created. The 220,000 jobs arise from purely the additional investments. The real number will be higher due to the following:

 \blacksquare Multiplier effects of the jobs created are not included

Additional jobs are not included due to that the energy costs of Europe will decrease and consequently European industry will become more competitive

Additional jobs from industrial innovation due to the investments in new energy technologies are not included

5. CONCLUSIONS

The early results in this pre-study demonstrate the potentially significant role that district heating can play in the future EU27 energy system. These results have been reached using a number of unfavourable assumptions. For example, the future energy system used for the analysis is not optimised for district heating: There is a high amount of base load nuclear and industrial CHP along with a lot of intermittent renewable energy. Hence, based on positive implications identified in this initial pre-study, the results can be considered relatively robust.

The major findings from this Heat Roadmap Europe pre-study exploring the future district heating possibilities can be summarised by the following eight conclusions:

- **The first conclusion is that more district heating in Europe will reduce the energy system** costs considerably since local heat recycling and renewable energy use will reduce expensive energy imports, while also increasing the efficiency of both the electricity and heat sectors. The pre-study calculations indicate that the overall annual cost reduction in the heating sector will be about €14 billion by 2050, if more district heating is implemented compared to the Energy Roadmap 2050 CPI reference. This corresponds to a relative cost decrease of 11%. At the current energy import prices, the direct socioeconomic payback is estimated to be two to three years for heat distribution pipes put into the ground giving more recycled heat. In addition, there is a balance-of-payment benefit that has not been quantified in this study.
- The second conclusion follows from the first conclusion: Since fossil fuels are substituted with local resources, the reduced primary energy supply from fossil fuels will also give considerably reduced emissions of carbon dioxide for all heat demands served by district heating systems. The reduced energy import will also increase the future security of supply and give more positive balances of foreign exchange.
- \blacksquare The third conclusion is that more district heating will generate local labour since intensive investments will replace expensive imports of fossil fuels to Europe. An estimate indicates that approximately 8-9 million man-years will be created in Europe during the 40 year period, due to investments in heat recycling, renewable energy supply, and extended and new heat grids. This represents a rough estimate of the minimum number of jobs and should be quantified more thoroughly in the future.
- \blacksquare The fourth conclusion concerns the future European electricity supply system. With a high proportion of variable renewable electricity supply, a smart energy system is crucial so that all sectors can contribute to a balance between supply and demand. One of the proven flexible partners is district heating systems which can provide balancing power in both directions. For example, electric boilers and large heat pumps together with thermal storages can absorb critical excess electricity generation, while combined heat and power plants can actively support the electricity supply system during power deficits. Therefore, district heating can enable higher penetrations of intermittent electricity production on the European electricity grid.

continued on the next page

- \blacksquare The fifth conclusion is about the importance of communicating the local possibilities for district heating to urban and regional planners. The planned continuation of this pre-study should contain a creation of an interactive internet tool providing the local conditions for district heating for each administrative region in the EU27.
- \blacksquare The sixth conclusion is about the methodology applied in this pre-study, which is a combination of energy modelling and mapping of the local conditions using a high geographical resolution: The high resolution also recognises future possibilities for local activities managed by local organisations. This methodology is crucial for district heating analysis since the potential for expansion is dependent on local heat resources and demands. Therefore, this methodology should be elaborated in the planned continuation of this pre-study, while also making a tighter connection between the energy modelling part and the local mapping part.
- \blacksquare The seventh conclusion concerns traditional energy modelling based on national energy balances. Their low geographical resolution tends to exclude specific local possibilities. Hereby, they favour generic possibilities available everywhere such as electric and gas alternatives associated to major international energy companies. Hence, these traditional energy tools may only capture some of the alternatives available. Traditional energy tools also tend to work with a low time resolution in their analyses. However, it is important to use a high time resolution to capture the daily variations in the energy system in order to verify the true variability in energy demand and supply, especially in a future energy system with high penetrations of intermittent resources.
- \blacksquare The eighth and final conclusion refers to the availability of data within the current IEA and future Energy Roadmap 2050 reports. At present, there is a lack of detailed data for the heat sector in these energy balances. For example, all fuels consumed by CHP plants are recorded together and not subdivided by condensing mode, extraction mode, and backpressure mode. In the future, it would be beneficial if the details within these energy balances could be increased for the heat sector. In line with this, we would like to thank the European Commission for providing all of the data possible during the limited timeframe of this study.

This pre-study has demonstrated the potential increase in energy efficiency and renewable energy consumption associated with district heating, so a full research study is recommended to further elaborate on the methodology applied in this pre-study.

6. REFERENCES

- [1] International Energy Agency. Energy Balances of OECD Countries. International Energy Agency, 2011. Available from[: http://www.iea.org/.](http://www.iea.org/)
- [2] International Energy Agency. Energy Balances of Non-OECD Countries. International Energy Agency, 2011. Available from[: http://www.iea.org/.](http://www.iea.org/)
- [3] Lund H, Munster E. Modelling of energy systems with a high percentage of CHP and wind power. Renewable Energy 2003;28(14):2179-2193.
- [4] Aalborg University. EnergyPLAN: Advanced Energy System Analysis Computer Model. Available from[: http://www.energyplan.eu/](http://www.energyplan.eu/) [accessed 14th September 2010].
- [5] Lund H. Large-scale integration of wind power into different energy systems. Energy 2005;30(13):2402-2412.
- [6] Lund H. Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply. Renewable Energy 2006;31(4):503-515.
- [7] Lund H, Münster E. Management of surplus electricity-production from a fluctuating renewable-energy source. Applied Energy 2003;76(1-3):65-74.
- [8] Lund H, Kempton W. Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy 2008;36(9):3578-3587.
- [9] Lund H, Andersen AN. Optimal designs of small CHP plants in a market with fluctuating electricity prices. Energy Conversion and Management 2005;46(6):893-904.
- [10] Lund H, Munster E. Integrated energy systems and local energy markets. Energy Policy 2006;34(10):1152-1160.
- [11] Lund H. Renewable energy strategies for sustainable development. Energy 2007;32(6):912- 919.
- [12] Münster M, Lund H. Use of waste for heat, electricity and transport--Challenges when performing energy system analysis. Energy 2009;34(5):636-644.
- [13] Mathiesen BV. Fuel cells and electrolysers in future energy systems. PhD Thesis, Department of Development and Planning, Aalborg University, Aalborg, Denmark, 2008. Available from[: http://people.plan.aau.dk/~bvm/FinalWebVersion3.pdf.](http://people.plan.aau.dk/~bvm/FinalWebVersion3.pdf)
- [14] Mathiesen BV, Lund H. Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources. IET Renewable Power Generation 2009;3(2):190-204.
- [15] Chen M, Lund H, Rosendahl LA, Condra TJ. Energy efficiency analysis and impact evaluation of the applications of thermoelectric power cycle to today's CHP systems. Applied Energy 2009;In Press, Corrected Proof.
- [16] Blarke MB, Lund H. The effectiveness of storage and relocation options in renewable energy systems. Renewable Energy 2008;33(7):1499-1507.
- [17] Lund H, Salgi G. The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Conversion and Management 2009;50(5):1172-1179.
- [18] Lund H, Salgi G, Elmegaard B, Andersen AN. Optimal operation strategies of compressed air energy storage (CAES) on electricity spot markets with fluctuating prices. Applied Thermal Engineering 2009;29(5-6):799-806.
- [19] Lund H, Clark WW. Management of fluctuations in wind power and CHP comparing two possible Danish strategies. Energy 2002;27(5):471-483.
- [20] DESIRE. Dissemination Strategy on Electricity Balancing for Large Scale Integration of Renewable Energy. Available from:<http://www.project-desire.org/> [accessed 18th January 2010].
- [21] Lund H, Duic N, Krajacic G, da Graça Carvalho M. Two energy system analysis models: A comparison of methodologies and results. Energy 2007;32(6):948-954.
- [22] Connolly D, Lund H, Mathiesen BV, Leahy M. Ireland's pathway towards a 100% renewable energy-system: The first step. In: Proceedings of the 5th Dubrovnik Conference for Sustainable Development of Energy, Water and Environment Systems. Dubrovnik, Croatia, 29 September - 3 October, 2009.
- [23] Lund H, Mathiesen BV. Energy system analysis of 100% renewable energy systems--The case of Denmark in years 2030 and 2050. Energy 2009;34(5):524-531.
- [24] Mathiesen BV. 100% Renewable Energy Systems in Project Future Climate the Case of Denmark. In: Proceedings of the 5th Dubrovnik Conference for Sustainable Development of Energy, Water and Environment Systems. Dubrovnik, Croatia, 29th September - 3rd October, 2009.
- [25] Lund H. Renewable Energy Systems: The Choice and Modeling of 100% Renewable Solutions. Academic Press, Elsevier, Burlington, Massachusetts, USA, 2010. ISBN: 978-0-12- 375028-0.
- [26] Connolly D, Lund H, Mathiesen BV, Leahy M. A review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy 2010;87(4):1059-1082.
- [27] European Commission. Energy Roadmap 2050. European Commission, 2011. Available from: [http://eur](http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52011PC0885:EN:NOT)[lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52011PC0885:EN:NOT.](http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52011PC0885:EN:NOT)
- [28] Lund H, Mathiesen BV, Hvelplund FK, Østergaard PA, Christensen P, Connolly D, Schaltz E, Pillay JR, Nielsen MP, Felby C, Bentsen NS, Meyer NI, Tonini D, Astrup T, Heussen K, Morthorst PE, Andersen FM, M. M, Hansen L-LP, Wenzel H, Hamelin L, Munksgaard J, Karnøe P, Lind M. Coherent Energy and Environmental System Analysis. Aalborg University, 2011. Available from: [http://www.ceesa.plan.aau.dk.](http://www.ceesa.plan.aau.dk/)
- [29] Danish Energy Agency. Forudsætninger for samfundsøkonomiske analyser på energiområdet (Assumptions for socio-economic analysis on energy). Danish Energy Agency, 2011. Available from[: http://www.ens.dk.](http://www.ens.dk/)
- [30] E3MLab of the Institute of Communication and Computer Systems at the National Technical University of Athens. PRIMES Model: Version used for the 2010 scenarios for the European Commission including new sub-models. European Commission, 2011. Available from: [http://ec.europa.eu/energy/energy2020/roadmap/doc/sec_2011_1569_2_prime_model.p](http://ec.europa.eu/energy/energy2020/roadmap/doc/sec_2011_1569_2_prime_model.pdf) [df.](http://ec.europa.eu/energy/energy2020/roadmap/doc/sec_2011_1569_2_prime_model.pdf)
- [31] National Technical University of Athens. Energy Economics Environment Modelling Laboratory Research and Policy Analysis. Available from:<http://www.e3mlab.ntua.gr/> [accessed 26th April 2009].
- [32] Capros P, Mantzos L, Papandreou V, Tasios N. Energy and Transport Outlook to 2030 Update 2007. European Communities, 2008. Available from: http://www.e3mlab.ntua.gr/reports/energy_transport_trends_2030_update_2007_en.pdf .
- [33] Commission of European Communities. Impact Assessment: Package of Implementation measures for the EU's objectives on climate change and renewable energy for 2020. Commission of European Communities, 2008. Available from: [http://ec.europa.eu/energy/climate_actions/doc/2008_res_ia_en.pdf.](http://ec.europa.eu/energy/climate_actions/doc/2008_res_ia_en.pdf)
- [34] Bulteel P, Belmans R, Dolben G, Garcia Madruga M, Kallstrand B, Lace I, Livrieri A, Nahon C, Virkkala Nekhaev E, Papageorgi A, Saraiva F, Stridbaek U, Theis K, Van Vliet E, Wunnerlich M. The Role of Electricity: A New Path to Secure, Competitive Energy in a Carbon-Constrained World. eurelectric, 2007. Available from: [http://www2.eurelectric.org/Content/Default.asp?PageID=730.](http://www2.eurelectric.org/Content/Default.asp?PageID=730)
- [35] Capros P, Kouvaritakis N, Mantzos L. Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change: Top-down Analysis of Greenhouse Gas Emission Reduction Possibilities in the EU. National Technical University of Athens, 2001. Available from: [http://www.e3mlab.ntua.gr/reports/Topdown.pdf.](http://www.e3mlab.ntua.gr/reports/Topdown.pdf)
- [36] Mathiesen BV, Lund H, Karlsson K. The IDA Climate Plan 2050. The Danish Society of Engineers and Aalborg University, 2009. Available from: [http://ida.dk/News/Dagsordener/Klima/Klimaplan2050/Sider/Klimaplan2050.aspx.](http://ida.dk/News/Dagsordener/Klima/Klimaplan2050/Sider/Klimaplan2050.aspx)
- [37] United Nations. World Urbanization Prospects: The 2009 Revision. Data in digital form (POP/ DB/WUP/Rev.2009). Department of economic and social affairs, Population division, New York, NY, USA; 2010. Available at:<http://esa.un.org/unpd/wup/index.htm> (2011-09- 20)]
- [38] Persson U, Werner S, Heat distribution and the future competitiveness of district heating. Applied Energy 88(2011), 568-576.
- [39] Persson U, Werner S, District heating in sequential energy supply. Applied Energy 95(2012), 123-131.
- [40] European Commission, Impact Assessment accompanying the communication Energy Roadmap 2050. SEC (2011)1565 part 1 and 2, December 15, 2011.
- [41] Sundlöf C, Svenska Värmenät Potential för utökat värmeunderlag för kraftvärme och spillvärme genom sammanbyggand av fjärrvärmenät (Swedish Heat Grids - Potential for more aggregated heat loads for higher utilisation of combined heat and power and industrial excess heat by extended heat grids).The Swedish District Heating Association, FVF-report 031212, March 2003. Report and maps available at [http://www.svenskfjarrvarme.se/Rapporter--](http://www.svenskfjarrvarme.se/Rapporter--Dokument/Rapporter_och_Dokument/Ovriga-rapporter/Energitillforsel-och-Produktion/Svenska-Varmenat/) [Dokument/Rapporter_och_Dokument/Ovriga-rapporter/Energitillforsel-och-](http://www.svenskfjarrvarme.se/Rapporter--Dokument/Rapporter_och_Dokument/Ovriga-rapporter/Energitillforsel-och-Produktion/Svenska-Varmenat/)[Produktion/Svenska-Varmenat/](http://www.svenskfjarrvarme.se/Rapporter--Dokument/Rapporter_och_Dokument/Ovriga-rapporter/Energitillforsel-och-Produktion/Svenska-Varmenat/)
- [42] McKenna RC, Norman JB, Spatial modelling of industrial heat loads and recovery potentials in the UK. Energy Policy 38(2010), 5878-5891.
- [43] DECC, UK CHP Development Map. Available a[t http://chp.decc.gov.uk/developmentmap/](http://chp.decc.gov.uk/developmentmap/)
- [44] DECC, UK National Heat Map. Launched on March 28, 2012 and available at <http://ceo.decc.gov.uk/nationalheatmap/>
- [45] Kjärstad J, Johnsson F, The European power plant infrastructure—Presentation of the Chalmers energy infrastructure database with applications. Energy Policy 35(2007):7, 3643-3664.
- [46] Eurostat, Landfill still accounted for nearly 40% of municipal waste treated in the EU27 in 2010. News release 48/2012 of March 27, 2012.
- [47] EGEC, Deep Geothermal Market Report. December 2011. Available at <http://egec.info/egec-deep-geothermal-market-report-2011/>
- [48] Rambøll & Aalborg University, Varmeplan Danmark. Dansk Fjernvarmes F&U konto, project no 2008-01. October 2008.
- [49] Rambøll & Aalborg University, Varmeplan Danmark 2010. Dansk Fjernvarmes F&U konto, project no 2010-02. September 2010.
- [50] Stadtwerke München, Fernwärmeversorgung bis 2040 zu 100% aus erneuerbaren Energien. Euroheat & Power 41(2012):4, 32-34.
- [51] European Commission, A Roadmap for moving to a competitive low carbon economy in 2050. European Commission, 2011. Communication COM(2011)112, March 8, 2011
- [52] Bertoldi P, Atanasiu B. Electricity Consumption and Efficiency Trends in European Union: Status Report 2009. Joint Research Centre, Institute for Energy, European Communities, 2009. Available from:

[http://re.jrc.ec.europa.eu/energyefficiency/pdf/EnEff_Report_2009.pdf.](http://re.jrc.ec.europa.eu/energyefficiency/pdf/EnEff_Report_2009.pdf)

7. ANNEX I: REVIEW OF EXISTING ENERGY STRATEGIES

In the following pages is seen a description of a selection of the most recent energy scenarios.

 2 This is from the Impact Assessment document (report reference no. SEC(2011) 288) accompanying the report *A Roadmap for moving to a competitive low carbon economy in 2050*, but though they are separate documents, they are referring to the same scenarios and are all published by the European Commission in 2011: [http://ec.europa.eu/governance/impact/ia_carried_out/docs/ia_2011/sec_2011_0288_en.pdf.](http://ec.europa.eu/governance/impact/ia_carried_out/docs/ia_2011/sec_2011_0288_en.pdf)

The report mentions that an urgent implementation challenge is to make a large scale fuel shift possible. In terms of the building sector it suggest more heat pumps both for individual and in district heating applications, and district heating based on industry waste heat, biomass or alternatively geothermal heat.

How district heating is mentioned:

The report addresses the implications of electrification in buildings and transport on the final energy demand. However it does not provide a detailed analysis on the issues. The report does mention district heating as part of the system and discuss the entire emission scope in general, but focuses particularly at the power sector.

Out of scope is i.e. detailed trade-offs in the decarbonisation of building heat via electrification, biomass/biogas, zero carbon district heating schemes or other options.

District heating with large scale heat pumps is assumed where building density is high. Alternatives are biomass or biogas fired CHP or district heating plants, or biogas fired boilers in homes.

Link to report: http://www.roadmap2050.eu/attachments/files/Volume1_ExecutiveSummary.pdf

Objective:

In the article the feasibility of providing worldwide energy for all purposes (electric power, transportation, heating/cooling, etc.) from wind, water, and sunlight (WWS) is analysed.

How buildings are insulated/heated:

The article proposes air- and ground-source heat-pump water and air heaters and electric resistance water and air heaters. For high-temperature industrial processes, we propose that energy be obtained by combustion of electrolytic hydrogen. It is assumed that 5% of fuel use for space heating and 20% of fuel use for ''appliances'' (mainly cooking) are not electrified.

How district heating is mentioned:

The article focuses distinctly on electricity and does not cover district heating.

Link to report: -

8. ANNEX II: THE PRIMES MODELLING TOOL

Description of the PRIMES model from the [\[26,](#page-63-0) [30\]](#page-64-0) references.

9. ANNEX III: DATA USED TO MODEL THE REFERENCE ENERGY SCENARIOS FOR 2010, 2030, AND 2050

9.1 2010

9.2 2030

9.3 2050

9.4 NOTES FOR DATA IN TABLES

- a. IEA represents the data recorded in the 2009 EU27 energy balance completed by the International Energy Agency. EU CPI refers to the data obtained from the Current Policy Initiatives scenario contained in *Energy Roadmap 2050* energy report, which documents a business-as-usual scenario for the EU energy system. The Reference column illustrates how the data was interpreted in this study while the EnergyPLAN column presents the results from the EnergyPLAN tool after the reference data was modelled in it.
- b. The percentage of electricity used for electric heating is based on a survey completed by the Joint Research Centre, which analysed the various demands for electricity within the residential and service sectors [52]: 27.3% of electricity in the residential sector and 19.7% in the service sector are used for heating.
- c. The percentage of electricity used for electric cooling is based on a survey completed by the Joint Research Centre, which analysed the various demands for electricity within the residential and service sectors [52]: 2.8% of electricity in the residential sector and 2.1% in the service sector are used for cooling.
- d. In the IEA energy balance, there is heat consumption for industry of 230 TWh. However, this is used for both space heating and process heat. Since it was not possible to establish what the breakdown is between these, industrial heat consumption was not modelled as district heating in this study, but instead it was modelled as fuel consumption in industry. Hence, the focus in this study is district heating for space heating in the residential and services sectors. However, the demand for district heating in industry is still accounted for in the fuels consumed by industry.
- e. The fuel consumed by power plants which can operate as both condensing and backpressure mode (i.e. extraction CHP plants) is all recorded as CHP fuel consumption in the IEA energy balance. For example, in the Danish energy balance constructed by the IEA, all electricity production for coal and gas power plants is recorded as CHP. However, although these plants are capable of operating in CHP mode, they often operate in condensing only mode. Therefore, it would be inaccurate to model CHP exactly as it is reported in the IEA energy balance. Instead, the fuel required for the power plants was estimated separately for condensing mode and CHP mode. This was done by calculating the total district heating demand which CHP plants must provide after boilers, waste incineration, and excess industrial heat are taken into account. Then, assuming a thermal efficiency of 52%, the total fuel consumed for the power plant while operating in CHP mode is estimated. The remaining fuel recorded in the IEA energy balance as CHP is then reassigned to the power plants operating in condensing mode.
- f. Boilers are recorded as either main-activity or industrial boilers in the IEA energy balance. However, for modelling purposes it is also important to know what the primary function of a boiler is on a district heating network: to provide all of the heat (i.e. heat-only) or to simply act as backup during peak heat demands. Since this distinction is not available in the IEA data, it is estimated in this study by assuming that all coal, biomass, and half of the natural gas boilers are used as heat-only boilers, while the other half of natural gas along with all of the oil boilers are used as peaking boilers.
- g. When the primary energy supply in the reference data was compared to the IEA primary energy supply statistics, there were some minor differences in the range of approximately 0.5%. For completeness and to ensure all fuel is accounted for, this difference was

included as losses in the reference statistics and hence it increases from 950 TWh in the IEA statistics to 1080 TWh in the reference.

- h. The primary energy supply recorded for oil in the IEA EU27 energy balance contains a number of negative numbers due to the large amounts of exported oil products. As a result, a signal figure was not identified in the statistics which indicated the total oil consumed. To overcome this, the total oil was calculated by adding the total oil under the final energy consumption (including international aviation from the *Energy Roadmap 2050* report), power plants, CHP plants, boilers, and the oil losses relating to oil refineries and the energy industry's own use.
- i. The IEA energy balance does not provide carbon dioxide emissions. Also, the EU CPI carbon dioxide emissions for the total energy system are not included here since they are not directly comparable to the EnergyPLAN results for many reasons. Firstly, the emission factors in EnergyPLAN are based on Danish emission factors and hence they do not account for the country specific variations in the EU energy system. Also, carbon dioxide reductions due to carbon capture and storage (CCS) is not accounted for in the EnergyPLAN results and they have not been corrected to account for the import/export of electricity. Finally, it was not possible to establish which fuels were used in the EU CPI scenario to estimate the carbon dioxide emissions for the total energy system i.e. were the carbon dioxide calculations based on the gross inland consumption only or was this adjusted based on net imports? For these reasons, the carbon dioxide emission calculations are different in this study compared to the EU CPI study and it was not possible due to the timeframe of the project, to find the data necessary to align the two datasets.
- j. In the EU CPI, it was not possible to calculate from the statistics presented how much of each fuel (solids, oil, gas, and biomass/waste) was lost due to the energy industry's own use, refinery losses, and other fuel transformation processes. Therefore, this number was estimated based on the difference between the gross inland consumption in the EU CPI report and the reference statistics after all other statistics were compared and verified. It is important to note that this does not affect the electricity and district heating dynamics in the modelling and hence, it is primarily included to ensure that no fuels are left unaccounted for in the energy system.
- k. When the 2050 reference data is modelled in the EnergyPLAN tool, the electricity system is forced to export during some hours of the calculation in order to maintain grid stability. After investigating the hourly calculations in EnergyPLAN, this occurs for a combination of reasons including an increase in inflexible baseload production (in particular nuclear power) along with an increase in intermittent renewable energy production (in particular wind and PV). Therefore, it is likely that the EU CPI scenario will need to be redesigned to ensure that this does not occur. For example, more flexible demands could be introduced along with electricity, heat, and fuel storages: many of these alternatives are presented in detail in [\[25,](#page-63-1) [28,](#page-64-6) [36\]](#page-64-7).
- l. The 'PHES losses' is the net difference between consumption and production at the PHES plants.
- m. Since there is approximately 220 TWh of CEEP and 13 TWh of PHES losses, the power plants produce more electricity than calculated in the reference statistics. Assuming the average condensing power plant efficiency, which was calculated form the statistics as

48.5%, the additional fuel required by the power plants to produce this fuel is approximately 485 TWh. It was concluded that this, along with minor modelling differences accounts for the difference between the reference statistics and the EnergyPLAN simulations, since these are approximately the same at 485 TWh and 510 TWh respectively. It is assumed here that this additional electricity demand from the power plants will be met by coal and natural gas power plants only, which explains the additional coal and natural gas demands in the EnergyPLAN simulations compared to the reference statistics.

10. ANNEX IV: LOCAL CONDITIONS ILLUSTRATED BY MAPS

10.1 URBAN AREAS

10.2 CARBON DIOXIDE EMISSIONS

Figure 39: Major carbon dioxide emitters in Europe. Source: The E-PRTR database at EEA in Copenhagen. However, some of this information is wrong giving to high emissions compared to national aggregated emissions and the ETS. These errors must be corrected before estimating the corresponding excess heat quantities.

Figure 40: Major combustion installations above 50 MW for power and heat generation in Europe. Source: The E-PRTR database at EEA in Copenhagen.

10.3 MAJOR COMBUSTION INSTALLATIONS FOR POWER AND HEAT GENERATION

10.4 WASTE-TO-ENERGY

Figure 41: Locations of 414 waste incineration plants in Europe. Sources: CEWEP, E-PRTR, ISWA, and some national sources for Sweden, Denmark, and France.

10.5 INDUSTRIAL EXCESS HEAT

Figure 42: Locations of major energy intensive industries with considerable volumes of excess heat. Source: The E-PRTR database at EEA in Copenhagen.

10.6 GEOTHERMAL HEAT

Figure 43: Identified geothermal heat resources by temperature at 2000 m depth by NUTS3 region. Source: European Commission, Atlas of Geothermal Resources in Europe. Publication EUR 17811, Luxembourg 2002.

10.7 BIOMASS

Figure 44: Proportion of forest area in various parts of Europe. Source: European Forest Institute.

10.8 SOLAR THERMAL HEAT

Figure 45: Annual solar irradiation on a south-oriented tilted surface at optimal angle by NUTS3 region.

11. ANNEX V: TECHNOLOGY COSTS FOR THE ENERGY SYSTEMS ANALYSIS

Table 4: Technology costs for the energy system analysis.

Table 5: Power plant investment costs by fuel type.

Table 6: Renewable energy costs which were altered over the model timeframe.

A 3% interest rate is used when investment costs are converted into annual costs.

12. ANNEX VI: ENERGYPLAN OUTPUT SHEETS

12.1 IEA 2010

12.2 EP CPI 2030

90

12.3 EP CPI 2050

12.4 HRE 2030 RE

92

12.5 HRE 2050 RE

13. ANNEX VII: DATA USED TO CREATE FIGURES WITH RESULTS

13.1 STEP 1: INCREASING DISTRICT HEATING IN 2010

13.2 STEP 2: INCREASING DISTRICT HEATING IN 2010 WHILE UTILISING RENEWABLE RESOURCES

13.3 STEP 3: INCREASING DISTRICT HEATING IN 2030 AND 2050 WHILE UTILISTING RENEWABLE RESOURCES

