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ABSTRACT

Dictionary-based methods (DBMs) provide rich pos-
sibilities for new sound transformations; as the analysis
dual to granular synthesis, audio signals are decomposed
into ‘atoms’, allowing interesting manipulations. We present
various approaches to audio signal cross-synthesis and cross-
analysis via atomic decomposition using scale-time-frequency
dictionaries. DBMs naturally provide high-level descrip-
tions of a signal and its content, which can allow for greater
control over what is modified and how. Through these
models, we can make one signal decomposition influence
that of another to create cross-synthesized sounds. We
present several examples of these techniques both theo-
retically and practically, and present on-going and further
work.

1. INTRODUCTION

With a dictionary-based method (DBM), we can construct
a flexible and parametrically-rich interface to audio con-
tent by modeling a signal in terms of parametric “atoms,”
each representing mid-level content of interest, e.g., time-
frequency content having a particular time-domain enve-
lope. A DBM specifies how to linearly combine atoms
from a “dictionary” to reproduce a given sound, which
makes it essentially the analytical equivalent of granu-
lar synthesis [11, 27]. Previous work demonstrates how
a DBM can be used to transform audio signals, such as
time stretching, pitch shifting [26], and various granular
synthesis effects [11, 27]. In this paper, we explore how
we can use models found by a DBM to create a type of
cross-synthesis and morphing of sounds. We use “cross-
synthesis” to refer to a sharing of characteristics between
sounds, and “morphing” to refer to the transformation of
one sound to others over time.

Of course, there exist many approaches to creating
such effects. For example, with autoregressive modeling
(linear prediction) [18], we can decompose a sound into
a source and filter such that we can apply the filter to an-
other source to make, e.g., a chainsaw having speech for-
mants. Audio modeled by a combination of parametric
sinusoids and noise allows one to effectively morph one
sound into another [1, 14], e.g., to turn ringing bells into
singing voices. Another method is adaptive concatena-
tive sound synthesis [21, 24], which allows one to imitate

the timbral material of one sound by others to reassemble,
e.g., saxophone into speech.

In this paper, we describe ways to combine the char-
acteristics of audio signals through a DBM, specifically
using scale-time-frequency dictionaries. This can provide
a multiresolution signal model that gives numerous pos-
sibilities for synthesis and analysis since each atom is as-
sociated with meaningful parameters, such as scale and
time-frequency location. For these reasons, DBMs have
been used for the analysis of signals having content span-
ning multiple time-scales, such as music [5, 27, 19], en-
vironmental sound [2], and biomedical signals [6]. In the
end, we hope to use a DBM to obtain mid-level parametric
models that facilitate the sharing of qualities between two
or more signals with content difficult to model with mono-
resolution and frequency-domain methods, e.g., drums.
We first review DBMs, and then present several approaches
to the cross-synthesis and analysis of sounds using a DBM.
Then we present experiments, and discuss current research
directions. Sound examples in this paper are available at:
http:// www.cogs.susx.ac.uk/users/nc81/crossanalysiscross
synthesis.html.

2. DICTIONARY-BASED METHODS

DBMs, more formally known as methods for “sparse ap-
proximation” [16], attempt to model a signal with a small
number of atoms drawn from a user-defined dictionary,
such as a family of scale-time-frequency atoms:

D
∆={dγ(t)

∆=Yγ g(t−u;s)cos(tω +φ)} (1)

where t is time, g(t;s) is a lowpass function of time with
scale s > 0, u is a time translation, ω is a modulation fre-
quency, and φ is a phase offset. Each atom in D is indexed
by γ = (s,u,ω,φ) ∈ Γ, which describes the atom param-
eters. Γ denotes the set of parameters possible in D . The
scalar Yγ makes each atom have unit length, i.e., the inner
product of any atom with itself is 1.

Table 1 shows an example of the parameters used in
defining a scale-time-frequency dictionary (used for many
of the simulations in this paper), where the window g(t;s)
is a zero-mean Gaussian function of finite-length s sam-
ples. For instance, the first row of this table specifies
that D has atoms of scale 5.8 ms spaced in time every
2.9 ms, and with modulation frequencies spaced 43.1 Hz
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s (samples/ms) ∆u (samples/ms) ∆ f (Hz)
256/5.8 128/2.9 43.1

512/11.6 256/5.8 43.1
1024/23.2 512/11.6 43.1
2048/46.4 1024/23.2 21.5
4096/92.9 2048/46.4 10.8

8192/185.8 4096/92.9 5.4
16384/371.5 8192/185.8 2.7

Table 1. Scale-time-frequency dictionary parameters for
a sampling rate of Fs = 44.1 kHz: scale s, time resolution
∆u, and frequency resolution ∆ f .

from 0 to the Nyquist frequency. Figure 1 shows an ex-
ample atom from this row. For a signal of duration t sec-
onds, the number of atoms with this scale in D is about
176640t. Similarly, if we performed a short-term Fourier
transform (STFT) of the same signal with these parame-
ters, then we would have about 176640t complex values.
The total number of atoms in D for this signal, however,
is about 494163t.
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u
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Figure 1. An example atom from the dictionary in Table
1. This scale s = 5.8 ms atom is translated to u = 2.9 ms,
and has a modulation frequency of ω = 25(2π43.1) rad/s.

Given a signal x(t), the output of a DBM using a dic-
tionary D is the model

x(t)−
n

∑
i=1

αidγi(t) = Rnx(t), γi ∈ Γx ⊂ Γ (2)

where Rnx(t) is an error, Γx is a set of indices pertaining to
n atoms in the dictionary, and the set {αi : i = 1,2, . . . ,n}
are the model weights. Figure 2 depicts an iterative and
adaptive DBM, such as one from the matching pursuit
family [16]. Here, the DBM selects one atom at each iter-
ation based on an error, adds it to the model, and repeats
the process with the new error until the model reaches an
acceptable state. The quality of this model can be gauged,
for instance, by some measure on the error Rnx(t), or on
the set of atoms selected [28]. There is a large variety of
dictionary based methods, e.g., [10, 7, 8, 3, 16, 25]. Since
the dictionary plays a crucial role in the performance of

DBM
+

_

{Γx, {αi}, Rnx(t)}

x(t)

D

Figure 2. A DBM adaptively builds a model of x(t) using
atoms from the dictionary D . The output is the set of
indices Γx into the dictionary, the weights of the atoms in
the model {αi}, and an error signal Rnx(t).

these methods, we use the name “dictionary based meth-
ods” to highlight this fact. For audio signals, scale-time-
frequency dictionaries appear to be highly relevant per-
ceptually and physically for efficiently modeling the un-
derlying oscillatory phenomena [13, 23].

The sparsity of the models produced by a DBM, i.e.,
n in (2), provides a release from coefficient-heavy trans-
forms, such as the STFT, or wavelet transforms, as long
as the content we want to represent can be modeled well
in D . For this reason, DBMs are very robust to noise, or
more generally, content that is not well-correlated with
the dictionary [16]. We make this more concrete with
the following example. A DBM might model (to a use-
ful quality) a 10 second audio signal sampled at 44100
Hz using 5000 atoms — each with five associated pa-
rameters (scale, translation, frequency, phase, amplitude)
if using the dictionary in Table 1. For an STFT using
a window size of 1024 samples, a time-resolution (hop-
size) of 512 samples, and no zeropadding (which contains
the same atoms as described by the third row in Table
1), the resulting number of amplitudes and phases will be
2 ∗ 513 ∗ d10 ∗ 44100/512e = 884412. This is not only a
doubling of the signal dimension, but also a 35-fold in-
crease from the number of parameters in the model pro-
duced by the DBM. While D contains nearly 5 million
atoms for this signal, a DBM selects in some sense only
a few of the “best” ones. The STFT, on the other hand,
contains all projections onto the set of atoms specified in
the third row in Table 1.

DBMs have several shortcomings, however. First, the
process is computationally expensive when the dictionary
does not admit algorithms as fast as, for example, imple-
mentations of the discrete Fourier transform, or other de-
compositions over orthogonal bases. Among the meth-
ods for sparse decomposition, there are ones faster than
others, e.g, matching pursuit [12, 15], and which can be
implemented in a parallel architecture [4]. For the pur-
poses of off-line audio effects and analysis, non-realtime
performance does not pose a problem, as long as render-
ing completes within a ‘reasonable’ time. The computer
simulations we discuss below took on the order of min-
utes to an hour. Second, not all elements of the resulting
model (2) represent content in a signal. Some may re-



sult from mismatches between the signal and dictionary,
or the greediness of a particular DBM [9, 27, 28]; this can
creates audible artifacts when processing sparse models
[26, 27] This problem is not yet settled; here we take a
pragmatic approach and continue to explore the transfor-
mative possibilities.

3. ATOMIC CROSS-SYNTHESIS AND ANALYSIS

We are interested in ways to share and cross-influence
the characteristics of two or more sounds. We assume
their atomic models are expressed as in (2) produced by
a DBM using, e.g., a scale-time-frequency dictionary D
as in (1). In this section, we formally present several ap-
proaches to cross-synthesis and cross-analysis, first in the
time-domain, and then in a sparse domain. We present
computer simulations in Section 4.

3.1. Time-domain Transformation

Given the model of x(t) in (2) produced by a DBM we
can take another signal y(t) and simply substitute for the
coefficients {αi} the inner products {

〈
y,dγi

〉
(t) : γi ∈ Γx},

where 〈
y,dγi

〉 ∆= ∑
t

y(t)dγi(t) (3)

is the projection y(t) onto the atom dγi(t). This gives the
model

y(t)−
n

∑
i=1

〈
y,dγi

〉
dγi(t) = Rny(t) (4)

where Rny(t) is the error. With the dictionary in (1), this
can reinforce the scale-time-frequency content in y(t) also
present in x(t), while suppressing other content. We can
set the depth of the effect with the mixture

ypx(t) = (1− p)y(t)+ p
n

∑
i=1

〈
y,dγi

〉
dγi(t) = y(t)− pRny(t)

(5)
where 0≤ p≤ 1. With p = 0 we have the original signal;
and with p = 1 we have the model of y(t) in terms of
the model of x(t). We can produce dynamic variation by
varying p over time.

Rather than this direct resynthesis of y(t) with its in-
ner products with the atoms indexed by Γx, we can run
the iterative decomposition process as in matching pursuit
[16], but retain the order of the atoms in Γx. This produces
the model

y(t)−
n

∑
j=1

β jdγ j(t) = Rny(t). (6)

where the jth weight in (6) for j ≤ n is given by

β j =
〈
R jy(t),dγ j

〉
(t) =

〈
y,dγ j

〉
−

j−1

∑
i=1

βi
〈
dγi ,dγ j

〉
. (7)

This approach is used in the Matching Pursuit Dissimilar-
ity Measure (MPDM) [17] to compare two signals through
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x(t) y(t)

Figure 3. Sparse model of x(t) is used by a DBM in the
decomposition of y(t).

their sparse approximations. Equation 7 arises in this form
by taking the inner product of 6 on both sides by dγ j(t).

Another possibility, depicted in Fig. 3, is to use the
atoms indexed by Γx to define a new dictionary for a DBM
in building a model of y(t)

Dx
∆={dγ(t) ∈D : γ ∈ Γx}. (8)

In this case, the decomposition of y(t) by a DBM will
use the scale-time-frequency domain content of x(t) but
will pay no attention to the ordering of Γx. For matching
pursuit [16], this will give a signal model

y(t)−
n

∑
j=1

β jdγ j(t) = Rny(t) (9)

where here each weight β j is determined by the DBM us-
ing an intermediate residual. We can also create a larger
dictionary by freely varying some parameters of Dx, for
example, the atom translations and phases and keeping the
scales and modulation frequencies

Dx
∆={dγ ′i

(t) ∈D : γ
′
i = (si,u,ωi,φ),{si,ωi} ∈ Γx}. (10)

We can of course vary all of these time-domain transfor-
mation methods by using any subset of the atoms indexed
by Γx, for instance, using only atoms larger than a specific
scale, redefining the atom selection criteria of the DBM,
and so on. We can also incorporate the residual with the
above transformations, which can restore fine details lost
in the approximation process.

3.2. Sparse Domain Transformation

Given that we have two signals described by models like
(2) found by a DBM, we can modify and compare the
atom parameters in a sparse domain, which is depicted
by Fig. 4. One simple process is to “fade-in” one sound
while “fading-out” the other by weighting the atom ampli-
tudes as a function of time. Based on the atom parameters
for the dictionary in (1) we can do this as a function of
atom modulation frequency and scale as well. These are
essentially a type of “granular crossfade” [20, 11, 27].

We can cross-synthesize two sounds in a sparse do-
main by considering the parameters of atoms from both
models. For instance, assume we have separated the large-
scale atoms from the short-scale atoms in each model so
we can limit our transformation to signal content with
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Figure 4. Sparse models of x(t) and y(t) are combined
and possibly inverted to create another signal.

statistics that do not vary over time scales shorter than
smin. Now, based on some scheme, e.g., minimizing a
center-time-frequency distance, we pair the remaining atoms
in each model {(γx,i,γy, j) : γx,i ∈Γx,γy, j ∈Γy,sx,i > smin,sy, j >
smin} where Γx and Γy are the indices into D for the two
signals, and sx,i is the scale of the ith atom modeling x(t).
For these atom pairs then, we can change the parameters
of one to be closer to the other, for example, by averag-
ing the modulation frequencies of each pair. We could
also make each atom “chirp” between the two frequencies
over its scale.

We can also adjust the parameters of each atom mod-
eling y(t) based on the atoms modeling x(t). For example,
for each atom parameter γy, j ∈ Γy in the model of y(t), we
add to its modulation frequency ωy, j a value δ computed
from a weighted average of the frequencies in Γx and the
set of atom weights {αi} modeling x(t)

δ =
|Γx|
∑
i=1

(ωy, j−ωx,i)αie−ru|uy, j−ux,i|e−rω |ωy, j−ωx,i| (11)

where ru ≥ 0 and rω ≥ 0 weight the influence of atoms
located in time and frequency, respectively, to γy, j. We
can apply this transformation selectively again, such as
only on large-scale atoms.

4. COMPUTER EXPERIMENTS

To explore these techniques, we conducted a series of ex-
periments with a number of diverse audio signals and the
DBM matching pursuit (MP) algorithm [16], primarily us-
ing the scale-time-frequency dictionary defined in Table 1.
We altered the software library MP Toolkit (MPTK) [12],
which is a core C++ library that efficiently implements
MP for audio signal processing. To describe our practical
work we follow the terminology of MPTK: a block essen-
tially encompasses the set of functions describing a STFT
with a particular scale (window size), time-resolution (hop
size), and frequency resolution (zero padding); a frame is

an indexed window position (time location) in a block;
an index denotes the atom selected from the dictionary
(γ from above) within a block at a given frame; and fi-
nally a book refers to all the atoms found by MP that
constitute a signal model, which is essentially the model
{Γx,{αi},Rnx(t)}.

Since MPTK does not have much flexibility in select-
ing particular atoms for resynthesis or analysis, we mod-
ified the functionality of the library, as well as the MP
decomposition process. To enable the process seen in
Fig. 3 we added an auxilliary file mechanism which, for
a given MP decomposition, stores the block, frame, and
index choices of each iteration. This permits a previous
signal decomposition (book) to guide that of another sig-
nal.

These source code modifications to MPTK 0.5.6 are
available from the site accompanying this paper already
mentioned under sound examples.

4.1. Time-domain Transformation

Equations (4)–(6) will amplify the scale-time-frequency
characteristics of one signal that are common to another
signal. The audible differences between (4) and (6) are
very subtle, but in the former case we observed much
more clipping in the results due to not subtracting the con-
tribution of each atom before considering the next, as done
in MP. We observed some effective results when using the
mixture of the two syntheses in (5). The process depicted
in Fig. 3 produced similar results using either dictionary
in (8) or (10). The performance of the DBM, with respect
to residual energy decay, is extremely diminished when
using (8), which is no surprise when the two signals do
not share the same scale-time-frequency structures. This
performance increases with the dictionary in (10), but of
course is not as good as that when using the overcomplete
dictionary in (1). As an audio effect, however, these cross-
synthesis methods led to some interesting hybrid sounds.

In some cases, using a book as a dictionary in a DBM
generates a signal closer to the original book’s source rather
than the new signal, as seen in Fig. 5. Here the book
produced from decomposing signal A was used in the de-
composition of signal B, but with the dictionary given by
(10), i.e., only the scales and modulation frequencies were
constrained. We see a large similarity between the wivi-
grams of signal B decomposed with this book, and that
of signal A; though elements of signal B can certainly be
heard in the cross-synthesis, A is dominant. This can be
reversed by switching the role of each signal. To examine
this as an effect, we limited the use of the book to certain
iterations of MP, and for the others we used a generalized
scale-time-frequency dictionary. In such a case, we could
easily hear the new sound with brief glimpses of the other
sound where the dictionaries were switched.

4.2. Sparse Domain Transformation

If we combine the atoms of two books and then synthe-
size, we effectively mix the two signal approximations;
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Figure 5. From top to bottom: wivigrams [27] of the atomic models of music signal A; music signal B; B decomposed
as in Fig. 3 using (10) derived from the atomic model of A; gradual morph from B to A. Time-domain waveforms are
shown below each wivigram.

but we can mix together different subsets as well, for in-
stance based on modulation frequency and scale. Since
each atom of a book is associated with a set of unique pa-
rameters, it is a simple matter to filter a book such that
what remains is a subset of atoms within some range of
parameters [27]. Through this, effects such as a granular
crossfade can be created, as well as “evaporation,” “co-
alescence,” and “cavitation” [20, 11, 27]. We explored
this for both monophonic and polyphonic signals, using
different methods, for instance, selecting atoms from the
two books in a deterministic or random manner. With a
gradual transition, we hear one signal become less and
less dense ending in a region sparsely populated by atoms,
while the other fades in the same way. An example of this
is seen at the bottom of Fig. 5.

5. DISCUSSION

Many of the transformations here can resemble the arti-
facts of poor audio coding; and we should expect noth-
ing else when we use a limited dictionary produced from

the analysis of one signal to represent another. For the
pragmatic composer though, it does not matter if errors
sometimes increase, or if decomposition convergence is
broken, as long as interesting sounds result. And we have
shown in this paper how DBMs can enable a variety of
transformations, many of which have familiar counter-
points in existing granular synthesis techniques.

Though it is not possible in its present form to take
sparse approximations of audio signals and produce high-
quality cross-synthesis effects like those generated from
high-detail parametric sinusoidal models [22, 1], we can,
however, see DBMs as an intermediate step for produc-
ing such parametric models. Fundamentally, a DBM is,
after all, an approximation method. This stands in contra-
diction to “high-quality” and “high-fidelity” audio signal
processing. Of course, it is possible to reach any approx-
imation error by a DBM as long as the dictionary is com-
plete; but the interpretation of the model becomes difficult
as the order of the model grows.

Since audio signal transformations through DBMs are
naturally limited at the atomic level, it is critical to move



beyond atomic level descriptions to, for instance, “molec-
ular” descriptions of signal content [29], or higher-level
parameteric models. An open question is how a multireso-
lution and sparse approximation can guide the creation of
a high-level parametric model of an audio signal in terms
of sound objects, like other approaches of analysis by syn-
thesis. Another area of research is designing interfaces to
make the creative exploration of these methods, and of vi-
sualizing the results of DBMs in general, more efficient.

There are plenty of paths to explore further, and which
necessitate even more radical changes to the analysis soft-
ware. Some of our ideas include:

• An “interlinked” MP decomposition of two audio
signals, where, for example, we first choose one
atom in signal A, and then impose the choice in B’s
first analysis step. In the second step we choose an
atom in signal B, and then impose it in A’s second
analysis step. This two step process is then iterated.

• Cross-analysis of an audio signal using several books,
even iterated through multiple generations of analy-
sis. Each MP iteration can be guided in atom choice
from one or more books. Furthermore, if there is
still some scope for freedom in selection, as per
equation (10), the book from one analysis can go
on to influence the creation of a further, and so on.

• Time-stretching: allow use of atoms from some stretched
or squashed region (larger or smaller time zone) in
an existing book, relative to the region of the sound
file currently being approximated.

• Given a set of sounds, assess their similarity via
their books (as derived from conventional MP). Then
choose books for cross-analysis based on the ob-
served proximities.

• Looping analysis, where a shorter sound’s book is
“looped” in time (atoms repeated periodically) to
analyse a longer sound.

• Incorporation of the residual to use the interesting
shadowy sound worlds not captured in the approxi-
mation process.

• Use a set of sounds to learn a good set of atoms, and
then use these in decomposing other signals not of
the set (essentially, vector coding)

A real potential for transformation comes from subselec-
tions and substitutions in reading a book, or from combin-
ing more than one book to produce cross-syntheses.

6. CONCLUSION

We have presented various methods for the cross-synthesis
and analysis of audio signals through DBMs with scale-
time-frequency dictionaries. Our practical experiments,
enabled by our alterations to the software library MPTK
[12], show that the atomic models produced by DBMs

can allow radical and interesting transformations of au-
dio signals. The benefit of using a DBM with a scale-
time-frequency dictionary over any redundant transforma-
tion based on orthogonal transforms, and/or a single time-
domain resolution, e.g., the STFT, is that a DBM pro-
duces a multiresolution and parametric signal model with-
out arbitrary segmentation, albeit at a higher computa-
tional cost, and as an approximation. We have focussed on
sound transformations like morphs, but these techniques
are also readily applicable to comparison of the content
between sounds, for the purposes of analysis.
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