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Uncertainty-Aware Stability Analysis of IBR-dominated Power

System with Neural Networks

Galadrielle Humblot-Renaux, Yang Wu, Member, IEEE, Sergio Escalera, Senior Member, IEEE,
Thomas B. Moeslund, Xiongfei Wang, Fellow, IEEE, and Heng Wu, Senior Member, IEEE

Abstract—Machine learning (ML) technologies have significant
potential in accelerating stability screening of modern power
systems that are dominated by inverter-based resources (IBRs).
Nonetheless, neural network (NN)-based analysis methods cannot
guarantee accurate and reliable stability predictions for unseen
operating scenarios (OSs), posing safety risks. To address this
limitation, this letter proposes an approach combining neural
network ensembles with a dual-thresholding framework, which
enables the reliable identification of OSs where ML predictions
may fail. These uncertain OSs are then flagged for further analy-
sis using physical-based methods, ensuring safety and robustness.
The effectiveness of the proposed method is verified by simulation
and experimental test.

Index Terms—Stability, inverter-based resources, machine
learning, uncertainty estimation.

I. INTRODUCTION

The decarbonization of global energy system accelerates the
deployment of renewable energy resources, which are mostly
connected to the power grid via power electronic inverters.
Those inverter-based resources (IBRs) may interact with one
another and with grid dynamics, leading to power system
oscillations or even blackout incidents that are increasingly
reported in recent years [1]. Hence, stability studies are of
vital importance for transmission system operators (TSOs) to
guarantee the secure and reliable operation of IBR-dominated
power systems.

The methodology for assessing the stability of IBR-
dominated power system under a single operating scenario
(OS) is well developed [1]. However, a large power system
with thousands of IBRs can have more than 1 billion OSs [2].
Such a high number of OSs makes it impossible for TSOs
to carry out in-depth stability studies for each specific OS.
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Therefore, stability analysis of IBR-dominated power system
with extremely high number of OSs has become one of the
most challenging tasks for TSOs, as identified in a recent
survey from IEEE task force [3].

In recent years, many research efforts have been devoted
to leveraging data-driven machine learning (ML) approaches
to analyze the stability of the IBR-dominated power system.
In particular, neural networks (NNs) have shown promising
results for stability analysis [4]-[7]. Thanks to their scalability
and computational efficiency, NNs can enable the assessment
of all OSs within a reasonable timeframe. However, the
critical disadvantage of ML-based stability analysis is that it
cannot guarantee 100% stability prediction accuracy [8]. Yet,
incorrect stability estimation in certain OSs can be safety-
critical in practice and even lead to a blackout event.

A potential solution for such a problem is adopting physical-
based approaches (e.g. the impedance-based stability analysis,
EMT simulations [1]) to analyze the stability of OSs where
ML-based predictions are likely to fail. However, this solution
relies on the reliable identification of OSs where ML-based
predictions cannot be trusted. This is challenging in the con-
ventional NN-based framework, because a single NN cannot
capture uncertainty in its parameters (i.e. epistemic uncer-
tainty) and thus cannot provide reliable uncertainty estimation
beyond the training data [9]. Prior work using a single NN for
stability assessment of OSs achieves imperfect classification
performance, yet does not consider uncertainty and does not
provide a mechanism for identifying NN errors [7].

To tackle this challenge, this letter is the first to apply
deep ensembles [10] in the stability analysis of IBR-dominated
power system. In contrast to a single NN whose predictions
are sensitive to initialization and prone to being confidently
incorrect, a deep ensemble aggregates multiple NNs, each with
a different set of parameters. This approach not only provides
more robust and stable predictions by averaging the outputs
of multiple NN, but is also a well-established approach for
uncertainty estimation in the machine learning literature [11],
[12]. Compared to Bayesian NNs, deep ensembles are simple,
scalable, architecture-agnostic and do not modify the training
procedure. Compared to MC-Dropout [13], they offer state-of-
the-art performance but at a greater computational cost, due
to the need to train multiple NNs.

While previous studies also adopt NN ensembles in other
power system applications, e.g., load forecasting [14], [15],
their primary aim is to improve predictive performance. They
do not incorporate mechanisms to identify OSs where NN-
based predictions may fail and take further actions. In con-
trast, this work proposes an uncertainty-aware framework to
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systematically identify OSs with unreliable predictions and
flag them for further analysis using physics-based methods.
Furthermore, different from standard selective classification
approaches [16] and recognizing that the false negative (FN)
errors (misclassifying a stable OS as unstable) are less critical
(as all unstable cases will be re-investigated in subsequent
analysis), the proposed dual-thresholding approach prioritizes
the identification of safety-critical false positive (FP) errors
(misclassifying an unstable OS as stable, which will be ignored
in subsequent analysis, but might ultimately lead to blackout
events in practice). This strategy strictly minimizes FP errors
without rejecting an impractical high number of OSs. The
combination of the NN ensemble (which reliably assigns high
uncertainty to incorrect predictions) and the dual-thresholding
approach (which rejects uncertain predictions) allows safety-
critical errors to be avoided. Finally, simulation and exper-
imental test results verify the effectiveness of the proposed
method.
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Fig. 1. Grid-Following IBR connected to the weak ac system.

II. SYSTEM DESCRIPTION

Fig. 1 illustrates the single-line diagram of the investi-
gated IBR systems, where the single IBR (Fig. 1a) and two-
paralleled IBRs (Fig. 1b) connecting to the weak ac grid are
considered. In both cases, the IBRs are operated with the
standard grid-following (GFL) control [1], where the current
control loop is used to regulate the output current of IBR to
track its current references generated by the active/reactive
power control. The phase-locked loop (PLL) is used for
grid synchronization. Zy and Z, represent the filter and grid
impedance, respectively. Vpcco and V; represent the voltage
at the point of common coupling (PCC) and grid voltage,
respectively. The focus of this work is the small-signal stability
analysis of IBR-dominated systems, which is affected by
different power flows of each IBR, i.e., different combinations
of active/reactive power and PCC voltage [2]. Therefore, the
OS for a single IBR can be prescribed by a 3-dimensional
vector (P1, Q1, Vpcce), while the OS for two paralleled IBRs
can be prescribed by 5-dimensional vector (P, Q1, P», @2,

Veco).

III. APPROACH
A. Basic neural network

First, the basic NN used for stability analysis in previous
literature is reviewed [7]. The input of the NN is the OS that
is characterized by a d-dimensional vector x € R? (d = 3
for single IBR, d = 5 for two parallel IBRs). The non-
linear relationship between OSs and stability is modelled by
fully connected layers (2 hidden layers with 64 neurons each)
and logistic sigmoid activations. The output of the NN is
the predicted probability p € [0,1] that the OS is stable,
which is compared to a binary stability label y € {0,1} (1
for stable and O for unstable). In practice, NN parameters
0 are first initialized randomly. They are then optimized
using Stochastic Gradient Descent by minimizing the neg-
ative Bernoulli log-likelihood of the training data Dirgin:
0 = argming — 37, [yn log(ps) + (1 — y5) log(1 — py)]. It
is important to note that while the basic NN’s output p is
probabilistic, it is not a reliable measure of uncertainty [4].

B. Ensemble of neural networks

Instead of training a single NN [7], we propose to leverage
deep ensembles [10], as they have shown not only to improve
predictive performance compared to a single NN, but also to
provide reliable uncertainty estimates. The intuition behind
deep ensembles is that combining different viewpoints from
a group of experts offers more balanced, nuanced predictions
than any single expert could provide.

As illustrated in Fig. 2b, an ensemble consists of M distinct
NNs, each with their own set of learned parameters 6, for
m=1,2,..., M. To obtain different parameters 6,,, across the
ensemble, each NN is initialized with a different random seed
before training. The NN are then trained independently on the
full training set Dy,qn. Each NN in the ensemble provides a
different plausible solution to the stability learning problem.

During testing, a stability estimate p is obtained by taking
the average over the ensemble outputs: p = % Zﬁ{:l fo,, (%)
where fp, (x) is the output of a single member of the ensem-
ble. The estimate p approaches 0.5 when the disagreement
between individual NN increases, or when all NNs’ estimates
individually approach 0.5. This indicates a high prediction
uncertainty that requires further analysis with physical-based
methods. In contrast, p approaching 1 (0) indicates a stable

Operating Scenario x

Operating Scenario x
X b Xy

p =095

(a) Single NN

(b) NN ensemble (shown with M = 3)

Fig. 2. Default (a) vs. proposed (b) NN architecture for stability estimation,
illustrated with example outputs (arbitrary values). Each color represents a
different set of trained NN parameters.
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Fig. 3. Flowchart showing how an OS is classified based on the predicted p.
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(unstable) prediction with a low uncertainty. In practice, en-
semble members are likely to agree for OSs in Dyy.q4rn, but
may not agree for OSs which were not seen during training.

C. Classification and evaluation

A held-out test set Dy, is used to evaluate the performance
of the final trained model. For this, a discrete class (stable or
unstable) must be extracted from the estimate p. Typically, a
single fixed threshold of 0.5 is used such that p > 0.5 indicates
stable, and p < 0.5 indicates unstable [7]. However, this
method cannot identify OSs whose stability prediction cannot
be trusted. To tackle this challenge, the dual-thresholding
approach is proposed in this work, where T, stabie and Tstapie
are two thresholds that define a range for which the estimated
p is not trusted and should be rejected, as shown in Fig. 3. The
rejection rate r is the proportion of OSs in Dy, for which
Tstaple < P < Tyunstaple- 1deally, r should be as small as pos-
sible, but without compromising classification performance.
Rejected OSs are excluded from evaluation. For the remaining
(non-rejected) OSs, classification performance is evaluated by
comparing predicted stability vs. known small-signal stability
in terms of Precision = %}:FP and Recall = %}:FN,
where TP, FP, and FN are True Positives, False Positives
and False Negatives, respectively. Classifying an unstable OS
as stable (FP) is a safety-critical issue, and must be strictly
avoided. Therefore, the two thresholds will be carefully tuned
to maximize the Precision, which will be detailed in the
following.

D. Choice of classification thresholds

The thresholds T, stabie < Tstabie are tuned on a validation
set D,q; based on a desired rejection rate r¢qrger as follows:

1) Find the highest possible threshold for which the model

achieves 100% Recall on D,,,;. Set this to be Ty stabie-

2) Find the lowest possible threshold for which the model

achieves 100% Precision on D,;. Set this to be Ts;qpie.

3) Check the resulting rejection rate r,4; - that is, the pro-

portion of D, classified with Typstabie < P < Tstable-
If 7yar < Ttarget, increase Tsiape until 744 = 7"target(%-
This ensures that at minimum, 74,4 Of validation OSs
fall between the two thresholds.

Note that performance on D,,,; does not necessarily reflect
the performance on Dy.s. Intuitively, the value for Tiyqpie
is thus chosen more conservatively than T, s¢qb1¢, Since it is
safety-critical to achieve high Precision.

E. Overall stability analysis methodology

As shown in Fig. 3, the proposed NN ensemble and dual-
threshold framework utilize the NN ensemble itself to pro-
cess the stability analysis of most OSs with high prediction

confidence, while the remaining small subset of OSs with
low stability prediction confidence from NN are identified
for further verification using physics-based stability analysis
(like time-domain simulation). The proposed method leverages
the strengths of both machine learning and physical-based
approaches, and thus, improving the computational efficiency
without jeopardizing the overall stability prediction accuracy.

FE Scalability

The proposed framework can be generalized to large-scale
IBR-dominated power systems, due to the following reasons:

1) Data generation: the power flow calculation in bulk IBR-
dominated power systems is very mature and is widely
supported by commercial software such as DIgSILENT
PowerFactory and PSS/E.

2) NN ensemble: The feasibility of training the single
NN for stability analysis in bulk IBR-dominated power
systems has been extensively investigated [17]. Since
an NN ensemble is simply a collection of multiple
independent NNs (and allows for bigger or alternative
NN architectures to be used if needed), training the
ensemble does not introduce additional complexity or
constraints beyond what has already been demonstrated
for the single NN in bulk power systems. The training
cost scales linearly with M - thus, there is a tradeoff
between computational efficiency and reliable uncer-
tainty estimation. However, since the NNs are fully
independent, they can be trained in parallel, thus greatly
reducing the training time. Similarly, after training, the
predictions of the individual NNs can be obtained in
parallel.

IV. CASE STUDY
A. Datasets and splits

The proposed approach is validated on two datasets corre-
sponding to the single and paralleled IBRs, as summarized in
Table 1. The datasets consist of OS values and their associated
stability label, obtained via small-signal stability analysis in
simulation models of grid-connected converters [18]. A grid
condition with short-circuit-ratio (SCR) of 2.4 is applied to
testify the method under weak grid conditions.

For single IBR, a sparse and a dense version of datasets
are generated for fine-grained evaluation along the stability
boundaries (see Fig. 4). For Single (sparse), Vpcoc is set as
0.9: 0.01: 1.1. P is set as -1: 0.1: 1, while @ is set as -0.3:
0.03: 0.3, all in per unit (p.u.). These ranges are set to balance
the proportion of stable and unstable cases. For Single (dense),
the sampling intervals of Vpcco, P, and () are shrunk to 0.1

TABLE I
DATASET OVERVIEW

Dataset input dimension d num. OSs  num. stable / unstable set
Single (sparse) 3(V,P,Q) 9,261 3,044 / 6,217 train/val
Single (dense) 3(V,P,Q) 3,232,080 1,141,933 / 2,090,147 test

Parallel 5(V,P1,Q1,P2,Q2) 14,406 12,471 / 1,935 train/val/test
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times the original values. The OSs present in Single (sparse)
are removed from Single (dense) to avoid any overlap.

For paralleled IBRs, Vpcc is set as above. P ranges in
[-0.2, -0.06, -0.03, 0, 0.03, 0.06, 0.2] and () ranges in [-0.1,
-0.03, -0.01, 0, 0.01, 0.03, 0.1] for each inverter.

Several proportions (20%, 50% and 80%) of the Single
(sparse) and the Parallel datasets are selected as training
sets via random splitting. For the Parallel case, the remaining
portion is further randomly split into 20% validation, 80% test.
For the Single case, Single (dense) is used as a test set. This
allows for a very fine-grained evaluation in unseen regions
along the stability boundary where prediction errors are most
likely to occur.

Qp.u)

Y., 105 -10

(b) Single (dense)

Fig. 4. OSs in the two versions of the Single dataset, color-coded by stability
(red: unstable, green: stable).

(a) Single (sparse)

B. Model comparison

The single NN (as described in Sec. III-A) is considered as a
baseline and is compared to the Ensemble x10 and Ensemble
x100 (NN ensemble with M = 10 and M = 100, as described
in Sec. III-B). The same architecture and hyper-parameters
are used for all models. NN parameters are optimized with
Adam [19] for a maximum of 1000 epochs with an initial
learning rate of 10~! and a batch size of 200. Following stan-
dard practice, the input data is standardized based on Dy;q;p
statistics. The proposed thresholding approach is applied with
Ttarget = 20% (a conservative choice) and is compared to the
standard approach [7] of having a single threshold at 0.5 and
no rejected samples. To ensure that the performance of the
approach is consistent, for every dataset and training set size,
training/threshold tuning/ testing are repeated with 10 different
random seeds, to account for the stochasticity in parameter
initialization, dataset shuffling and random data splits. This
results in 30 evaluation runs per dataset. Note that all reported
performance is on unseen OSs, as there is no overlap between
train, val and test sets.

V. RESULTS
A. Quantitative evaluation

Tab. II summarizes the quantitative results of the stability
prediction based on the proposed dual-thresholding approach
(Tab. IIb) and the standard single-thresholding approach
adopted in prior work [7] (Tab. IIa), considering both Single
NN and Ensembles. In the single threshold scenario, although
the Ensemble improves the prediction accuracy compared to
Single NN, all of the models make safety-critical errors on
both datasets (the precision is less than 100%). However,
it can be observed from Tab. IIb that with the proposed

Q(p.u)
Q(p.u)

o Estimated p
o 0.00 0.50 1.00

@ False Positive

D Rejected
@ True Negative
@ True Positive

Q(p.u) u.
Q(p.u)

04

32 False Positives

0.1 0.2 03"
No False Positives
(a) Single NN (b) Ensemble x100
Fig. 5. Estimated p (top) and stability analysis after dual-thresholding

(bottom) on unseen OSs from a 2D slice of the dense Single dataset
(V' = 99.22). Note that False Positives (red) are safety-critical.

dual-thresholding approach, the Ensemble can successfully
reject all unstable OSs whose stability predictions are
unreliable (with a rejection rate around 20-21%.), thereby
guaranteeing 100% precision on the remaining OSs, and thus,
the safety-critical prediction errors are avoided. On the other
hand, while the precision of Single NN is also increased
under the dual-thresholding approach, there are still safety-
critical errors, especially for the Parallel dataset, as shown in
Tab. IIb. These results highlight the importance of adopting
both Ensemble and dual-thresholding approaches to avoid
safety-critical prediction errors. Comparing Ensemble x10 and
Ensemble x100, a higher M ensures 100% precision across all
runs and a slightly lower rejection rate for both the Single and
Parallel case.

Fig. 5 further provides a visualized example of the stabil-
ity prediction with the proposed dual-thresholding approach.
Compared to the Single NN, the Ensemble x100 exhibits
higher and more consistent uncertainty along the decision
boundary due to disagreement across ensemble members,
with smoother transitions between low and high uncertainty
regions. It does not make any FP predictions thanks to the re-
liable uncertainty estimation. In contrast, the Single NN makes
32 safety-critical FP predictions which cannot be intercepted.
This shows that while the dual-thresholding approach can be
applied to a Single NN, its effectiveness requires a reliable
estimation of p, which the Single NN does not provide.

B. Computational cost

Using a consumer laptop, the Ensemble x100 takes 1 minute
to train on the Single (sparse) dataset and 1.5 minutes on
the Parallel dataset, with the NNs in the Ensemble being
trained sequentially. Parallelization reduces the training time
to 16 seconds and 23 seconds, respectively. After training, the
Ensemble x100 is compared to EMT simulation in PSCAD
in terms of computation speed on the same hardware. Results
are shown in Table III. It can be seen that Ensemble x100
is significantly faster for stability analysis (10%x faster in
the Parallel case). Assuming a rejection rate of 20% by the
Ensemble, the stability analysis can be sped up by a factor of
5. As a concrete example, given the paralleled IBR system and
a set of 10,000 OSs to assess, stability assessment using EMT
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TABLE II
MEAN (&£ STANDARD DEVIATION) CLASSIFICATION PERFORMANCE ON THE TEST SET ACROSS 30 RUNS. BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Single NN Ensemble x10 Ensemble x100

Single NN Ensemble x10 Ensemble x100

Single dataset

Single dataset

Precision 95.119% (£17.978%)  99.111% (£0.385%)  99.229% (+0.340%) Precision 99.962% (+0.143%) 100% (+0%) 100% (+0%)

Recall 92.590% (£17.602%)  97.091% (£0.565%)  97.157% (+0.444%) Recall 97.945% (£4.957%)  99.209% (x1.211%) 99.216% (+1.418%)

Rejection Rate 0% 0% 0% Rejection Rate  27.327% (£12.590%)  21.354% (+0.987%) 21.209% (+0.799%)
Parallel dataset Parallel dataset

Precision 98.096% (£3.109%)  99.159% (+0.349%)  99.195% (+0.317%) Precision 96.889% (£16.575%) 100% (+0.003%) 100% (+0%)

Recall 99.172% (+0.445%)  99.588% (+0.212%)  99.707% (+0.203%) Recall 96.516% (£16.231%)  99.856% (+£0.020%)  99.862% (+0.018%)

Rejection Rate 0% 0% 0%

Rejection Rate  28.732% (+20.875%)  20.463% (+4.789%)  20.107% (£1.385%)

(a) Single threshold of 0.5 (no rejected OSs).

TABLE III
THROUGHPUT (NUMBER OF ESTIMATES PER SECOND).

Single IBR (d = 3)

1.553 OSs / sec
1.083 x107 OSs / sec
7.765 OSs / sec

Paralleled IBR (d = 5)

0.123 OSs / sec
1.113 x107 OSs / sec
0.615 OSs / sec

Simulation (ground truth)
Ensemble x100
Combination (20% Simulation)

TABLE IV
CASES FOR THE EXPERIMENTS

Single IBR (d = 3)

99.22, 83047, -744.15
Unsure (p = 0.324)
Stable (p = 0.978)

Paralleled IBR (d = 5)

121, 1089, 544.5, 0, 544.5
Unsure (p = 0.783)
Stable (p = 0.999)

OS (V, P1, Q1, P2, Q2)
Ensemble x100
Single NN

simulation takes 81,301 seconds (approximately 22.6 hours).
Using our approach (with only around 20% of OSs processed
by simulation), the computation time (including the training)
reduces to 16,283 seconds (approximately 4.5 hours).

C. Experiment validation

Experiments have been conducted to prove the superiority of
the proposed method. Two Danfoss converters are controlled
in GFL mode, connected to the grid simulator Chroma 61845.
Detailed description of the setup can be found in [20].

Two cases from the single and paralleled converters have
been selected, with parameters in Table IV. These cases
are confidently misjudged as stable by traditional single NN
(safety-critical), but rejected due to uncertainty by the pro-
posed ensemble NN. Experiment waveforms are shown in
Fig. 6 (the OS is changed by varying the reactive power to
switch the system from stable case to unstable case), where
unstable resonances can be observed. It should be noted that
the studied cases are critically unstable, very close to the
stability boundary. Although the oscillations are not very large
due to inherent damping (parasitic resistance) in the hardware
platform, a prominent increase of system resonance can still
be observed in the experiments, supporting the effectiveness
of the proposed method.

VI. CONCLUSION

This letter represents the first application of NN ensembles
in the stability analysis of IBR-dominated power system.

(b) Thresholds T, stapie @aNd Tyiapie tuned on Dy

Stable OS «————— Unstable OS

P (1 kw/div)

fivy

Viee (250 V/div)
Ipce (10 A/div)
VWAV
Cmrg L 08 G
(a) Single converter
Stable OS «————— Unstable OS
Flslkw(divl [ | |

® Q1 (1 kvar/div) -

Vpee {250 V/div)

WY

Ipce (10 A/div)

WWWWWWWVVWWWWWY

(b) Paralleled converter

Fig. 6. Experiment waveforms for single and paralleled converters.

Complemented by the proposed dual-thresholding approach,
the framework offers robust and reliable uncertainty estimates
for stability predictions. Simulation and experimental tests
verify the effectiveness of the proposed method.
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