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Abstract: In modern large-scale systems comprising multiple heterogeneous devices, the introduction of swarm attes-
tation schemes aims to alleviate the scalability and efficiency issues of traditional single-Prover and single-
Verifier attestation. In this paper, we propose PRIVÉ , a privacy-preserving, scalable, and accountable swarm
attestation scheme that addresses the limitations of existing solutions. Specifically, we eliminate the assump-
tion of a trusted Verifier, which is not always applicable in real-world scenarios, as the need for the devices
to share identifiable information with the Verifier may lead to the expansion of the attack landscape. To this
end, we have designed an enhanced variant of the Direct Anonymous Attestation (DAA) protocol, offering
traceability and linkability whenever needed. This enables PRIVÉ to achieve anonymous, privacy-preserving
attestation while also providing the capability to trace a failed attestation back to the compromised device.
To the best of our knowledge, this paper presents the first Universally Composable (UC) security model for
swarm attestation accompanied by mathematical UC security proofs, as well as experimental benchmarking
results that highlight the efficiency and scalability of the proposed scheme.

1 INTRODUCTION

In recent years, the exponential proliferation of low-
cost embedded devices and the Internet of Things
(IoT) has significantly contributed to developing
innovative environments, particularly in advancing
Intelligent Transportation Systems. Unfortunately,
these devices represent natural and attractive malware
attack targets despite many benefits. To ensure the
correctness of the operational state of a device, Re-
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mote Attestation (RA) has been proposed to detect un-
expected modifications in the configuration of loaded
binaries and check software integrity. However, typ-
ical RA schemes assume the existence of a single
Prover and a single Verifier, introducing efficiency
and scalability issues for large-scale systems compris-
ing multiple Edge and IoT devices. In this context,
swarm attestation [Ambrosin et al., 2020] has been
proposed to enable the root Verifier (V ) to check the
sanity of a set of swarm devices simultaneously.

Several swarm attestation schemes have been pro-
posed in the literature [Asokan et al., 2015,Ambrosin
et al., 2016,Dushku et al., 2023,Le-Papin et al., 2023]
to verify the integrity and establish trust among de-
vices in large-scale systems. In such environments,
trust is pivotal in the decision-making processs as it
helps the devices to select collaborators, to assess
the trustworthiness of incoming data, and to mitigate
threats from untrustworthy or hostile entities. How-



ever, in state-of-the-art solutions, the trust is typi-
cally confined to system integrity and dependability
aspects, excluding other important dimensions such
as identity privacy (anonymity) and evidence privacy.

In such complex and dynamic systems, we of-
ten have to make trust decisions based on incom-
plete, conflicting, or uncertain information. Tradi-
tional probabilistic models assume that we have com-
plete knowledge of all possibilities and their respec-
tive probabilities, but in dynamic, distributed environ-
ments, this is rarely the case. For example, a sys-
tem might receive conflicting data from different data
sources or communication channels. Also, not all data
sources are equally reliable, and some may be com-
promised or faulty.

In such environments, the use of an evidence-
based theory for trust assessment becomes essential,
because it allows us to explicitly represent uncer-
tainty. Rather than forcing a decision based on in-
complete data, we can account for the fact that we
do not have enough information, thus reflecting un-
certainty in our trust assessments. A core enabler in
this direction is the use of robust (swarm) attestation
mechanisms for extracting evidence on the status of
the target device in a verifiable manner. Depending
on the property of the device to be assessed, differ-
ent types of evidence may be required. In the context
of security-related trust properties, trust sources in-
clude detection mechanisms, e.g., Intrusion Detection
Systems, Misbehaviour Detection Systems, or mecha-
nisms to evaluate the existence and/or enforcement of
security claims such as secure boot, configuration in-
tegrity etc. In its simplest form, the received evidence
can be distinguished into one main category: Binary
evidence that allows the verifier to compute whether a
security claim is valid or not. For instance, this is the
case of the secure boot certificate chain that allows a
verifier to make an informed decision that the prover
has executed its secure boot process. On the other
side, there is evidence that results in claims expressed
in the form of a range. This is the case of some Misbe-
haviour Detection systems that provide a score- e.g.,
confidence level- about abnormal behaviour of a de-
vice. This diversity of the evidence outcome intro-
duces the need for robust attestation mechanisms to
enable the quantification of trustworthiness in an effi-
cient and reliable manner.

Typical swarm attestation schemes rely on a span-
ning tree [Asokan et al., 2015, Carpent et al., 2017]
to aggregate the attestation results, where swarm de-
vices are attested by neighboring devices based on a
parent-child relationship in a tree format with a cen-
tralized Verifier. To address this fixed parent-child re-
lationship, other works leverage the broadcasting ag-

gregate pattern, in which every device broadcasts its
response to the attestation challenge to its neighbors
[Kohnhäuser et al., 2018]. However, there has been
very limited focus on privacy issues of the swarm de-
vices [Abera et al., ]. While some schemes do not pro-
vide information about the individual devices or de-
vices causing a failed attestation, they do not explic-
itly focus on privacy (e.g., [Asokan et al., 2015], [Am-
brosin et al., 2016]). Conversely, other attestation
schemes only provide information about the devices
causing a failed attestation, such as [Ammar et al.,
2020]. Moreover, two schemes are proposed in [Car-
pent et al., 2017], one of which keeps a list of the
failed devices, and the other does not.

Swarm attestation faces significant challenges in
maintaining identity and evidence privacy, especially
in large-scale systems with numerous IoT and edge
devices. In this context, we have to be able to make
trust decisions based on fresh trustworthiness evi-
dence without impeding the privacy of the overall
system. Therefore, it is crucial to conceal each de-
vice’s identity and the nature of the evidence they
present. However, the dynamic nature of such (multi-
agent) systems requires that trust assessment is not
only based on reasoning under uncertainty (evidence
may be incomplete, conflicting, or contain uncertain
information on the integrity of the device), but it also
ensures that the evidence used to compute trust opin-
ions is verifiable. Trust cannot be randomly assigned
or assumed from previous interactions but must be
continuously verified and updated through collectable
evidence. This principle aligns with the Zero-Trust
paradigm, which dictates that no entity should be in-
herently trusted without validation. Verification of ev-
idence is related to the use of Trust Anchors since they
are the starting point for verifying the chain of trust.

Consider, for instance, the case of Connected
and Cooperative Automated Mobility (CCAM) ser-
vices in the automotive domain, where it is critical
to assess trustworthiness in terms of integrity without
compromising the safety-critical profile and privacy
of the running services (e.g., Collision Avoidance).
Especially when considering the need to share such
trusting opinions between different administrative do-
mains. Swarm attestation must effectively verify the
status of these devices within the in-vehicle network
to ensure that safety decisions are made based on reli-
able sensor inputs. On the other hand, Verifiers should
not ascertain which specific device attests to which
property or the exact expected measurement values.
Disclosing such information could lead to implemen-
tation disclosure attacks, vehicle fingerprinting, or
driver behavior tracking. These concepts, while in-
terrelated, require clearer terminological distinctions



to facilitate practical trust assessment and manage-
ment within decentralized environments of mixed-
criticality.

One efficient technique that allows for checking
the integrity of the devices while preserving their
anonymity is called Direct Anonymous Attestation
(DAA). In this work, we extend the DAA to offer two
security properties besides anonymity: evidence pri-
vacy and traceability. The evidence privacy means
that the signer doesn’t disclose the signed message,
such as the current device’s configuration, to the Veri-
fier while still allowing public verifiability. We obtain
this by binding the use of the DAA signing key to a re-
stricted policy that only allows the key to sign a mes-
sage if the policy is satisfied. This subsequently al-
lows the Verifier to trust the attestation results without
accessing sensitive information. Traceability enables
the correct tracing of a device in case of any failed
attestation. The dual protection of device identity
and evidence ensures privacy and robust accountabil-
ity, making it essential for trustworthiness evidence
provision in today’s evidence-based trust assessment
frameworks.

To address the aforementioned challenges, this
paper introduces a secure and efficient attestation
scheme that can correctly make valid statements
about the integrity of both single devices and a swarm
of devices in a privacy-preserving but accountable
manner. This means that the designed scheme should
be able to provide verifiable evidence on the correct-
ness of a swarm by concealing the identities of the de-
vices, and only in the case of a possible compromise
detection should it allow for tracing back a failed at-
testation to the swarm device that caused the failure,
instead of isolating the entire swarm.

Contributions. In this paper, we pro-
pose the PRIVÉ swarm attestation scheme for
privacy-preserving swarm attestation. We lever-
age trusted computing technologies and strong
privacy-enhancing cryptographic protocols (e.g.,
DAA [Brickell et al., 2004,Chen et al., 2023]), which
provide decentralized privacy-preserving attestation
using blind group signatures. PRIVÉ considers an in-
terconnected network of heterogeneous IoT and Edge
devices to convince a Verifier (V ) of the integrity
of the attestation result based on signed attestation
evidence of the enrolled swarm devices. Addition-
ally, in its operation, PRIVÉ safeguards the devices’
identity privacy but also provides traceability in case
the attested device is deemed compromised. Thus,
we do not assume the trustworthiness of the IoT/Edge
devices or the Verifier. To the best of our knowledge,
we provide the first detailed mathematical analysis
for swarm attestation schemes in the Universally

Composable (UC) model. This analysis provides
proof regarding all envisioned security and privacy
requirements in PRIVÉ. Furthermore, we provide a
benchmarking analysis to demonstrate the protocol’s
performance and real-world applicability.

2 PRELIMINARIES

Notation.We present the notations that will be fol-
lowed throughout the paper in Table 1.
PRIVÉ Building Blocks. To enable a privacy-
preserving and accountable swarm attestation ap-
proach, PRIVÉ adopts DAA to compute the device
attestation with zero knowledge and relies on bilin-
ear aggregation signatures to efficiently aggregate the
devices’ signatures across the swarm.
Direct Anonymous Attestation (DAA). DAA
[Brickell et al., 2004, Brickell et al., 2008], is a
platform authentication mechanism that allows
privacy-preserving remote attestation of a device
associated with a Trusted Component (TC) but does
not support the property of traceability. In general,
DAA requires an Issuer and a set of Signers. , and
a set of Verifiers. It includes five algorithms: Setup,
Join, Sign, Verify, and Link. The issuer produces
a DAA membership credential for each signer,
corresponding to a signature of the signer’s identity.
A DAA signer consists of the Host and TC pair.
Bilinear Aggregation Signatures. The purpose of
designing aggregate signatures is to reduce the length
of digital signatures in applications that use multiple
signatures [Boneh et al., 2003b]. In a general aggre-
gate signatures scheme, the aggregation can be done
by anyone without the signers’ cooperation. In par-
ticular, each given user i signs her message mi to ob-
tain a signature σi. Consider a set of k signatures
σ1, ...,σk on messages m1, ...,mk under public keys
PK1, ...,PKk, respectively. In this case, anyone can
use a public aggregation algorithm to compress all k
signatures into a single signature σ, whose length is
the same as a signature on a single message. To ver-
ify it, all the original messages and public keys are
needed. In particular, given an aggregate signature σ,
public keys PK1, ...,PKk and messages m1, ...,mk, the
aggregate verification algorithm verifies whether the
aggregate signature σ is valid.

The bilinear aggregate signature scheme [Boneh
et al., 2003b] enables efficient aggregation, allow-
ing an arbitrary aggregating party unrelated to, and
untrusted by, the original signers to combine k pre-
existing signatures into a single aggregated signature.
The scheme consists of the following algorithms:

Key Generation. For a particular user, pick ran-
dom x←Zp and compute w← gx

2. x∈Zp and w∈G2



Table 1: Notation Summary

Symbol Description Symbol Description

TC Trusted Component (x,y) The Privacy CA private key
E j The jth edge device (X ,Y ) The Privacy CA public key
M j TC that corresponds to the jth edge device (xL,yL) The IoT device long-term key-pair
Hj The host that corresponds to jth edge device (xp,yp) The IoT device short-term key-pair (pseudonym)
V Verifier σL

DAA DAA signature on the long-term public key yL
v Number of edge devices in the swarm σi ith IoT device signature on its current state mi
t TC’s private key SPK Signature based Proof of Knowledge
Q j E j’s public key known by the Privacy CA ch, f Attestation challenges
(a,b,c,d) E j’s credential created by the Privacy CA ρ,r,s Random numbers in Zq
Tj E j’s public tracing key known by the Opener k Number of IoT devices in the swarm
T The Opener’s Tracing Key σ[1−n] An aggregated signature of n IoT devices
q A prime number defining the order of cyclic groups bsn A random input in {0,1}∗
g1,g2,g3 Generators of the groups G1,G2,G3 M∗i ith IoT devices’ golden configuration (legitimate state)

Function Description Proofs Description

H Hash function: H : {0,1}∗ −→ G1 πipk Proof of CA public key construction
e Pairing function: e : G1×G2→ G3 π1,π2 Proofs of construction of Q j and Tj

e(g1,g2)→ g3 πCA
j Proof of E j’s credential construction

πL,πp Proofs of construction of yL and yp, respectively

are the user’s private and public keys, respectively.
Signing. For a particular user, given the public

key w, the private key x, and a message m ∈ {0,1}∗,
compute h← H(w,m), where h ∈ G1, and σ← hx.

Verification. Given a user’s public key w, a mes-
sage m, and a signature σ, compute h←H(w,m). The
signature is accepted as valid if e(σ,g2) = e(h,w).

Aggregation. Arbitrarily assign an index i to
each user whose signature will be aggregated, ranging
from 1 to k. Each user i provides a signature σi ∈ G1
on a message mi ∈ {0,1}∗ of her choice. Compute
signature σ←∏

k
i=1 σi.

Aggregate Verification. Given an aggregate sig-
nature σ ∈ G1 for a set of users (indexed as before),
the original messages mi ∈ {0,1}∗, and public keys
wi ∈ G2. To verify the aggregate signature σ, com-
pute hi ← H(wi,mi) for 1 ≤ i ≤ k, and accept if
e(σ,g2) = ∏

k
i=1 e(hi,wi) holds.

3 SYSTEM MODEL

We consider a static interconnected network of het-
erogeneous devices consisting of v edge devices and
k IoT devices, following a hierarchical fog computing
structure [ope, 2018], as depicted in Fig. 1.

IoT devices (D): An untrusted and resource-
constrained device (e.g., a sensor), that is uniquely
identified as Di for i ∈ [1,k]. It is assumed that D has
a minimal Trusted Computing Base (TCB) and is con-
nected to only one edge device. The TCB includes (1)
a Read-Only Memory (ROM) containing the attesta-
tion protocol code, and (2) Secure Key Storage that is
read-accessed only by the attestation protocol.

Edge devices (E): An untrusted, powerful device
with sizeable computational power and storage ca-

Edge 2: σE2 DAA Edge 3: σE3 DAA

Edge 1:  σE1 
DAA

σ1 σ3σ2
σ4 σ6

si: the secret key of the ith IoT device and σ i = H(m) si 

σE2 DAA

σ[1−3]
σE3 DAA

σ[4−6]

 σ[1−3] = σ1 × σ2 × σ3

s1 s2 s3 s4 s5 s6

 σ[4−6] = σ4 × σ5 × σ6

σ5

σ[1−3]× σ[4-6]

σE2 
DAA | σE3 

DAA | σE1 
DAA

Figure 1: Overview of the Swarm Topology

pacity. It is a combination of a Host Hj (i.e., “nor-
mal world”) and a Trusted Component (TC) (i.e., “se-
cure world”) such as Trusted Platform Module (TPM
2.0) [tpm, 2016]. Each edge device is uniquely iden-
tified as E j for j ∈ [1,v]. Each E is a parent of a set of
heterogeneous IoT devices and knows its children’s
legitimate state (i.e., a hash of the binaries). Thus,
each edge device authenticates its children’s IoT de-
vices.

Verifier (V ): Any third party that initiates the
attestation and validates the trustworthiness of the
swarm. The Verifier knows the number of IoT devices
involved in the swarm. We assume an honest-but-
curious Verifier that legitimately performs the verifi-
cation but will attempt to learn all possible informa-
tion from the received attestation results.

Privacy Certification Authority (Privacy CA): A
trusted third party that acts both as an Issuer and Net-
work Operator. It is responsible for conducting the
secure setup of the fog architecture, verifying the cor-
rect creation of all cryptographic primitives, and au-



thorizing the devices to join the network.
Opener (Opener or Tracer): A trusted entity that

traces the compromised device(s) when the swarm at-
testation fails to perform recovery actions.

Threat model. In the context of the system de-
scribed above, we consider remote software adver-
saries (AdvSW ) that aim to compromise IoT and edge
devices in the swarm by exploiting software vulner-
abilities and injecting malicious code. Moreover, we
consider honest but curious adversaries AdvHBC who
are legitimate participants in the swarm but aim to
disclose the device’s privacy. Additionally, swarms
are susceptible to network adversaries (AdvNET ) that
can forge, drop, delay, and eavesdrop on the messages
exchanged among two devices in the swarm. We con-
sider a classic Dolev-Yao (DY) [Dolev and Yao, 1983]
adversary with full control over the communication
channel between an IoT device and edge device in
the swarm, two edge devices, or one edge device and
the Verifier. However, in line with other works [Ca-
menisch et al., 2017, Wesemeyer and all, 2020], we
assume a perfectly secure channel between the Host
and the TC in an edge device. Thus, the AdvNET can-
not intercept the interaction between the Host and the
TC or use the TC as an oracle. Physical Adversaries
(AdvPHY ) are beyond our scope.

4 SECURITY REQUIREMENTS

To prove the security properties of PRIVÉ , we em-
ploy the UC model introduced in (§ 6.1), for which
we define the following high-level security properties:

Anonymity (SP1): It should be possible to con-
ceal the identity of honest Edge and IoT devices from
Verifier V by creating anonymous signatures that per-
fectly hide the identities of the devices in a swarm.

Traceability (SP2): It should be possible for the
Opener to trace the source of an attestation failure
back to its source so that a potentially compromised
edge device can be revoked. On the other hand, an
honest parent edge device can trace its children IoT
signatures back to their source IoT devices (SP3).

Correctness (SP4): Honestly generated signa-
tures should always be considered valid, and honest
users should not be revoked.

Non-frameability (SP5): It should not be pos-
sible for an adversary to create signatures that suc-
cessfully impersonate an honest device or link to hon-
est signatures. This extends to Unforgeability (SP6),
where it should be computationally infeasible to forge
a signature σ on a message µ that is accepted by the
verification algorithm when no honest device signs µ.

Linkability (SP7): It should be possible for a Ver-
ifier to check if any two DAA signatures signed under

the same basename originate from the same edge de-
vice without breaching its privacy.

5 THE PRIVÉ PROTOCOL

We present an overview of the main phases of our pro-
posed protocol PRIVÉ without first including the de-
tails of internal cryptographic primitives, which will
be presented in § 5.1. The setup phase is a one-time
offline procedure performed by the Privacy Certifi-
cation Authority (Privacy CA) to guarantee the se-
cure deployment and enrollment of the devices in the
swarm and the creation of the IoT device short-term
keys (pseudonyms). The attestation process is then
initiated by the Verifier V that sends a challenge f
to one or more edge devices, which will then dis-
tribute it recursively to all its (children) swarm de-
vices. Then, each IoT Device Di produces and signs
its attestation evidence (attestation claim) using a pre-
certified pseudonym. All these claims are sent to the
parent Edge Device, E j, that aggregates them, ap-
pends its DAA signature, and sends the aggregated
claims together with its DAA signature to the root
edge (such as Edge 1 in Figure 1). When the root
edge receives all other edges’ contributions, it creates
its DAA signature, aggregates the received IoT ag-
gregated claims and appends all the DAA signatures,
including its own. This constitutes the swarm signa-
ture. The swarm signature is then forwarded to V .
After obtaining the swarm attestation report, V ver-
ifies DAA signatures and checks the total number of
IoT signatures to ensure that all IoT devices have been
included in the report. In the case of a non-valid DAA
signature or a missing IoT signature, V leverages the
novel traceability feature of PRIVÉ to trace the result
back to the compromised device.

5.1 Detailed Description of PRIVÉ

In this section, we provide a detailed description
of PRIVÉ . The required notation is presented in
Tab. 1, The protocol consists of the Setup and Join
(§ 5.1.1), Attestation (§ 5.1.2), and Verification
(§ 5.1.3) phases.

5.1.1 Setup and Join Phases

The setup phase starts with the Privacy CA being
equipped with the necessary key pairs x,y ← Zq,
where X = gx

2 and Y = gy
2. The Privacy CA, if needed,

can prove the well-formed construction of the secret
key (x,y) through the creation of a proof of knowl-
edge πipk (that can also be signed by the Root Certi-
fication Authority in such systems). (X ,Y ) are public



parameters shared by the Privacy CA and other sys-
tem parameters.
Edge-Join. The edge device Enrollment process
starts from an edge device E j, where j ∈ [1,v], that
sends an enrollment request to the Privacy CA for
joining the target service graph chain. The Privacy
CA chooses a fresh nonce ρ and sends it to E j, who
forwards it to its embedded TC denoted by M j. Then,
M j chooses a secret key t ← Zq, sets its public key
Q j = gt

1. We use a policy that can be satisfied if
a selection of the Platform Configuration Registers
(PCR)s matches a predetermined value, referencing
a trusted state. We use PolicyPCR commands (of the
underlying Root-of-Trust) to ensure that the edge de-
vice signing key is inoperable if the integrity of the
Edge device is compromised (cf. Section 8 for fur-
ther details on the implementation of such commands
in the case of a Trusted Platform Module (TPM) as
the host secure element). M j can also compute π1

j as
a proof of construction of Q j. This proof, Q j, can
be signed with the embedded TC’s endorsement key,
thus elevating it to a verifiable credential over the cor-
rect construction and binding of the secret key t. The
pair (Q j,π

1
j) (alongside the public part of the TC’s

root certificate) is then sent to the Privacy CA who
verifies π1

j and checks whether the edge device is el-
igible to join, i.e. the edge device DAA key has not
been registered before. Upon validation, the Privacy
CA picks a random r← Zq and generates E j’s DAA
credential (a,b,c,d) by setting a = gr

1,b = ay,c =
axQrxy

j and d = Qry
j . The Privacy CA also generates a

proof πCA
j on the credential construction.

Generating the Tracing Keys by the Opener. Each
M j sets Tj = gt

2 and computes π2
j as a proof of con-

struction of Tj. M j sends (Tj,Q j,π
1
j ,π

2
j) via E j to the

Opener. The Opener verifies π1
j and π2

j and makes
sure that Tj and Q j link to the same TC by checking
if the following holds:

e(Q j,g2) = e(g1,Tj) (1)

To convince the Opener that Tj is a correct key, M j
may also send to the Opener the DAA credential of
Q j issued by the Privacy CA. After receiving all edge
devices Tj, for all j ∈ [1,v], and their corresponding
public keys Q j, the Opener sets its tracing key T as
follows: T = {T1,T2, . . . ,Tv} and keeps the (Q j,Tj)
pairs for all j ∈ [1,v].
IoT-Join. Each IoT device is equipped with a long-
term key pair (xL ∈ Zq,yL) whose public part yL =
g1

xL represents the IoT device’s identity and is certi-
fied by the Privacy CA. Let πL represent a proof of
construction of yL = g1

xL . The enrollment of IoT de-
vices consists of the following steps:

1. Each edge device certifies its children’s IoT long-
term key by creating a DAA signature σL

DAA on yL.
2. Once the long-term key is certified, each IoT

device creates short-term random keys (xp ∈
Zq,yp = gxp

2 ,πp), for each integer p ∈ [1, . . .P]
where πp is a proof of construction of yp and P is
the total number of pseudonyms (short-term ran-
dom keys) that will be certified by the edge de-
vice. This is called pseudonymity, which is the
ability of an edge device to use a resource or
service without disclosing the IoT user’s identity
while still being accountable for that action.

3. The IoT device self-certifies its public key yp by
creating a signature σ

p
L on yp using its own long-

term secret key xL. This signature prevents any
other device (including edge devices and author-
ities) from signing on behalf of the IoT device
without knowing the IoT device’s long-term se-
cret signing key xL. Finally, the IoT device sends
(yL,yp,σ

p
L,πp) for each p ∈ [1, . . .P] to its mother.

4. The edge device verifies πp and σ
p
L on yp for

each p ∈ [1, . . .P]. Upon successful verification,
the edge device keeps (yp,yL,σ

L
DAA,σ

p
L) in its

records to be able to link each set of certified IoT
pseudonyms to their long-term key for each child
IoT device. This is particularly useful in cases
where an edge device needs to trace the identity
of its children’s IoT signatures.

We remove the index p from the remaining protocol
description and use σi and (xi,yi) to denote the Di’s
signature and short-term key, respectively.

5.1.2 Attestation Phase

The swarm attestation is initiated by a Verifier V that
sends a challenge f to an edge device, which will then
distribute it recursively to all devices in the swarm.
The IoT devices sign their attestation results and re-
port them to their parent edge devices.
IoT Device Signature. When an IoT device receives
an attestation challenge f , it concatenates its current
configuration m∗i with the challenge f . Then, signs
the attestation response mi = (m∗i | f ) using one of its
short-term keys xi previously certified by its parent
edge device during the enrollment procedure. Each xi
is only used once to achieve IoT identity privacy. The
IoT device computes a BLS signature as follows:

σi = H(mi)
xi (2)

The IoT device sends σi and yi to its parent edge. The
parent edge device checks that every received yi is cer-
tified, relying on its records. The edge then aggregates
all the c received children signatures σ1, . . .σc in one
signature σ[1−c] as follows σ[1−c] = σ1× . . .×σc =



H(m1)
x1 × . . .×H(mc)

xc . When the attestation of a
given IoT device is missing, the edge device will not
include it in the aggregation.
Edge Device Signature & Traceability. The creation
of a traceable DAA signature starts with an edge de-
vice E j, with an embedded trusted component M j,
that gets a Verifier basename bsn defined as a random
string {0,1}∗ to enable traceability and linkability of
DAA signatures. The signature generation follows the
following steps:
1. To sign a message µ with respect to the basename

bsn, the edge device randomizes its credential by
choosing a random s← Zq, sets (a′,b′,c′,d′)←
(as,bs,cs,ds), and then sends (µ,bsn,b′) to M j.

2. Next, M j calculates the link token nym = (bsn)t .
E j and M j calculate a a Signature based Proof of
Knowledge SPK of the secret key t and its creden-
tial as follows:

SPK{t : nym = H(bsn)t ,d′ = b′t}(bsn,µ) (3)

M j samples ω← Zq, sets K = H(bsn)ω, J = b′ω

and sends (nym,K,J) to E j that calculates the
challenge ch = H(a′,b′,c′,d′,nym,K,J,µ) in Zq
and sends it to M j. M j then creates a Shnorr sig-
nature δ = ω+ ch t. Finally, the SPK has a form
of (δ,ch) and is included in the DAA signature.

3. The DAA signature is (a′,b′,c′,d′,SPK,nym). To
this end, the swarm signature is

(
σ[1−k],σ

j
DAA,yi

)
∀ i ∈ [1− k] and j ∈ [1− v], where k and v are
the total numbers of IoT and edge devices in the
swarm, respectively and σ[1−k] denotes the aggre-
gation of all the IoT signatures in the swarm. The
root edge performs this aggregation. If the attesta-
tion of some IoT devices is unsuccessful or miss-
ing, the mother edge device does not aggregate
such attestations. The final swarm aggregated sig-
nature will be as follows:

(
σ[1−l],σ

j
DAA,yi

)
, ∀ i ∈

[1− l] with l < k.

5.1.3 Verification Phase

Attestation Report Verification. After receiv-
ing an attestation report, the Verifier checks
the DAA signature of each edge device σ =(
a′,b′,c′,d′,nym, SPK = (δ,ch)

)
on a message µ

w.r.t. a basename bsn that is published with the sig-
nature. In particular, the Verifier verifies SPK w.r.t.
(µ,bsn) and nym, and checks that a′ ̸= 1, e(a′,Y ) =
e(b′,g2), e(c′,g2) = e(a′d′,X).

We assume that the verifiers have access to the ith IoT
devices’ golden configuration, denoted by M∗i , ∀ i ∈
[1,k]. The Verifier calculates H(Mi), with Mi =

(M∗i | f ), and checks the following equation:

e(σ[1−k],g2)
?
= e

(
H(M1),y1

)
× . . .× e

(
H(Mk),yk

)
(4)

that is only valid if the IoT device’s current configu-
ration mi, used in Equation 2, matches the golden one
Mi without knowing the value of mi; this offers IoT
evidence privacy. The Verifier claims that the swarm
attestation has failed if the aggregate result has less
than k aggregated signatures or if the verification of
Equation 4 fails. The verifier also checks that ch =

H(a′,b′,c′,d′,nym,H(bsn)δnym−ch,b′δd′−ch,µ).
Further, the Verifier can interact with the Opener
to initiate the tracing of the device with a failed
attestation.
Link. When a Verifier can access different
swarm attestation reports, she can check whether
any two DAA signatures originate from the same
edge device. Specifically, the Verifier checks if
both signatures are signed under the same base-
name known by the Verifier. More formally,
given σ1 = (a′1,b

′
1,c
′
1,d
′
1,nym1,SPK1) and σ2 =

(a′2,b
′
2,c
′
2,d
′
2,nym2,SPK2) on a message µ w.r.t. a

basename bsn. In this setting, the output is 1 when
both signatures are valid and nym1 = nym2; other-
wise, the output is 0.

The linkability of the IoT devices in a swarm attes-
tation relies on the static topology of the swarm; each
parent edge device has in its records the set of all cer-
tified pseudonyms associated with the corresponding
IoT device long-term key (used as the identity of the
IoT device) for each child IoT device. Thus, when-
ever an IoT device creates two signatures in two dif-
ferent SA instantiations, the edge device can identify
whether these two signatures originate from the same
IoT device (the edge device uses traceability to sup-
port linkability of IoT devices).
Tracing/Opening. In PRIVÉ , traceability consists of
two levels: The first level of swarm attestation trace-
ability relies on the traceability of the DAA signature,
which can be done by the Opener using its tracing
key. We achieve this by adding a traceability require-
ment for the existing DAA scheme [Camenisch et al.,
2016] to obtain a novel Traceable DAA protocol that
meets our security and privacy requirements. The sec-
ond level relies on the static swarm topology that links
each parent to their children. Tracing the IoT device
can be done by the edge device with the knowledge
of the IoT long-term key corresponding to the cer-
tified short-term pseudonyms. Specifically, starting
with a DAA signature σDAA with a corresponding link
token nym = H(bsn)t , the Opener uses its tracing key
T = {T1,T2, . . . ,Tv} to check the following equation:

e(nym,g2) = e(H(bsn),Tj) ∀ j ∈ [1− v] (5)



A successful verification allows the Opener to recover
M j’s public key Q j corresponding to Tj in its records,
as explained previously during the setup of the Trac-
ing Keys by the Opener. Once the edge device’s iden-
tity is recovered, it is easy for the edge device to re-
cover any of its children’s long-term public keys that
are certified by this edge device.
Revocation. Any Revocation Authority (RA), which
may also be the Opener, can remove misbehaving
edge devices without revealing the edge device’s
identity. The intuition behind the revocation scheme
is to be able to deactivate any DAA credential of
an edge device created during its enrollment [Larsen
et al., 2021]. We assume that a Revocation Authority
RA has access to a set of revoked DAA keys KRL.
The revocation authority checks that the DAA key
used to create the DAA signature is not in the revo-
cation list. This is done by checking that: ∀ t∗ ∈
KRL, nym ̸= H(bsn)t∗ . PRIVÉ also supports revo-
cation of the IoT devices by their parent edge de-
vice. We assume the edge device has access to a set
of IoT revoked keys called the IoT-Key Revocation
List IoTKRL. It can then check that each of its chil-
dren’s IoT signatures were not produced by any key
in IoTKRL. Relying on the trust of the edge devices
and the accuracy of the updated IoTKRL, edge de-
vices would also be able to correctly revoke the IoT
devices that their keys are IoTKRL.

6 PRIVÉ Security Analysis

In this section, we first introduce the Universally
Composable (UC) framework(§ 6.1), then we model
PRIVÉ in the Universally Composable (UC) frame-
work(§ 6.2), capturing all the security and privacy re-
quirements defined in § 4.

6.1 Methodology

Due to the complexity of the PRIVÉ scheme, it isn’t
easy to perform a complete security proof based on
traditional formal verification and symbolic modeling
techniques as the specified models might prove chal-
lenging to analyze and verify even in computational
rich machines [Meier et al., 2013]. Therefore, we em-
ploy the Universal Composability (UC) model, based
on which we aim to equate the real-world network
topology to an ideal-world model, both being indis-
tinguishable from each other from the perspective of
an adversary, in which it is possible to break down the
proposed scheme into simpler building blocks with
provable security. Specifically, the security defini-
tion of our swarm attestation protocol is given with
respect to an ideal functionality F . This is depicted
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Figure 2: UC security model: the Real and the Ideal world
executions are indistinguishable to the environment E .

in Figure 2 for a swarm of three edges and four IoT
devices. However, the UC model can be generalized
to any network topology and swarm size. In UC, an
environment E should not be able to distinguish, with
a non-negligible probability, between the two worlds:

The real world, where each of the PRIVÉ parties:
an Issuer I , a parent edge E j, a child IoT device Di,
and a Verifier V executes its assigned part of the real-
world protocol PRIVÉ denoted by Π. The network is
controlled by an adversary A that communicates with
the environment E . The ideal world, in which all par-
ties forward their inputs to a trusted entity, called the
ideal functionality F , which internally performs (in a
trustworthy manner) all the required tasks and creates
the parties’ outputs in the presence of a simulator S .

The endmost goal is to ensure that PRIVÉ se-
curely realizes all internal cryptographic tasks if for
any real-world adversary A that interacts with the
swarm, running Π, there exists an ideal world simu-
lator S that interacts with the ideal functionality F so
that no probabilistic polynomial time environment E
can distinguish whether it is interacting with the real
A or the ideal world adversary S . Another key point
of UC towards reducing the computational complex-
ity of the specified protocol is the composition theo-
rem that preserves the security of PRIVÉ , even if it is
arbitrarily composed with other instances of the same
or different protocols.

6.2 PRIVÉ UC Model

We now explain our security model in the UC
framework based on the ideal functionality F origi-
nally proposed in [Camenisch et al., 2016] and later
adopted in [Chen et al., 2019, El Kassem et al.,
2019]. We assume that F internally runs the sub-
functionalities defined in [Camenisch et al., 2016]. In
protocol’s join phase, we adopt the key binding pro-
tocol introduced in [Chen et al., 2024], which ensures
an authenticated channel between the TC and the Is-
suer even in the presence of a corrupt Host; therefore,
in contrast to [Camenisch et al., 2016], we don’t need



to model the semi-authenticated channel.
The UC framework lets us focus the analysis on

a single protocol instance with a globally unique
session identifier sid. F uses session identifiers of
the form sid = (I ,sid′) for some Issuer I and a
unique string sid′. In the real world, these strings are
mapped to the Issuer’s public key, and all parties use
sid to link their stored key material to the particular
Issuer. We define the Edge-JOIN, the IoT-JOIN,
and the SIGN sub-session identifiers jsid j, jsidi j
and ssid, respectively, to distinguish several join
and sign sessions that might run in parallel. We
define two “macros” to determine whether a secret
key key is consistent with the internal functionality
records. This is checked at several places in the ideal
functionality interfaces and depends on whether key
belongs to an honest or corrupt party. The first macro
CheckkeyHonest is used when the functionality
stores a new key that belongs to an honest party and
checks that none of the existing valid signatures are
identified as belonging to this party. The second
macro CheckkeyCorrupt is used when storing a
new key that belongs to a corrupt party and checks
that the new key does not break the identifiability
of signatures, i.e., it checks that there is no other
known key∗, unequal to key, such that both keys are
identified as the owner of a signature. Both functions
output a bit b, where b = 1 indicates that the new key
is consistent with the stored information, whereas
b = 0 signals an invalid key. We assume that the
Host Hj represents the same entity as E j. Thus,
M j and E j correspond to the TC and the Host in
an edge device E j. Finally, our model defines lists
that will be kept in the ideal functionality record
for the consistency of the joining devices, keys,
signatures, verification results, and key revocation
lists namely: EdgeMembers, EdgeKeys, EdgeSigned,
EdgeVer, IoTMembers, IoTKeys, IoTSigned, IoTVer
KRL and IoTKRL. Next, we present the interfaces of
PRIVÉ ideal functionality F .

SETUP: On input (SETUP, sid) from an Issuer I ,
output (SETUP, sid) to S . F then expects the adver-
sary S to provide the following algorithms, namely
(Kgen, Sign, Verify, Link, and Identify), that will be
used inside the functionality as follows:
Kgen: It consists of two probabilistic sub-algorithms:
Kgen that generates keys tsk and dsk for honest TCs
and IoT devices, respectively. Note that E j and Di are
uniquely identified by their keys tsk j and dski, respec-
tively. We remove the indices from the keys in our
security model description. PSEUDO-Kgen that takes
dsk as an input and generates a random short-term key
pair (s,o) for honest IoT devices.
Sign: A probabilistic algorithm used for honest TCs

and IoT devices to create the type of signature re-
quired by the corresponding operation. It consists of
the following sub-algorithms:
1. sigDAA(tsk,µ,bsn): On input of a secret key tsk, a

message µ and a basename bsn, it outputs a DAA
signature σ

j
DAA on behalf of E j.

2. sigIoT(dsk,m): It creates signatures on behalf of
Di. It runs PSEUDO-Kgen to create a short-term
key pair (s,o), then creates a signature σi on a
message m using the secret short-term key s.

Aggregate: A deterministic algorithm that aggregates
the IoT signatures using agg algorithm that takes as
inputs c IoT signatures σ1,σ2, . . . ,σc and outputs an
aggregated signature σ[1−c].

Verify: A deterministic algorithm that outputs a
binary result on the correctness of a signature. It con-
sists of two sub-algorithms:
1. verDAA(σDAA,µ,bsn): On input of a signature

σDAA, a message µ and a basename bsn, it outputs
b = 1 if the signature is valid, 0 otherwise.

2. verIoT(σ,m,o): On input of a signature σ, a mes-
sage m and a public short-term key o, it outputs
b = 1 if the signature is valid, 0 otherwise.
Link: (σ1,µ1,σ2,µ2): A deterministic algorithm

that checks if two signatures originate from the same
device. In the case of DAA signature linkability
checks, an extra parameter bsn is required as an in-
put. It outputs 1 if the same device generates σ1 and
σ2, and 0 otherwise.

Identify: A deterministic algorithm that ensures
consistency with the ideal functionality F ’s internal
records by connecting a signature to the key used to
generate it. It consists of two sub-algorithms:
1. identifyDAA(tsk,σDAA,µ,bsn): It outputs 1 if tsk

was used to produce σDAA, 0 otherwise.
2. identifyIoT(σ,m,dsk,s): It outputs 1 if σ was pro-

duced by an IoT device D, with an identity key
dsk, on a message m using the short term key s, 0
otherwise.

On input (ALGORITHMS, sid) from S , the ideal
functionality checks that Aggregate, Verify, Link, and
Identify are deterministic, store the algorithms and
output (SETUPDONE, sid) to I .

Edge-JOIN: On input (JOIN, sid, jsid j, M j) from
E j, create a join session record ⟨ jsid j,M j,E j⟩ and
output (JOINPROCEED, sid, jsid j, M j) to I . On
input (JOINCOMPLETE,sid, jsid j, tsk) from S :
• Abort if I or M j is honest and a record ⟨M j,∗,∗⟩ ∈
EdgeMembers already exists.

• If M j and E j are honest, set tsk←⊥.
• Else, verify that the provided tsk is eligible by:
• CheckkeyHonest(tsk) = 1 if M j is honest and E j

is corrupt, or CheckkeyCorrupt(tsk) = 1 if M j is



corrupt and E j is honest.
Insert ⟨M j,E j, tsk⟩ into EdgeMembers and output
(JOINED, sid, jsid j) to E j.

IoT-JOIN On input (JOIN,sid, jsidi j,Di,E j) from
Di, create a join session record ⟨ jsidi j,Di,E j⟩ and
output (JOINPROCEED, sid, jsidi j, Di) to E j.
On input (JOINCOMPLETE,sid, jsidi j,dsk) from S :
• Abort if I or Di is honest and a record ⟨Di,∗,∗⟩ ∈
IoTMembers already exists.

• If Di and E j are honest, set dsk←⊥.
• Else, verify that the provided dsk is eligible by
CheckkeyHonest(dsk) = 1 if Di is honest, or
CheckkeyCorrupt(dsk) = 1 if Di is corrupt.

Insert ⟨Di,E j,dsk⟩ into IoTMembers and output
(JOINED, sid, jsidi j, Di) to E j.

IoT-SIGN For all i ∈ [1,c j], where c j is the num-
ber of E j’s children IoT devices participating in
the swarm attestation. On input (SIGN,sid,ssid,mi)
from Di, with mi is the message to be signed
by a child Di, if I is honest and no entry
⟨Di,E j,∗⟩ in IoTMembers, abort. Else, create
a sign session record ⟨ssid,Di,E j,mi⟩ and output
(SIGNPROCEED,sid,ssid) to Di.
• On input (SIGNCOMPLETE,sid,ssid,σi) from S ,

if Di and E j are honest, ignore the adversary’s sig-
nature σi and internally generate the signature for a
fresh dsk or established dsk:
– Retrieve dsk from IoTKeys, if no key

exists, set dsk ← Kgen() and check
CheckkeyHonest(dsk) = 1.

– Compute signature σi ← sigIoT(dsk,mi) that in-
ternally runs PSEUDO-Kgen to create a short-
term key pair (si,oi) for Di, then check that
verIoT(σi,mi,oi) and identifyIoT(σi,mi,dsk,si)
are both equal to 1.

– Check that there is no D′ ̸= Di with key dsk′

registered in IoTMembers or IoTKeys with
identifyIoT(σi,mi,dsk

′
,si) = 1.

• Store ⟨Di,dsk,(si,oi)⟩ in IoTKeys.
• Compute σ

j
[1−c j ]

← agg(σ1, σ2, . . ., σc j ).

• Output (sid,ssid,σ j
[1−c j ]

,{σi,oi}i∈[1,c j ]) to E j.
AGGREGATION Calculate the aggregation of the v
(total number of edges in a swarm) aggregated sig-
natures as follows: σ[1−v] ← agg(σ1

[1−c1]
, . . .σv

[1−cv]
),

and store ⟨σ[1−v],σ
j
[1−c j ]

,(σi,mi,Di,oi)i∈[1,l]⟩ in
IoTSigned, where l = ∑

v
j=1 c j.

Edge-SIGN On input (SIGN, sid, ssid, M j, µ, bsn)
from E j, where j ∈ [1,v]. If I is honest and no en-
try ⟨M j,E j,∗⟩ exists in EdgeMembers, abort. Else,
create a sign session record ⟨ssid,M j,E j,µ,bsn⟩ and
output (SIGNPROCEED, sid, ssid, µ, bsn) to M j.

On input (SIGNCOMPLETE, ssid, σ
j
DAA) from S :

• If M j and E j are honest, ignore the adversary’s sig-
nature and internally generate the signature for a
fresh or established tsk:
– If bsn ̸= ⊥, retrieve tsk from ⟨M j,bsn, tsk⟩ ∈
EdgeKeys. If no such tsk exists or bsn = ⊥, set
tsk← Kgen(). Check CheckkeyHonest(tsk) = 1
and store ⟨M j, bsn, tsk⟩ in EdgeKeys.

– Compute σ
j
DAA ← sigDAA(tsk,µ,bsn) and check

verDAA(σ
j
DAA,µ,bsn) = 1.

– Check identifyDAA(σ
j
DAA,µ,bsn, tsk) = 1 and

check that there is no M ′ ̸= M j with key tsk′

registered in EdgeMembers or EdgeKeys with
identifyDAA (σ

j
DAA,µ,bsn, tsk′) = 1.

• If E j and M j are honest, store ⟨σ j
DAA, µ,

bsn, M j, E j⟩ in EdgeSigned and output
(SIGNATURE,sid,ssid,σ j

DAA) to E j.

Edge-VERIFY On input (VERIFY, sid, µ, bsn, σ
j
DAA,

σ[1−l], oi, KRL), i ∈ [1, l] and j ∈ [1,v] from V .
• For each j, retrieve all pairs (tsk,M j) from
⟨M j,∗, tsk⟩ ∈ EdgeKeys where identifyDAA(σ

j
DAA,

µ, bsn, tsk) = 1. Set f j = 0 if at least one of the
following conditions holds:
CHECK 1. More than one key tsk was found.
CHECK 2. I is honest and no pair (tsk,M j) was found.
CHECK 3. There is an honest M j but no entry

⟨∗,µ,bsn,M j⟩ ∈ EdgeSigned exists.
CHECK 4. There is a tsk∗ ∈ KRL where

identifyDAA(σ
j
DAA, µ, bsn, tsk∗) = 1

and no pair (tsk, M j) for an honest M j was
found.

• If f j ̸= 0, set f j = verDAA(σ
j
DAA, µ, bsn).

• Add ⟨σ j
DAA,µ,bsn,KRL, f j⟩ to EdgeVer, then pro-

ceed to verify the children IoT signatures.

IoT-VERIFY Output 0 if l ̸= k, else, retrieve
⟨σ[1−v],σ

j
[1−c j ]

,(σi,mi,Di,oi)i∈[1,l]⟩ from IoTSigned.
For each i retrieve all pairs (dsk,Di) from
IoTMembers and ⟨Di,dsk,(si,oi)⟩ ∈ IoTKeys
where identifyIoT(σi, mi, dsk, (si,oi)) = 1. Set fi = 0
if at least one of the following conditions holds:
CHECK1. More than one key dsk was found.
CHECK2. If the parent edge E j is honest, no (dsk,Di)

was found.
CHECK3. There is an honest Di but no entry

⟨∗,∗,(σi,mi,Di,∗)⟩ ∈ IoTSigned exists.
CHECK4. There is a dsk∗ ∈ IoTKRL where

identifyIoT(σi,mi,dsk∗,(si,oi)) = 1 and
no (dsk,Di,(si,oi)) for honest Di was found.

• If fi ̸= 0, set fi = verIoT(σi,mi,oi) and add
⟨σi,mi, IoTKRL, fi⟩ to IoTVer.

• Output (VERIFIED,0,sid,σ j
DAA,σ[1−k],yi), to V



if there exists at least one fi or f j equals to
0 for all j ∈ [1,v] and i ∈ [1, l]. Otherwise
(VERIFIED,1,sid,σ j

DAA,σ[1−l],oi).

Edge-LINK: On input (LINK, sid, σ, µ, σ′, µ′, bsn)
from some party V with bsn ̸=⊥, else:
• Output ⊥ to V if at least one signature tuple (σ, µ,
bsn) or (σ′, µ′, bsn) is not valid.

• For each tsk in EdgeMembers and EdgeKeys com-
pute b = identifyDAA(σ, µ, bsn, tsk) and b′ =
identifyDAA(σ

′, µ′, bsn, tsk), set f = 0 if b ̸= b′ and
f = 1 if b = b′ = 1.

• If f is not defined yet, set f = link(σ, µ, σ′, µ′, bsn).
Output (LINK, sid, f ) to V .

Edge-TRACE On input (TRACE,sid,σ j
DAA,µ,bsn)

from V , retrieve all pairs (tsk,M j) from
⟨M j,∗, tsk⟩ ∈ EdgeKeys where identifyDAA(σ

j
DAA, µ,

bsn, tsk) = 1. Output (TRACE,sid,E j) to V .

IoT-LINK: On input (LINK, sid, σ, m, σ′, m′) from
E j, output⊥ to E j if at least one signature tuple (σ,m)
or (σ′,m′) is not valid (verified via the verify inter-
face with IoTKRL= /0), else:
• For each (dsk,si) in IoTMembers and IoTKeys

compute b = identifyIoT(σ,m,dsk,s) and b′ =
identifyIoT(σ

′
i,m
′,dsk′,s′) and set f = 0 if b ̸= b′

and f = 1 if b = b′ = 1.
• If f is not defined yet, set f = link(σ,m,σ′,m′).
• Output (LINK,sid, f ) to E j.

IoT-TRACE On input (TRACE, sid,σi,mi) from E j,
retrieve all pairs (dsk,Di) from IoTMembers and
⟨Di,dsk,(si,oi)⟩ ∈ IoTKeys where identifyIoT(σi, mi,
dsk, (si,oi)) = 1. Output (TRACE,sid,Di) to E j.

6.3 Realizing Security Requirements

The complete security model of the intelligence part
of PRIVÉ expressed in UC terms, including the ideal
functionality interfaces for all the internal phases and
some essential checks, is presented in § 6.2. Before
proceeding with the UC security proof in § 7, we first
map the modeled interfaces to the security properties
outlined in § 4.
Anonymity (SP1): The anonymity of honest edge
devices, equipped with a valid TC, and their benign
(children) IoT devices is guaranteed by F due to
the random choice of tsk (E j’s private key) and dsk
(Di’s private key) for the construction of every DAA
and IoT signature as part of the Edge/IoT-SIGN in-
terfaces. In case of corrupt devices (either Edge or
IoT), S provides the signature, which conveys the
signer’s identity, as the signing key is extracted from
the respective device key pair. This reflects that the
anonymity of the whole swarm is only guaranteed if

both the Edge and IoT devices are honest.
Traceability (SP2): CheckkeyHonest described in
§ 6 prevents registering an honest tsk/dsk in the
Edge/IoT-JOIN interfaces that match an existing sig-
nature, so that conflicts can be avoided and sig-
natures can always be traced back to the origin
devices. Moreover, in the context of Revocation
(SP3), CHECK4 guarantees that valid signatures in
the Edge/IoT-VERIFY interfaces are not revoked
due to the identify algorithm being deterministic.
Correctness (SP4): When an honest device success-
fully creates a signature, honest Verifiers will always
accept this signature. This is since honestly gener-
ated signatures in the Edge/IoT-SIGN interfaces pass
through verDAA and verIoT checks before being output
to the external environment.
Non-frameability (SP5): The non-frameability
property guarantees that this signature cannot be
linked to a legitimate one created by the target device.
In this context, CHECK3 in the Edge/IoT-VERIFY
interfaces ensures that if the edge (respectively IoT)
device is honest, then no adversary can create signa-
tures that are identified to be signed by the edge (re-
spectively IoT) device. This extends to the unforge-
ability (SP6) property, which dictates that it is com-
putationally infeasible to forge signatures.
Linkability (SP7): CheckkeyCorrupt defined in § 6.2
prevents a corrupt tsk/dsk, matching with an exist-
ing signature, from being added to the lists of existing
members and keys, thus enabling the correct linkabil-
ity of signatures.

7 PRIVÉ Security Proof (Sketch)

Since we have defined the UC security model of
PRIVÉ , we can now proceed with the security proof
of the proposed scheme, leveraging the Discrete Log-
arithm (DL) and Decisional Diffie-Hellman (DDH)
assumptions. This can be expressed as follows:

Definition 7.1. (The Discrete Logarithm (DL) as-
sumption [McCurley, 1990]) Given y ∈ G2, find an
integer x such that gx

2 = y .

Definition 7.2. (Decisional Diffie-Hellman (DDH)
assumption [Boneh, 1998]) Let G be a group gen-
erated by some g. Given ga and gb, for random
and independent integers a,b ∈ Zq, a computation-
ally bounded adversary cannot distinguish gab from
any random element gr in the group.

Theorem 7.1. The PRIVÉ protocol securely realizes
F using random oracles and static corruptions when
DL and DDH assumptions hold if the CL signature
[Camenisch and Lysyanskaya, 2004] and the BLS sig-
nature [Boneh et al., 2003a] are unforgeable.



Proof of Theorem 7.1: We first present a high-
level description of our proof that consists of a se-
quence of games starting with the real-world protocol
execution in Game 1. Moving on to the next game,
we construct one entity, C, that runs the real-world
protocol for all honest parties. Then, we split C into
two pieces: an ideal functionality F and a simula-
tor S that simulates the real-world parties. Initially,
we start with an “empty” functionality F . With each
game, we gradually change F and update S accord-
ingly, moving from the real world to the ideal world,
and culminating in the full PRIVÉ F being realized
as part of the ideal world, thus proving our proposed
security model presented in § 6.2. The endmost goal
of our proof is to prove the indistinguishability be-
tween Game 1 and Game 14, i.e., between the com-
plete real world and the fully functional ideal world.
This is done by proving that each game is indistin-
guishable from the previous one, starting from Game
1 and reaching Game 14.

Our proof of Theorem 7.1 starts with setting up
the real-world games (Game 1 and Game 2), then in-
troducing the ideal functionality in Game 3. At this
stage, the ideal functionality F only forwards its in-
puts to the simulator and simulates the real world.
From Game 4 onward, F starts executing the setup
interface on behalf of the Issuer. Moving on to Game
5, F handles simple verification and linking checks
without performing any detailed checks at this stage;
i.e., it only checks if the device belongs to a revoca-
tion list separately. In Games 6− 7, F executes the
Join interface while performing checks to maintain
the registered keys’ consistency. It also adds checks
that allow only the devices that have successfully been
enrolled to create signatures. Game 8 proves the
anonymity of PRIVÉ by letting F handle the sign
queries on behalf of honest devices by creating swarm
attestation using freshly generated random keys in-
stead of running the sign algorithm using the device’s
signing key. At the end of this game, we prove that by
relying on DDH and DL constructions, an external en-
vironment will notice no change from previous games
where the real-world sign algorithm was executed as
explained in our UC model (§ 6.2). The sequence of
games is explained in Figure 3. We use the “≈” sign
to express games’ indistinguishability. Fi and Si in
Figure 3 represent the ideal functionality F and the
simulator S , respectively, as defined in the ith game
for 3 ≤ i ≤ 14. Next, we present a sketch UC proof
for Theorem 7.1.
Proof. Game 1 (Real World): This is PRIVÉ .
Game 2 (Transition to the Ideal World): An entity
C is introduced. C receives all inputs from the hon-
est parties and simulates the real-world protocol for

them. This is equivalent to Game 1, as this change is
invisible to E .
Game 3 (Transition to the Ideal World with Differ-
ent Structure): We now split C into two parts, F and
S , where F behaves as an ideal functionality. It re-
ceives all the inputs and forwards them to S , which
simulates the real-world protocol for honest parties
and sends the outputs to F . F then forwards these
outputs to E . This game is essentially equivalent to
Game 2 with a different structure.
Game 4 (F handles the setup): F now behaves dif-
ferently in the setup interface, as it stores the algo-
rithms defined in Section 6.2. F also performs checks
and ensures that the structure of sid, which represents
the issuer’s unique session identifier for an honest I ,
aborts if not. When I is honest, S will start simulat-
ing it. Since S is now running I , it knows its secret
key. In case I is corrupt, S extracts I ’s secret key
from πipk and proceeds to the setup interface on be-
half of I . By the simulation soundness of πipk, this
game transition is indistinguishable for the adversary
(Game 4 ≈ Game 3).
Game 5 (F handles the verification and linking):
F now performs the verification and linking checks
instead of forwarding them to S . There are no pro-
tocol messages; the outputs are exactly as in the
real-world protocol. However, the only difference is
that the verification algorithms that F uses (namely
verDAA and verIoT) do not contain revocation checks,
so knowing KRL and IoTKRL for corrupt edge and
IoT, respectively, F performs these checks separately,
and the outcomes are equal (Game 5 ≈ Game 4).
Game 6 (F handles the join): The join interface of
F is now changed. Specifically, F stores the mem-
bers that joined in its records. If I is honest, then
F stores the secret keys tsk and xL extracted from π1

and πL by S for corrupt edge and IoT devices, respec-
tively. F sets the tracing key for each honest edge
device (as it already knows its key tsk) or calculates
it from the extracted tsk (for corrupt edge devices).
Only if the edge or the IoT device is already registered
in EdgeMembers or IoTMembers, F will abort the
protocol. However, I has already tested this case be-
fore continuing with the query JOINPROCEED; thus,
F will not abort. Knowing tsk and all children dsks,
F proceeds with adding the children IoT devices into
IoTMembers on behalf of edge devices. Therefore,
F and S can interact to simulate the real protocol in
all cases. Due to the simulation soundness of π1 and
πL, Game 6 ≈ Game 5.
Game 7 (F further handles the join): If I is honest,
then F only allows the devices that joined to sign.
An honest edge device will always check whether it
joined with a TC in the real-world protocol, so there



Figure 3: Overview of the UC PRIVÉ Proof

is no difference for honest edge devices. In the case
that an honest M j performs a join protocol with a cor-
rupt edge device E j and an honest Issuer, S will make
a join query with F to ensure that M j and E j are in
EdgeMembers. Also, only joined IoT devices with
certified public keys can create signatures. The parent
edge device will check this before verifying its chil-
dren’s IoT signatures. Therefore Game 7 ≈ Game 6.
Game 8 (F handles the sign/ SP1: Anonymity)
(Simulating an edge device without knowing its se-
cret): In this game, we want to prove that an ex-
ternal environment cannot distinguish when F inter-
nally handles the signing queries instead of merely
forwarding them to S for M j. Suppose an environ-
ment can distinguish a signature (created by an honest
edge device with a secret signing key tsk) from a sig-
nature constructed by the same party but with a ran-
domly chosen fresh tsk. Then, we can use that envi-
ronment to break a Decisional Diffie–Hellman DDH
instance. M j uses tsk to set Q← gtsk

1 in the JOIN pro-
tocol, creates the proofs π1 in joining and π in sign-
ing, and to compute link tokens nym. In the simula-
tion, we set Q← α and simulate all proofs π1 and
π. For nym, the power over the random oracle is
used: S chooses H1(bsn) = gr

1 for r← Zq, and sets
nym← αr = H1(bsn)

tsk without knowing tsk and out-
put a signature. Anonymity of the IoT devices is also
achieved against Verifiers through the use of entirely
random pseudonyms (s,o) that don’t reveal the iden-
tities of the IoT devices. Thus, starting with an IoT
pseudonym, V cannot tell the identity of the IoT de-
vice that generated this pseudonym unless it collabo-
rates with the edge device. An external environment
cannot distinguish between an honest IoT signature
and a signature by the same party but with a randomly
chosen fresh dsk. Therefore, Game 8 ≈ Game 7.
Game 9 (SP2: Traceability): When storing a new
tsk or dsk, F checks if CheckkeyHonest = 1 or
CheckkeyCorrupt = 1 for both keys. If the device
is corrupt, F checks that CheckkeyCorrupt = 1 for
the keys tsk or/and dsk that the simulator extracted.
This check prevents the adversary from choosing dif-
ferent keys. There exists only a single tsk for ev-
ery valid signature where identifyDAA(σ j

DAA, µ, bsn,
tsk) = 1, and only a single dsk for every valid sig-

nature where identifyIoT((σ, m, dsk, (s,o)) = 1 for
each edge and device, respectively, thus this check
will never fail. For keys of honest devices, F veri-
fies that CheckkeyHonest= 1 whenever it receives or
creates a new key. With these checks, we avoid reg-
istering keys for which matching signatures already
exist. Since keys for honest devices are chosen uni-
formly from an exponentially large group and each
signature has exactly one matching key, the chance
that a signature under that key already exists is negli-
gible (Game 9 ≈ Game 8).
Game 10 (SP4: Correctness): In this game, F
checks that honestly generated signatures are always
valid. This is true since the sigDAA and signIoT algo-
rithms always create signatures that pass through ver-
ification checks. Also, they satisfy identifyDAA(tsk,
σDAA, µ, bsn)=1 and identifyIoT((σ, m, dsk, (s,o)) =
1. F ensures, using its internal records MemberList
and DomainKeys, that honest users aren’t sharing the
same secret key tsk or dsk; this is reduced with a non-
negligible probability of solving the DL problem. As-
sume that F receives an instance h ∈ G1 of the DL
problem and must answer logg1(h). F chooses an
honest device and simulates its tasks using the un-
known DL of h as its secret key. When a tsk/dsk
matches one of this device’s signatures in the revo-
cation list, then this must be the discrete log of h, as
there is only one tsk/dsk matching a signature (Game
10 ≈ Game 9).
Game 11 (SP5: Non-frameability): CHECK1 en-
sures that there are no multiple tsk or dsk values
matching one signature. F also checks, with the help
of its internal key records Members and DomainKeys,
that no other device already has a key that would
match this newly generated signature. If this fails, we
can solve the DL problem: We simulate a TC using
the unknown discrete logarithm of the DL instance as
tsk or dsk, as in the DDH reduction before. If a match-
ing tsk or dsk is found, then we have a solution to the
DL problem. Therefore, if solving the DL problem is
computationally infeasible, Game 11 ≈ Game 10.
Game 12 (SP6: Unforgeability): CHECK3 is added
to F to prevent anyone from forging signatures by
using honest tsk or dsk and their credentials. If the
Issuer is honest, CHECK2 prevents signing with in-



valid join credentials. This property is built on the un-
forgeability of the CL [Camenisch et al., 2016], com-
bined with the unforgeability of the aggregate signa-
tures [Boneh et al., 2003b].
Game 13 (SP3: Revocation) CHECK4 is added to
F . This ensures that honest devices are not being
revoked. If an honest device is simulated, when a
matching key is identified in KRL or IoTKRL, it must
be the key of the target instance. Equivalent to solv-
ing the DL of the problem (Game 13 ≈ Game 12).
Game 14 (SP7: Linkability): All the remaining
checks of the ideal functionality F related to link
queries are now included. Since tsk, dsk only match
one signature and no other signature, Game 14 is in-
distinguishable from Game 13, and F now includes
all the functionalities. This concludes the proof.

8 EVALUATION

We analytically evaluate the computational complex-
ity and performance of our protocol by measuring
the execution time of the core phases described in
§ 5.1. These can be divided into (i) offline, i.e.,
the operations which can be pre-computed or do not
need to be executed in real-time (such as the Setup
and Join phases described in § 5.1.1) and (ii) on-
line operations. Since we are interested in the evalu-
ation of PRIVÉ during runtime, the experiments pre-
sented here focus on the online operations (described
in § 5.1.2 and § 5.1.3).

Evaluation Environment Setup & Testing
Methods: To better capture the resource-constrained
nature of real-world environments, each edge device
was emulated by a Raspberry Pi 4 (ARM v8), rep-
resenting a node with medium computational power
and storage capacity. Additionally, each edge device
is equipped with an Infineon OptigaTM SLB 9670
TPM 2.0, as the underlying Root-of-Trust, leverag-
ing the BN P256 elliptic curve for all ECC-oriented
crypto operations. The same platform was also used
for evaluating the verification process of the attesta-
tion claims1. Each IoT node was represented by the
following platforms: Raspberry Pi Pico (ARM Cortex
M0+) and Arduino Nano (ESP32-S3), demonstrating
PRIVÉ’s capability to operate effectively on resource-
constrained embedded devices.

(IoT) Signature Construction: Running the pro-
tocol on IoT devices consists of two sequential steps:
(i) hash computation (for the construction of the at-
testation claims comrpising the necessary trustworthi-

1Please note that in practice, the Verifier can be a more
powerful platform, resulting in improved verification tim-
ings

Table 2: Overhead of PRIVÉ on the IoT devices during
signing

Raspberry Pi Pico Arduino Nano

Codebase (bytes) Mean (ms) ± (95% CI) Mean (ms) ± (95% CI)

SHA-256
2048 2.644 0.009 1.056 0.003
4096 5.158 0.008 2.007 0.002

SHA3
2048 5.210 0.017 2.037 0.003
4096 10.019 0.018 3.864 0.003

Hash to point 70.846 0.042 14.474 0.006

Point multiplication 140.719 0.529 32.011 0.109

Table 3: Aggregation and verification of IoT signatures

No. Aggregation Verification
IoT (ms) (ms)

1 - 10.455
2 0.104 12.017
4 0.291 16.885
8 0.630 26.065

16 1.333 47.494
32 2.933 82.484
64 5.663 161.994
128 11.081 307.348
256 21.885 606.069

ness evidence), and (ii) signature computation (hash-
to-point and point multiplication). Tab. 2 summarizes
the respctive computational costs. Our experiments
highlight the efficiency of the (configuration) integrity
checks even for a rather large codebase (≈ 4 KB) (in
real-world IoT actuators the average code size is ≈
2 KB). As it will be described later on, the online
operations performed by the IoT device incur signif-
icantly lower overhead on the overall protocol lifecy-
cle compared to the tasks of the attestation process
executed on the more resource-rich edge device.

Aggregation (Edge) and Verification (V ): The
time required for the aggregation of IoT signed at-

Table 4: DAA SIGN Operation Timing (HW-TPM)

Activity Mean (ms) ± (95% CI)

Total Application Stack 609.05 0.57/0.55

TPM2 StartAuthSession 23.93 2.67
TPM2 PolicyCommandCode 14.99 0.03
TPM2 PolicyOR 21.64 0.09
TPM2 LoadExternal 71.34 0.24/0.44
TPM2 VerifySignature 55.97 2.64
TPM2 PolicyAuthorize 34.36 7.74
TPM2 Commit 95.11 0.03/0.05
TPM2 Hash 34.04 0.04/0.009
TPM2 StartAuthSession 23.19 2.67
TPM2 PolicyNV 20.99 0.03
TPM2 PolicyOR 40.62 0.09
TPM2 VerifySignature 53.92 2.64
TPM2 PolicyAuthorize 34.36 7.41
TPM2 Sign 39.77 0.04/0.01
TPM2 FlushContext 13.27 0.02/0.01



(a) Signing (b) Verification
Figure 4: Scalability of PRIVÉ under trusted Edge devices

testation claims (by the edge device), and their sub-
sequent verification by V , is summarized in Tab. 3,
for a varying space of IoT signatures. What we can
observe is that the complexity of the aggregated sig-
nature construction is nearly linear to the number of
signatures. This is crucial to the overall protocol
serving as evidence to its low complexity; i.e., does
not increase (e.g., by growing exponentially) with the
number of signatures, making the aggregation opera-
tion efficient even for a large size of IoT devices. In
Figs. 4a and 4b, we also capture the device-level over-
head during the attestation and verification phases un-
der a trusted edge setting; i.e., without key restric-
tion policies, which necessitates the execution of ad-
ditional commands for asserting the correctness of the
attestation key binding.

In this context, the most performance-intensive
operation is the verification of the validity of each
edge device DAA signature on the aggregate re-
sult w.r.t, to the basename leveraged (dictating the
anonymity level). This is also then followed by the
validation of the overall aggregated IoT result (§ 4).
For the former, the DAA VERIFY is split into two
operational blocks: verification of the (randomized)
DAA credential that takes up ≈ 155ms (irrespective
of whether (bsn) changes for every signature or not)
and verification of the ECDSA signature that takes up
≈ 20ms. The DAA Credential verification, while effi-
cient, sums up to a higher required time than a simple
verification, as it also includes the execution of addi-
tional TPM2 NV Read and TPM2 PolicyNV commands
for asserting that the credential’s associated private
DAA Key is binded to the correct key restriction us-
age policy holding the policy hash of the expected
(correct) device configuration integrity. For the latter,
the verification of the aggregated IoT signature can be
split into a ”hash-to-point” step to compute H(mk),
and the computations of the pairings to perform the
actual IoT signature verification. This slow verifica-

tion time is mainly due to the complexity of the pair-
ing operation, which is very expensive w.r.t. elliptic
curve point additions used for the aggregation.

DAA Signature (Edge): In Tab. 4, we present the
timings of the DAA SIGN operation (performed by
edge devices) in a zero-trust setting. Although the
overall signing takes ≈ 600 ms, it should be high-
lighted that the actual signing operation (TPM2 Sign
command) is quite fast, requiring ≈ 40 ms. How-
ever, recall that in the zero-trust setting, the DAA
key is protected by key restriction usage policies,
so it can only be used if the device is in a correct
state (and, thus, providing implicit attestation of the
edge device). As aforementioned, this is captured by
the execution of TPM2 NV Read and TPM2 PolicyNV
commands, followed by the TPM2 PolicyOR and
TPM2 PolicyAuthorize commands, which not only
verify the correct key binding (otherwise, the sig-
nature will not have been constructed correctly if
the current device state does not match with the
trusted state been stored on the Platform Configura-
tion Registers) but also enable the ratification of the
pseudonyms’ validity used by the IoT devices; i.e.,
not have been revoked prior to be used for signing.
This process takes ≈ 100ms. Also, note that the du-
ration of 95.11 ms for the TPM2 Commit command
refers to the case where linkability is not needed,
therefore a basename is not used. In case linkabil-
ity capabilities are needed, a basename needs to be
used, which increases the execution time of this com-
mand to 224 ms, thus introducing a trade-off in terms
of efficiency versus linkability. However, even in this
case, the time needed for tracing back to the source of
a failed attestation signature, irrespectively of the size
and depth of the swarm topology, is rather efficient
- serving as evidence on the applicability of PRIVÉ
in safety-critical applications where pinpointing pos-
sible indications of risk is crucial; i.e., enabling the
fast deployment of reaction strategies.



9 CONCLUSIONS

In this paper, we provided a novel design for a swarm
attestation protocol, with the innovative feature of
identity privacy preservation and accountable attesta-
tion, by creating an enhanced version of a DAA vari-
ant with traceability. Our solution avoids the limi-
tations of existing schemes by providing the ability
to conceal the identity of the devices (unless they are
compromised) and the ability to trace a failed attesta-
tion to the source swarm device that caused the fail-
ure. Additionally, to the best of our knowledge, we
provide the first security analysis for swarm attesta-
tion with enhanced privacy features in the UC model.
Future work will explore how PRIVÉ can be lever-
aged to achieve attestation evidence privacy, leading
us to complete Zero Trust architectures.
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