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Abstract—In recent years, vehicles have evolved into cyber-
physical autonomous systems that rely on sensor data from
various sources within the vehicle. With the emergence of
Vehicle-to-Everything (V2X) technology, the scope of the
collaborative functionality in vehicles is now expanding to
the inter-vehicular level. To support these modern capabili-
ties, the complexity of the Electronic Control Units (ECUs)
and the In-Vehicle Network (IVN) architecture is rapidly
increasing. As a result, IVNs are now swarms of devices that
communicate safety-critical data. Unfortunately, current ve-
hicular networks lack security, opening the path to numerous
cyberattacks. A typical solution for verifying the integrity of
multiple devices is swarm attestation. However, in a typical
IVN setting, only the Original Equipment Manufacturer
(OEM) has access to the legitimate configuration of the
ECUs and does not want to disclose this information due to
intellectual property and security concerns. Therefore, state-
of-the-art swarm attestation schemes, which do not provide
privacy guarantees, are unsuitable for IVNs.

This paper proposes Secure Privacy Preserving Anony-
mous Swarm Attestation for In-Vehicle Networks (SPARK),
which builds upon a novel group signature scheme to en-
able privacy-preserving, anonymous, and traceable swarm
attestation of IVNs. We validate SPARK through a proof-
of-concept implementation using a standardized hardware
Trusted Platform Module (TPM 2.0) and representative
hardware platforms. The results demonstrate the real-world
applicability of SPARK.

Index Terms—Swarm attestation, In-vehicle networks, CAN,
IoT security

1. Introduction

With the ever-increasing demand for safety, automa-
tion, and user satisfaction, the number of collaborative
functions in vehicles is rapidly growing. As such, modern
vehicles are now becoming software-based cyber-physical
systems driven by sensor data from various sources in the
vehicle. In Advanced Driver-Assistance System (ADAS)
scenarios, where vehicle sensor data like speed, distance,
and camera data are shared for safety-critical decisions,
maintaining the integrity of these sensors and gateways
is crucial. If Electronic Control Units (ECUs) such as

the Brake Control Module or Forward Collision Warning
are compromised, they can transmit false data, potentially
leading to collisions or system failures.

In recent years, it has been shown that vehicles are
prone to cyberattacks [48], [59], [50], [51], [28]. One
example that highlights the issue is the Jeep Cherokee
hack [57], where researchers were able to inject arbitrary
messages in the In-Vehicle Network (IVN) by reprogram-
ming the firmware of the infotainment system, leading to
a recall of 1.4 million vehicles. In this context, a central
problem is effectively segmenting the network for security
purposes. Indeed, collaborative functions such as ADAS
pose a challenge in segmentation as they require data from
multiple sources in the vehicle. Furthermore, the info-
tainment system - the largest attack surface in a modern
vehicle [20] - by law has to display critical data to the
user, compromising the intended security segmentation.

As IVNs continue to grow, new protocols have been
proposed to cope with the increased bandwidth. Whereas
the Controller Area Network (CAN) [17] has been the de-
facto standard for three decades, recently, new generations
of CAN, namely, CAN FD [18] and CAN XL [25], as well
as other technologies (e.g., Automotive Ethernet (AE)) are
finding adoption. Furthermore, to improve the efficiency
of IVNs, a new network arrangement, known as zonal
architecture [5], has been proposed. In this arrangement,
the ECUs are grouped based on their physical location
within the vehicle rather than their specific functions (as is
the case in domain architectures). This approach reduces
wiring costs and enables centralized processing through
Zonal Gateways and a Central Gateway [5]. Addition-
ally, this architecture opens up opportunities for emerg-
ing Vehicle-to-Everything (V2X) technology to facilitate
collaborative functionalities between vehicles. However,
this arrangement poses security challenges for IVNs as
it typically does not provide physical segmentation of
critical functions. Nevertheless, establishing trust between
in-vehicle devices is crucial to enable collaborative func-
tionalities between vehicles.

Modern vehicles can have over 150 ECUs and more
than 100 million lines of code [72]; this increased com-
plexity presents substantial security challenges. While
state-of-the-art IVN security solutions (e.g., Network In-
trusion Detection Systems) focus on detecting the anoma-
lous behaviour of the connected devices, such approaches



typically only focus on the message communication and
produce false positive/negative findings [52]. This neces-
sitates security solutions that precisely verify the device
integrity. One crucial method for ensuring firmware in-
tegrity is Remote Attestation (RA) [69]. Typically, a RA
protocol involves an interactive process between a trusted
party known as the Verifier (V) and a potentially untrusted
party referred to as the Prover (Prv). In this context,
it is assumed that V and Prv have prior knowledge of
each other, with V possessing accurate information about
the Prv’s legitimate configuration. During attestation, V
sends a challenge ch, which prompts Prv to compute
its firmware state (e.g., by computing the hash of the
firmware) and relay the result back to ). Various RA pro-
tocols have been proposed in literature, including swarm
attestation approaches [6] that aim to attest collectively a
large number of devices. However, such conventional RA
approaches may not be applicable in vehicular settings
with vehicles being attested by each other and roadside
infrastructure. In the context of IVNs, the legitimate con-
figuration of the ECUs is confidential and only known
by the Original Equipment Manufacturer (OEM). Indeed,
sharing information regarding the legitimate configuration
of ECUs with third parties poses privacy challenges,
security concerns, and intellectual property issues [55],
[44]. Additionally, whenever any of the ECUs is deemed
compromised, it is essential to identify the affected device
for maintenance. To this end, modern vehicles require
a beyond state-of-the-art RA mechanism that preserves
individual ECU’s privacy during attestation but also allows
a trusted tracer authority to open the result in case of
attestation failure.

Contribution. In this paper, we propose Secure Pri-
vacy Preserving Anonymous Swarm Attestation for In-
Vehicle Networks (SPARK), a novel RA scheme that aims
to provide efficient, privacy-preserving, anonymous, and
traceable attestation for static swarm topologies, such as
IVNs. SPARK enables trust in V2X settings by preserv-
ing the privacy of the individual ECUs while allowing
public verification by any third-party, such as Road-Side
Units (RSUs) or another vehicle. Specifically, in SPARK,
we rely on the capabilities of Trusted Platform Mod-
ule (TPM) 2.0 present in emerging vehicles [41] and a
modified Direct Anonymous Attestation with Attributes
(DAA-A) scheme [24]. SPARK considers the emerging
zonal architecture in IVNSs, in which a swarm of ECUs
(IoT devices) is connected to Zonal Gateways (i.e., Edge
devices) while grouped into branches. We summarize the
main contributions as follows:

Evidence Privacy: In SPARK, each branch belonging
to a swarm is able to provide verifiable evidence that
guarantees the correctness of the swarm’s operational state
while not revealing any configuration of its connected de-
vices to an external verifier. We achieve evidence privacy
in a way that avoids using Zero-Knowledge Proofs (ZKPs)
to hide the evidence, as this would increase the protocol’s
complexity. Instead, we adopt the ZEKRO protocol [30]
to bind the usage of the Edge device signing key to a
policy that allows the key to be used only when the
Edge is in the correct state. Also, the evidence of each
of the children IoT devices is not reported to the External
Verifier. Instead, they are verified and kept at the Edge
device level.

Key binding: SPARK proposes a means to enforce
that the involved parties adhere to the network topology
in a privacy-preserving manner. In state-of-the-art swarm
attestation schemes for static topologies, a malicious
Edge/Aggregator can perform a “change of path” attack
by substituting one of the IoT attestations with another
attestation value from a different IoT device with similar
properties (i.e., correct hash of the software/firmware). To
the best of our knowledge, SPARK is the first to address
this issue as the keys of the children IoT devices are
linked to their parent key in such a way that prevents
modifications of the attestation result reported by each
IoT device.

Tracing: To the best of our knowledge, SPARK is
the first swarm attestation scheme to offer a tracing
scheme that can be implemented on TPM 2.0 without
modifications. In SPARK a trusted Tracer (i.e., the tracing
authority) uses a basename to contruct a tracing token.
This subsequently enables the Tracer to open (failed) attes-
tation results in order to identify the compromised/affected
devices for further diagnostics.

Proof-of-concept (PoC) implementation: We provide
a PoC implementation based on a hardware TPM 2.0
and four different embedded devices that closely resemble
the capabilities of modern automotive platforms. Using
this PoC, we provide an analysis of the device over-
head, scalability, network overhead, and tracing overhead.
This analysis demonstrates the real-world applicability of
SPARK.

2. Related Work

This section discusses related work w.r.t. three do-
mains relevant for this paper: swarm attestation, anony-
mous signatures, and vehicular networks. Table 1 high-
lights fundamental differences of SPARK with other
swarm attestation schemes.

2.1. Swarm Attestation.

Swarm attestation protocols aim to provide effi-
cient and scalable solutions to attest large networks [6].
Schemes such as SEDA [9], SANA [7], LISA [19],
SHeLA [64], FADIA [56] utilize a spanning tree, to
efficiently verify the integrity of multiple devices in a
large IoT network. In such schemes, the attestation request
is propagated through the network hierarchy, with parent
nodes relaying it to their child nodes. Subsequently, the
attestation result is aggregated at the root node. While
these schemes provide efficiency, they are centralized and
rely on a single trusted verifier to initiate and verify the
attestation result. To overcome the limitations of central-
ized verification, other swarm attestation schemes such as
DIAT [3], US-AID [40], ESDRA [49], and PASTA [47]
introduce distributed verification through multiple veri-
fiers. These schemes allow neighbouring devices to mu-
tually attest each other, resulting in improved security.
However, one drawback of these schemes is that they do
not provide public verifiability of the attestation results.

More recently, swarm attestation schemes have been
proposed in literature to enable any party to publicly
verify the attestation results. For instance, SCRAPS [63]
and PROVE [31] aim to achieve public verifiability in a



TABLE 1: Comparison with state-of-the-art swarm attestation protocols

Scheme Topology Provers-Verifiers Edge devices TPM 2.0 Publicly verifiable Evidence Privacy Tracing”
SEDA [9] Spanning tree Many-One X X X v X
SHeLA [64] Hierarchy Many-One v X X X v
ESDRA [49], US-AID [40], PASTA [47] Hierarchy Many-Many v X X X v
SANA [7] Spanning tree Many-Many X X v X v
SCRAPS [63], PROVE [31] publish-subscribe Many-Many X X v X v
[46], [61] Hierarchy Many-One X X X X Ve
SPARK Hierarchy Many-Many v v v v e

* SPARK proposes a novel tracing scheme that is TPM 2.0-enabled. In this scheme, tracing can only be performed by a certified Tracer authority that is provided with

the tracing key.

publish/subscribe IoT network, with subscribers acting as
verifiers. In SCRAPS [63], the attestation verification is
delegated to a smart contract. In PROVE [31], public veri-
fiability for IoT devices is achieved by leveraging one-way
key chains without relying on public-key cryptography.
However, current state-of-the-art swarm attestation
schemes do not provide advanced privacy guarantees for
swarm devices and do not employ TPM-enabled Edge de-
vices for attestation. In contrast to these existing schemes,
SPARK introduces an attestation mechanism that ensures
privacy preservation, anonymity, and traceability. In par-
ticular, SPARK introduces a novel tracing scheme enabled
by TPM 2.0, where tracing can only be conducted by a
certified Tracer authority equipped with the tracing key.

2.2. Anonymous Signatures

Anonymous signatures allow a group member to
anonymously create signatures on behalf of a group by
demonstrating that they possess a valid credential signed
by an Issuer without revealing any information about their
membership credential or identity. This is typically done
via efficient ZKP techniques.

One example of anonymous signatures are ring signa-
tures introduced by Rivest et al. [66]. In ring signatures,
the signer takes several public keys (referred to as the
ring), and a secret key corresponding to one of the public
keys. In general, ring signatures provide full anonymity
where the signatures are generated in an unlinkable man-
ner.

Group signatures are another signature type that guar-
antee that a message was sent by a certified group member
without leaking any information about the identity of
the group member who signed this message (anonymity)
unless an opening authority decides to open the signature
(traceability) [16], [21]. Without the tracing key, it should
be infeasible for an adversary (even given all the signing
keys) to determine the identity of the group member who
issued a specific signature. Group signatures have many
potential applications, such as trusted computing platforms
for protecting users’ privacy in public transportation and
V2X communication [53].

One key scheme that leverages anonymous signatures
is Direct Anonymous Attestation (DAA) [12], [33], [32].
DAA is an attestation protocol that offers anonymity and
user-controlled linkability, which is steered by a verifier
input called the basename. If a signer uses a fresh or empty
basename, the resulting attestations cannot be linked,
whereas repeated use of the same basename makes the
transactions linkable. The DAA signer consists of a prin-
ciple signer TPM that creates attestations about the state of

the host system, e.g., certifying the boot sequence. These
attestations convince a remote verifier that the platform it
communicates with is running on top of trusted hardware
and using the correct software.

State-of-the-art group signature schemes are not sup-
ported by the current TPM 2.0. In this paper, to the best of
our knowledge, we present the design and implementation
of the first group signature scheme that is fully supported
by the TPM 2.0 commands. For this, we propose a novel
scheme based on DAA-A, and we show its efficiency
in IVN applications, consisting of both ECUs and Zonal
Gateways, where all Zonal Gateways are equipped with a
TPM as a Root-of-Trust.

2.3. Vehicular Networks

In-Vehicle networks. Previous work has shown that
CAN-based vehicular networks lack confidentiality, in-
tegrity, authenticity and availability [71]. To safeguard the
integrity of IVNSs, diverse security solutions have been
proposed that can be broadly classified into preventative
protection, intrusion detection, authentication and post-
protection [43]. One prominent security mechanism in
literature is intrusion detection, which can be implemented
at various layers of the network stack [38]. However,
intrusion detection systems are known to produce false
positives and negatives. Hence, another promising security
solution is remote attestation, which is more demanding
but produces a deterministic result. Various works [46],
[61] have proposed centralized attestation of IVNs. In
these schemes, a powerful Master ECU runs the attestation
of the entire IVN. In VULCAN [73], the authors provide
a component attestation of protected modules through a
trusted global vehicle attestation server. Furthermore, in
[4], the attestation is conducted on an Edge server to
which the vehicle connects via an RSU. More recently, a
distributed approach has been proposed, where every ECU
verifies all the ECUs on which it depends [45]. Neverthe-
less, these schemes exhibit various limitations, such as
high cost, the need for custom hardware, and reliance on
network connectivity. Additionally, these schemes do not
consider the physical layout of modern vehicular networks
and are, therefore, inefficient.

V2X. In the context of V2X, several schemes aim to
establish privacy-preserving and/or anonymous authenti-
cation [27], [78], [77]. However, these schemes focus on
a network of vehicles/infrastructure rather than an IVN.
SPARK complements the state of the art by enabling a
way to establish trust at the device level between two
vehicles.



3. Problem Statement

We consider an IVN that follows the emerging zonal
architecture as depicted in Figure 1. In this architecture,
the ECUs are grouped based on their physical location
within the vehicle. Typically, the ECU firmware contains
proprietary information that should remain hidden to third
parties [55]. The group of ECUs within one physical
zone of the vehicle is managed by a Zonal Gateway and
together form a Branch. This Branch is in turn managed
by a Central Gateway. Central Gateways include numerous
connected interfaces, which can pose a potential attack
surface. Consequently, they should remain unaware of the
connected ECUs configurations.

Zonal
Gateway

y

Central

S

Gateway

Zonal ﬁ[

Gateway

Figure 1: A representation of an In-vehicle Network (IVN)
consisting of a Central Gateway, various Zonal Gateways
(Edge devices), and lightweight ECUs (IoT devices). The
Zonal Gateway together with its children ECUs forms a
network branch.

Consider the scenario where a smart vehicle is in mo-
tion and some traditional security mechanisms in the IVN,
e.g., traffic analysis, notice anomalous behaviour of the
connected devices. Due to the possibility of false positives,
verifying devices’ integrity and tracing the compromised
ones would be crucial. However, this is a non-trivial task.

Typically, for lightweight devices, the integrity veri-
fication mechanism would require the suspension of the
regular operation of the devices. However, given the crit-
icality of the system, it is impractical to suspend the
operation of all the devices in the IVN in order to perform
the integrity verification and identify the compromised
devices. Moreover, IVNs consist of lightweight ECUs with
a minimal Trusted Computing Base (TCB) [46], [76],
[34], [2] that have limited bandwidth for communication
with their respective Zonal Gateways. These Gateways
can be subject to tampering. Hence, they are considered
untrusted and should not be able to maliciously influence
the integrity verification process, e.g., by replacing the
results. Furthermore, in a V2X scenario, a vehicle or RSU
should be able to verify the integrity of any vehicle in
its proximity without prior knowledge of their expected
legitimate state. This is because: (1) OEMs keep firmware
configurations confidential, and (2) a vehicle cannot feasi-
bly store all firmware variations across all existing IVNs.

This paper aims to address these challenges by lever-
aging the properties of emerging zonal IVN architectures.
In this setting, to ensure the network’s integrity, any
third-party (internal or external) verifier should be able
to verify Zonal Gateways and their connected ECUs.
Thus, we consider the Central Gateway as an Internal
Verifier that should also be able to relay the attestation

result to any External Verifier over V2X technology, such
as any other vehicle or a RSU. This approach enables
vehicles of different models and brands to verify each
other’s integrity without revealing any critical information
about their IVN configuration. Furthermore, we propose
a privacy-preserving tracing mechanism that facilitates a
third-party tracer to identify the compromised ECUs (e.g.,
for replacement/repair).

4. System Model and Threat Model

The system model considers an emerging zonal IVN
architecture as presented in Figure 2. Specifically, in our
protocol, we consider the presence of the following enti-
ties:

R ,))

(@
| ©® @

-

4—’Ini!iate Central Gate_way External Verifiers
tracing (Internal Verifier)
Initiate
Attestation
O
[T . Zonal Gateway
VaT';”:‘e (Edge device)

Figure 2: System model in SPARK

ECUs (IoT devices): ECUs are IoT devices. They are
potentially untrusted and lightweight embedded devices
that interface with the sensors and actuators in a vehicle
to control one or multiple electrical subsystems of the
vehicle. In line with [46], [76], [34], ECUs devices are
equipped with a minimal TCB and have limited processing
power and relatively low bandwidth for communication
with their respective Zonal Gateways (e.g., < 20 Mbit/s
for the CAN XL [35]). We further assume that the chan-
nel is secured through the CANsec standard [26], which
enables encryption and authentication of the data commu-
nication. In this system, each ECU is uniquely identified
as Dy, for k € [1,n], where n is the total number of ECUs
associated with a Zonal Gateway.

Zonal Gateways (Edge devices): Zonal Gateways are
powerful embedded devices that act as Edge devices in
modern zonal vehicular networks. Since Zonal Gateways
can include numerous interfaces, they can be exposed to
cyber attacks, and are therefore considered untrusted. They
are responsible for managing the ECUs within a single
physical zone of the vehicle. This means that each ECU
device is only connected to one Zonal Gateway. The Zonal
Gateway, along with its connected ECU devices, com-
poses a branch. To communicate with the Zonal Gateway,
all the ECUs in a branch share a single communication
channel which is a broadcast bus called CAN. Based
on [2], [76], each Zonal Gateway is equipped with a Root-
of-Trust, such as a TPM 2.0. Zonal Gateways are uniquely
identified as Edge;, for j € [1,u], where u is the total
number of Zonal Gateways in the IVN.

Central Gateways (Internal Verifier): Central Gate-
ways act as the Internal Verifier (V;,). Overall, Central



Gateways work as high-end central computation systems
that are typically linked to sensors and ECUs via net-
worked Zonal Gateways for processing and consolidation
of data. The Central Gateway can identify connected
ECUs but should not store their configurations due to
privacy, security, and IP concerns. We assume that the
channel between Zonal Gateway and the Internal Verifier
is implemented using a high bandwidth channel such as
AE. Each V;,,; is equipped with a TPM 2.0.

External Verifier: Any Central Gateway of another
vehicle or a V2X infrastructure (e.g., a RSU) acts as an
external third-party Verifier (Ve,:). We assume that V...
is equipped with a TPM 2.0 and can, therefore, establish
a trusted interaction with V;,,; of the other vehicles.

Issuer: The Issuer (Issuer) is a trusted third-party that
validates the TPM of the Zonal Gateway and generates
a credential for each of the branches of the IVN. Addi-
tionally, the Issuer also validates the TPM of the Central
Gateway.

Tracer: The Tracer is an authorized opening authority
that can open the attestation results to determine the
identity of the compromised device. The tracing process
is typically carried out in a certified environment.

To guarantee consistency throughout the remainder of
the paper, we assume that our system is established as
a zonal architecture. However, in practice, the proposed
protocol is designed to be compatible with any network
that follows a similar Edge-IoT architecture (including
zonal and domain IVN topologies). It is also agnostic
to the specific Trusted Component (TC) implementation
and can work with TPM or other TC solutions; given
the cryptographic operations required by the protocol,
other trusted components or legacy platforms capable of
performing these operations can ensure its applicability.
Furthermore, the protocol can be adapted to utilize dif-
ferent IVN communication protocols, such as FlexRay or
AE, provided that a secure and authenticated channel is
established in the software.

4.1. Adversarial Assumptions

This subsection provides an intuitive overview of the
adversaries that are considered in our system model. In
line with [9], [7], [19], we assume a software adversary
that aims to compromise ECUs, Zonal Gateways, and
Central Gateways (V;n:). Such an adversary’s goal is to
forge signatures for ECUs and Zonal Gateways in order
to bypass the attestation procedure and evade detection.
A software adversary can launch advanced attacks that
could compromise the attestation process. One such attack
is the “change of path” attack, where a malicious Zonal
Gateway replaces an ECU’s attestation with a different
attestation value from another ECU. Another sophisticated
attack is the collusion attack, in which multiple ECUs
or Zonal Gateways conspire to generate signatures that
bypass the attestation mechanism, further compromising
the integrity of the system.

Additionally, we consider a communication adversary
that attempts to control the communication channel be-
tween the ECUs and the Zonal Gateway. Communication
adversaries target to spoof, drop, delay, and eavesdrop on
the messages. However, w.r.t. the channel between the
ECUs and Zonal Gateway, this adversary is inherently

hindered by the secure and authenticated channel (e.g.,
through CANsec) that we assume. Moreover, replay ad-
versaries can send an “old” attestation value to the Zonal
or Central Gateway. Additionally, physical adversaries
attempt to physically compromise an ECU/Zonal Gateway
through replacement or by excluding the device from
attestation. Furthermore, in line with [38], this adversary
can directly attach to the CAN bus to eavesdrop or spoof
on the communication with ultimate goal to forge the
attestation.

Furthermore, advanced software attacks, such as run-
time attacks, that involve post-boot compromises, are out
of our context. However, using the Integrity Measurement
Architecture (IMA) [67], our solution can efficiently be
adapted to also protect against runtime attacks. Similarly,
physical attacks involving compromised/subverted TPMs
are also out of scope. Nevertheless, this issue can be ad-
dressed with techniques such as [14], [13]. Finally, in line
with the state-of-the-art collective attestation schemes [9],
[7], [19], we keep the Denial of Service (DoS) attack out
of our scope.

5. Security Requirements

In this section, we formally define the following high-
level security properties that are achieved by SPARK:

Unforgeability: Given a honest Issuer, no adversary
should be able to create a signature on a message m
without having access to the TPM or the IoT devices
signing keys.

Anonymity: Given two signatures, an adversary
should not be able to distinguish whether both signatures
were created by one or two different honest branches. The
anonymity must hold even if the Issuer is corrupt.

Evidence Privacy: Given a signature o, an adver-
sary should not learn anything about the devices’ exact
configuration. All the devices in a branch must provide
verifiable evidence to convince an external verifier about
the correctness of their state, while not revealing any
configuration.

State Correctness: It must be ensured that only au-
thenticated and non-compromised Edge devices can use
their embedded TPM to create verifiable evidence of each
branch’s configuration.

Traceability: It is required that no Edge device or
group of Edge devices can generate signatures that cannot
be traced back to any of them.

Edge-IoT key Binding: It should be computationally
infeasible for an adversary to replace/exclude any of the
devices’ signatures while the branch attestation is still
correctly verified (i.e., “change of path” attack). This
is a crucial property for swarm topologies as it offers a
tight binding relationship between the parent Edge and its
children’s IoT device keys.

5.1. Device Assumptions

To provide the aforementioned security guarantees we
assume that the trusted hardware components provide the
following capabilities:

« TPM (for Edge device). The TPM of the Edge de-
vice can incorporate a variety of checks depending on



the exact application. Typically, a TPM measures the
boot of a device. However, using e.g., the IMA, the
integrity check can be extended to incorporate post-
boot measurements of the device. Hence, SPARK can
be efficiently customized to satisfy the security needs
of a specific application.

e Minimal TCB (for IoT device). In line with the
swarm attestation literature and automotive platforms
(e.g., SHE or EVITA), the minimal trusted computing
base (TCB) includes the following minimal features:
(i) A Read-Only Memory (ROM), where integrity-
protected attestation code should reside; (ii) A Mem-
ory Protection Unit (MPU) that allows to enforce
access control on areas of the memory, e.g., read-
only access to certain memory areas exclusively to
attestation protocol; and (iii) A secure key storage
accessible only from the attestation protocol in ROM.

6. Preliminaries

6.1. Notation

Let IF be a finite field and I denotes a finite extension
field of IF. Let IE be an elliptic curve defined over F with
a base point G. Let E denote the points of IE over IF with
a base point Gj. ~

In our protocol, Gy is used to generate the Issuer’s
public key in E, whereas Gy is used to generate the
TPM’s key in E. The curve IE is equipped with a type
I pairing 7 : EXE — F. 7 is used to verify membership
credentials under the Issuer’s public key. We define the
hash functions: H : {0,1}* — Z, and H; : {0,1}* — E.
The operation on E (resp. E) is written with additive
notation. Multiplication by scalars is always written on the
left where scalars are elements in Z, for a prime number
q that represents the order of the subgroup (Gy) in E. An
overview of SPARK’s notations can be found in Table 2.

6.2. Overview of the DAA-A Protocol

The DAA-A [24] protocol consists of a DAA scheme
with an anonymous credential of a public key. But in
contrast to a DAA scheme, the public key does not corre-
spond to a single secret key but also multiple attribute
keys. By using a single attribute, one gets a protocol
that is mathematically identical to the DAA protocol and
inherits its security and privacy properties. Two DAA-A
schemes are presented in [24], the sDH and the CL-based
DAA-A protocols. We adopt the Camenisch-Lysyanskaya
(CL)-based DAA-A as it is well suited for our protocol
construction because it uses only standard elliptic curve
calculations.

7. SPARK Attestation Scheme

In this section, we present the details of our protocol.
Overall, the protocol consists of four main phases, namely,
(1) Key Setup Phase, (2) Join Phase, (3) Attestation Phase,
and (4) Verification Phase. The Setup and Join Phase are
one-time procedures, performed offline during the deploy-
ment/manufacturing of the vehicle. On the contrary, the
Attestation and Verification Phases are performed during
the regular operation of the vehicle.

TABLE 2: Notation Summary

Symbol Description

Dy The k" ToT device

n Number of IoT devices in a branch

Edge; The j*" Edge device

u Number of Edge devices in the IVN

Vint Internal Verifier

Vezt External Verifier

Issuer The Issuer

F A finite base field

F A finite extension field of F

E An elliptic curve defined over F

E The points of E over the extension field F

q A prime number that defines the order of cyclic
groups

Go A basepoint of E

Go A base point of E

G,Gh,...,Gqp public group elements in E

G,G1,...,Gn public group elements in E

T Type III pairing

(z,v) The Issuer private key

(X,Y) The Issuer public key

TT The Tracer private key

Xt =27G The Tracer public key

) T PM:’s private key

Tp Dy private key

X =2 Gy Dy, public key

B The branch public key

(A,B,C, D, Ey, The branch credential created by the Issuer

Ela BN En)

TK The TPM’s tracing Token

Sk The IoT signature using its secret key xj,

S0 The DAA signature of an Edge device using the
TPM key zo

o The branch signature

m,p Attestation challenges

H Hash function defined as H : {0,1}* — Zg

H, Hash function defined as Hy : {0,1}* - E

7.1. High-Level Overview of SPARK

This section provides a high-level conceptual overview
of the main phases in SPARK without focusing on the
cryptographic details. The protocol begins with each
branch generating a branch key, effectively binding the
ECUs (i.e., IoT devices) to their respective Zonal Gate-
way (i.e., Edge device). Next, the Issuer certifies the
branch key, thereby generating the DAA credential for that
branch. Moreover, in this phase, a tracing token associated
with the DAA key of the Zonal Gateway’s TPM is gen-
erated, enabling a trusted Tracer entity to locate compro-
mised branches if necessary. During attestation, the ECUs
and zonal gateway interact to produce a branch signature
(attestation result) as a single signer, which serves as
verifiable evidence of the branch’s correct configuration.
This signature includes the Zonal Gateway’s attestation
(i.e., TPM-signed configuration). Additionally, we put
partial trust on the Zonal Gateway for not altering the
message (ECU configuration) signed by the ECUs. Sub-
sequently, in the verification phase, the Verifier checks the
branch signature under the Issuer’s public key. In line with
other signature schemes (DAA, group signatures, etc.),
the Verifier is considered untrusted. Moreover, SPARK
enables public verifiability, allowing independent verifi-
cation without relying on the Central Gateway’s firmware
trustworthiness. In case of compromise (failed attestation),



the Tracer can identify the compromised Zonal Gateway
or ECU by opening the signature.

7.2. Key Setup Phase

The Key Setup Phase is a preliminary procedure that
aims to ensure the secure deployment of the protocol in
the upcoming phases. Specifically, this phase encompasses
the generation of the public group elements and the estab-
lishment of the Issuer and IoT keys. To generate the keys
for the IoT devices (D) associated with an Edge device
(Edge;), we use Gy,...,Gy € E. Specifically, from the
generator G € [E, we generate the public group elements
Gq,...,G, as G = rpGy, where k=1...n and n is
the total number of IoT devices in a branch. Likewise,
we generate G = r¢G for use in the generation of the
credential by the Issuer. Here, r¢ and rj are taken from
Z4 at random to ensure that there is no known discrete
logarithm relation between any two distinct G and be-
tween Gy and G. As such, the rq, 7, should be deleted
after the Key Setup Phase of our protocol. Similarly, we
generate G, G, ...,G, from Gy in E as G = rqgGyp and
G = G, respectively.

Every IoT device Dy, chooses a random key x; from
Zq, and calculates the public key X, = x3,Gj with a
proof of construction of X}. Similarly, the Tracer chooses
arandom key xr € Z, with a public key X7 = G with
a registered proof of construction. In addition, the signing
secret key of the lIssuer is composed of two integers
z,y € Zg, with corresponding public keys X = zG and
Y = yG. Note that Issuer employs a proof of knowledge,
denoted as 7'PX, to establish the relationship between
the private key components (z,y) and their public key
counterparts (X, Y"). The proof of constructions of the key
(a signature of knowledge of the secret part of the key)
effectively binds the public key to its corresponding secret
key maintaining the protocol’s integrity and correctness.

7.3. Join Phase

The Join Phase encompasses the enrollment of the
Edge device, the generation of the branch key, the gener-
ation of the branch credential, the restriction on the Edge
device’s signing key and the generation of the tracing
token.

In our system, Edge devices are equipped with a TPM.
As such, they guarantee the binding of the signing key to
the endorsement key of the TPM [23] so that it can be
validated by the Issuer. This binding allows the issuer to
authenticate the TPM even in the presence of a corrupt
host.

After authenticating the TPM, the TPM’s key will be
certified together with the children IoT devices keys by the
Issuer. The issuance of such certification (credential) not
only allows the Edge device and its connected [oT devices
to start using their keys for attestation services but also
binds the Edge device’s signing key to its children IoT
keys in a way that any change/substitution of one or more
keys will result in a failed attestation. This is a crucial
requirement for swarms with static topology like IVN
applications, where each component’s position is fixed by
the manufacturer.

7.3.1. Checking eligibility of Edge device. In this step,
the Issuer checks whether the Edge device is eligible to
join, i.e., the public part of the signing key PK has not
been previously certified or revoked. If this validation
succeeds, it will compute the credential for the branch.
Internally, the TPM chooses the secret signing key
xg < Z4 and sets its public key PK = xG). It returns
the PK with a proof of its construction, alongside other
parameters (i.e., TPM policy) in an integrity-protected
data structure. An authorization session (requestcrg) is
started with the Issuer sending a nonce p to the TPM via
the host. A registration package can now be assembled,
consisting of the key data structure, nonce p and the public
part of the TPM Endorsement Key (EK). This package is
subsequently sent to the Issuer for checking.

7.3.2. Generating the branch key. Here, we generate the
branch key, which is a combination of the Edge device’s
TPM signing key x( together with its children IoT keys
Z1,...,ZTy. The construction of the branch key B binds
each Edge device, which is equipped with a hardware key
Zg, to its connected IoT devices in a way that if one of the
IoT keys x, is replaced or changed, the whole attestation
will fail to prevent “change of path” attack in swarm
attestation. First, each IoT child device sends its public
key to Edge device. Next, after receiving all its children
public keys, the Edge calculates the branch public key
B = PK + Y, _, zxGy, where a branch consists of an
Edge device with its children IoT devices. B will then be
certified by the Issuer in the following step.

7.3.3. Computing the branch credential CRE. First,
the Edge sends B to be signed by the TPM with its key x
using the EC-Schnorr signature scheme. Then, the Edge
forwards the TPM’s signature o, B and PK to the Issuer.

If o¢ is successfully verified by the Issuer under the
TPM’s public key PK, if the TPM’s key is not certified
before and does not match any of the keys in the Revoca-
tion List RL, the Issuer then proceeds with the credential
creation.

The Issuer chooses a random t €r Z, as in the
CL signature [15], where €r denotes uniformly random
sampling, and calculates:

A=1tG, B=yA, C=zA+txyB, D=1tyB
Ey = tyGy and Ey, = tyGy ¥V k € [1,n]

such that A # 1g. The lIssuer then chooses a ran-
dom v €r Z; and calculates the challenge ¢ =
H(7G|7G0| - [YGnlyBlp
is a message of freshness agreed by the Issuer and the
parent Edge.

The Issuer sends the credential CRE =
(A,B,C,D,Ey,Ey,¢,8) back to the Edge device.
Upon receiving CRE, the Edge device verifies the
signatures under the Issuer’s public key X and Y as
follows. First, it checks the pairings:

) and § = v — ¢ty, where p

7(A,Y) £ 7(B,G) and 7(A+ D, X) = 7(C,G).



TPM (xo) Edge (PK = z0Go, zx Gy for each Dy) Issuer (x,y)
requestcre
£ p+ {0,1}*
(p,PK)
B=PK+ Z:Zl 2GR
B
oo on B 2o, EO’B—’PQ Verifies oo on B

(A, Y) £ 7(B,G)
A+ D,X) £ 7(C,G)

YV xo* € RL, abort if PK = x25Go
t €Er Zq
A=tG,B=yA,C =xA+ tzyB
D =tyB, By = tyGo

E, =tyGr Y k € [1,n]

Y €R Zqg
¢ = H(1GIrGol ... 1Gul7Blp)
S§=v—cty

(A,B,C,D,Ey,Ey,¢,3,p)

& =H (éB + 5G|eEo + 8Go|eE + 5G| . ..
6B, + 3Gn|eD + gs\p)
¢ £ ¢,CRE = (A, B,C, D, Eo, Ex,¢,8,p) ¥ k € [1,n]

Figure 3: The Join Protocol in SPARK with the Issuer, where the branch credential CRE is issued.

If this check is successful, it then validates the signa-
ture ¢ = H, (éB + 3G)2Ey + 8Go|¢By + 5G| . . . |¢Ey +

5Gy, \éDJréB\p) and accepts if ¢/ = ¢. The final credential

CRE is then stored in the parent Edge device database. All
of these operations are shown in Figure 3.

7.3.4. Restrict to Trusted Configuration in the Edge
device. The TPM includes a set of internal extendable reg-
isters called Platform Configuration Registers (PCRs) in
its non-volatile memory. These PCRs store measurements
of the residing Edge as chained hashes originating from
a Root-of-Trust for measurements (e.g., CPU microcode,
TEEs). It is possible to build a policy that can be satisfied
if a selection of PCRs matches a predetermined value,
referencing a trusted state. Using PolicyPCR [1], we
ensure that the Edge device signing key z( is inoperable
if the integrity of the Edge is compromised.

7.3.5. Achieving traceability. The Tracer is equipped
with a key X7 = x7G for some secret key xr € Zg,
with a registered proof of construction. We need a tracing
token TK that is associated with the TPM’s DAA key
to be registered in the Join Phase. Let bsny € {0,1}*
denote the Tracer’s basename. Each Edge device creates
its tracing token using its TPM as follows:

1) The Edge calculates Jp = H;(bsny) € E and sends
it to the TPM.

2) Using TPM2_Commit and TPM2_Sign, the TPM
chooses a random 3 €r Z,, and calculates cp =
H(BJr,BGy), s = B+ crxo and the tracing token
TK = zoJp. The TPM sends (s, cr, TK, PK) to
the Tracer via the host.7

3) The Tracer checks ¢y = H(spJp — crTK, s7Go —
CTPK) .

4) If the above check is successful, the Tracer adds
(TK, PK) to its records.

7.4. Attestation Phase

In this phase, upon receiving an attestation request
from the verifier, the actual attestation is conducted. The
intuition is that the TPM checks that the device is in the
correct state by verifying whether the policy is satisfied.
Once the verification is successful, the TPM creates a
signature sq using its hardware key zo, and each Dy
creates a signature sy using its key x;. The Edge device
together with its children IoT devices create a proof of
knowledge that shows in a privacy-preserving manner, i.e.,
without leaking any information about the identities of
the Edge device or the IoT devices, that the branch key
B = PK + >} _, 2xGy, is certified by the Issuer. This
confirms that the branch has a valid credential CRE that
can be successfully verified under the Issuer’s public key.
Moreover, the proof of knowledge provides evidence pri-
vacy as revealing the configuration of any of the connected
branch devices causes privacy, security, and IP issues. This
is in line with design choice to store the IoT configurations
at the Edge device level (e.g., in the TPM or in secure
memory) rather than at the Internal Verifier level. This
approach (1) reduces IVN network overhead by avoiding
communication between IoT and the Edge device, and
(2) offers sufficient secure storage for the configurations
due to multiple Edge devices (each with a TPM). The
overall signature o is verified in a zero-knowledge manner
that preserves the privacy of the whole branch (without
leaking any information about any of the public keys or
CRE). Note that we need the IoT devices to participate in
the ZKP to guarantee anonymity of the protocol while
achieving the key-binding property to prevent ‘“change
of path” attacks. Specifically, B binds the IoT devices’



TPM (xo) Edge device (PK,TK, X, bsnr,CRE, m) Dx (zx)
o a €ER Zq
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E;, =aEx YV k € [1,n],Jr = H(bsnr)
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%
q
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Figure 4: The Attestation Procedure in SPARK describing the interactions between the Edge device with its embedded

TPM and the IoT devices.

keys to the TPM key PK in a way that prevents any loT
device from using a key that was not originally used in
the creation of B.

The flow of the attestation is presented in Figure 4 and
is as follows.
@ Randomizing the credential: The host (Edge) creates
a blinding factor a € Z,. Then it blinds (randomise) the
credential CRE by computing: A’ = aA4; B’ = aB,("’ =
aC,D' = aD,Ey = aFy,E, = aE, ¥V k € [1,n].
The Edge device sends each Ej. to the corresponding IoT
device Dy, and Ej and Jr = H(bsnr) to its embedded
TPM.
9 TPM-Commit: Using TPM2_Commit, the TPM se-
lects a random wy € Z, and calculates Ry = woE{, and
Ko = woJr, the TPM returns Ry and K to the host. The
TPM stores wy in a safe place to be used for the signature
generation.
©® IoT-Commit and measure: Each IoT device Dy
selects a random wy from Z, V k € [1,n], calculates
R = wyE}. Dy stores wy in a safe place to be used
for the branch signature generation. The IoT device Dy
further measures its Current Configuration L,
then sends Ry and Ly to the Edge.

9 Evidence check: The Edge checks Ly . G where
Gy represents the Golden Hash (i.e., the correct hash
of the software/firmware) of the IoT device. If the check
fails, the Edge adds the index k of the IoT device in the
signature.

© Encryption token generation: The Edge samples
a random r € Z, and calculates the encryption to-
ken ENC(TK) = (rG,V = rXr + TK). To prove
the knowledge of r, the Edge then selects a random
wr € Zq and calculates the commitment values: w,G and

wr X7 +wodr. (WoJr Was sent before from the TPM [step
2: TPM Commit])
@ Hash: The Edge calculates the hash value as

c= H(A’|B’|C’|D’\E6|E{| - |E | R+

Sy Relmlklew, Gleoy X+ woJr ).

The Edge sends c to the TPM and publishes c to the
children’s IoT devices.
@ The Edge calculates a signature on 7 as follows s, =
w, + cr.
@ IoT-Sign: The IoT device Dy, retrieves the value of wy
that was used in the IoT-Commit phase, then outputs a
signature s = wy + cry, and sends si to the Edge.
€ TPM-Sign: The TPM retrieves the value of w that
was used in the TPM-Commit phase, and outputs a
signature sy = wg + cxg with x( as the TPM private key.
Please note that a policy restricts the use of the signing
key x( to the correct configuration of the Edge.

After completing the aforementioned steps, the Edge
device sends the overal signature o to the verifier:

_ i i / ! A ! /
o= (A,B,C,D,EO,El,...,En,so,sl,...,

Sy s K, 8, ENC(TK)).

7.5. Verification Phase

In this phase, the verifier verifies the IoT and group
signatures. Here, Jr and X7 are assumed to be known
by the verifier. The flow of the verification phase is
summarized in Figure 5 and is as follows:

(@ Verify the modified CL certificate by checking the
pairings on both the group signature and the credential



constructions: ~ o, ~
T(AY)=7(B,G) and 7(A' + D', X) = 7(C", G).

(2) Verify the equivalence of the discrete logarithm using
the batch proof trick from [22]: tg,t1,...,t, € Zg;

T(toEy+ ...+ taEL,G) = (B tcGo + ... + t.Gr) .

(3) Verify the Schnorr ZK proof: to correctly verify the
signature, the value of y should match with Ry + > Ry
where = > spEj + soEj — cD’.
(4) Check the challenge construction

A
c= H(A’|B’|C’|D’|E6|E{\ | EL |pml k) s G—

c(r@)|(sp X1+ soJ7) — CV)

Note that: w, X7 + wodJr = 8. X7 — cr X7 + soJr —
crodr = (s, X7 + soJr) + (—erXp — cxoJr). Here,
the first term is known and the second term (which is
equal to —cV) can be obtained from the Encryption
Token. The homomorphic property of ElGamal encryption
implies that ENC(cT'K) = cENC(TK), which makes
the verification work.

The output is valid if all checks and verification pass.
(6) If the signature contains one or more index k, the
verifier outputs “to be traced / or not”.

Edge (B, PK, CRE) Verifer (X,Y, bsnr, X1)

m

%

2 (ALY £ (B, Go)
(A + D', X) £ 7(C",Go)
to,t1,...,tn €ER 7
T(toEy+t1Ey + ...+ tnEL,G) =

T(Bl,toéo-i-. . .+tnén)

w=>.s.E + soEy —cD’
¢ £ H(A'|B'|C'|D| BB ... | By lmlk|

$rG — c(rG)|(sr X1 + soJ7) — CV)

Figure 5: The Verification procedure in SPARK

7.6. Tracing

Tracing in SPARK allows authorized Tracers to iden-
tify compromised devices. This further enables the revoca-
tion of compromised devices. Please note that traceability
is an optional procedure that can be deactivated from
the protocol, reducing the overall latency of the protocol.
Tracing can be achieved in the following manner.

1) For the Tracer to trace, it verifies the signature, then
decrypts ENC(TK) using zp and retrieves T K as
follows: TK =V — z7(rG). Note that this encryp-
tion is Chosen Plaintext Attack (CPA) secure but not
Chosen Ciphertext Attack (CCA) secure. However,
this can be easily achieved using the techniques such
as in [74].

2) The Tracer outputs the PK that corresponds to T'K
from its records.

3) A trusted revocation authority sends an “authenti-
cated” request to the Tracer that opens the signature
and sends back PK. The revocation authority then
adds PK in the Revocation List RIL and its corre-
sponding credential will be revoked.

7.7. External Verification

We assume that both V;,; and V.,; are equipped
with a TPM. Hence, we consider a trust relationship
between V;,: and V..:. This implies that typically V..
does not verify the attestation result but queries V;,; for
its most recent attestation result. Whenever critical data
has to be communicated with another vehicle or an RSU,
the external party first checks the timestamp of the last
attestation. However, if there is no recent attestation, V.,
initiates the attestation of the branches by communicating
through V;,,;, which relays the requests/responses. Only if
the attestation is successful, the external party will accept
data from the vehicle.

8. Security Analysis

In this section, we provide a proof sketch to show that
SPARK satisfies the security requirements described in
Section 5. Our traceability and anonymity games are based
on the security model defined in [37]. Formal definitions
of the unforgeability, anonymity, and traceability of group
signatures are presented in Appendix B.

Theorem 8.1. SPARK is unforgeable if the DAA-A scheme
is EUF-CMA (Existential Unforgeability under Chosen
Message Attack) secure.

To show that SPARK is unforgeable, we need to prove
that the advantage of an adversary A in attacking the un-
forgeability is negligible. This property should hold even
for branch devices (IoT devices and their corresponding
parent Edge device) that collude to produce a forged sig-
nature. As in DAA-A, the unforgeability of the credential
CRE is based on the unforgeability of the CL signature
[15]. This signature scheme is existentially unforgeable
against a chosen-message attack (EUF-CMA) under the
LRSW assumption [54]. The unforgeability of the CL
signature (credential) requires the Issuer to be honest. The
unforgeability of the signature requires an adversary to
output a valid forgery o* on a chosen message m* without
knowing the keys and after several signing queries, but the
message m™* has not been queried for signing. We argue
that our unforgeability is based on the hardness of the
Discrete Logarithm (DL) problem.

The main idea of the proof is to have the adversary
output two distinct forgeries corresponding to the same
random oracle query but for two distinct answers which
enables the computation of the discrete logarithm of the
public key using the Forking Lemma [68]. Suppose that
an adversary A outputs a valid forgery on the branch’s
signature with a probability ¢ using a random secret
a={ag,0q,...a,}. Aoutputs s§, ..., sk, c* as a part of
SPARK signature, such each s} is a Shnorr signature using
the secret a;. There exists a simulator that can program
the underlying random oracle and outputs the witness «
with probability ;—i, where g4 is the number of random
oracle queries.

Theorem 8.2. The anonymity of SPARK requires the
honesty of the branch-connected devices, it follows from
the anonymity of the DAA-A scheme in [24] and the CPA
security of the ElGamal encryption scheme.



Assume that an adversary A is given a signature o
generated by using a key zo,, , where b can be either 0 or
1 that represents two different identities ¢y or i;, respec-
tively. To demonstrate the anonymity of SPARK, we show
that A outputs the correct identity iy, the identity of the
group member with a signing key o, , only by a random
guess of b with a success probability % In our protocol,
the identity of each Edge device is protected/hidden by
performing the attestations using the ZKPs about the vali-
dation of the credential without revealing any information
about the group member’s public key or the credential.
The anonymity of the IoT devices is only achieved against
external verifiers due to the Zero-Knowledge property of
the Schnorr proof of knowledge. This property allows the
verifier to learn nothing about the keys or the identities
but only the fact the keys are well certified in the Join
Phase. In SPARK, each IoT device generates a Schnorr
signature that does not reveal any of the following details:
(1) the identity of IoT device, (2) the IoT’s public key
X, or (3) the branch credential CRE. Additionally, note
that due to the CPA security of the ELGamal encryption
scheme, the encryption token ENC(TK') does not reveal
any information about the actual TK. This is due to
the randomness 7 used to generate the encryption token,
which preserves the anonymity of the Edge device against
any external verifier.

Theorem 8.3. SPARK ensures correctness and privacy of
the Edge device configurations.

Before communicating with the Issuer in the SPARK
join phase, the Edge device computes a policy for the
upcoming key that only makes the key usable if the policy
stored in the Policy Index (PI) is satisfied. It takes the
unique index name A and computes the policy digest
according to the TPM standards [1]. The Edge sends
it to the TPM with instructions to generate a new key
under the newly created policy. The TPM then creates its
signing key xo < Z4 and the corresponding public key
PK = 2¢G). It returns PK, along with other parameters
(i.e., the policy) in an integrity-protected data structure.
Subsequently, an authorization session is started with the
TPM, returning a nonce n to the Edge. A registration
package consisting of PK, nonce n, index name A/, and
the public TPM Endorsement Key (EK) is then sent to
the Issuer. The Issuer ensures that the contents of the PI
are satisfied as a policy, and computes the key-restriction
policy that is written to the PI. This policy, K, can only
be satisfied by proof from the Edge device showing that
the integrity of the Edge is not compromised. The Issuer
signs KC and certifies PK as in Section 7. This clever
key restriction policy allows the TPM key to be used
only if the Edge device is in its correct state. There is no
need in SPARK to reveal the Edge device configuration to
any external verifier (evidence privacy), yet a successful
attestation issued from the Edge device proves that the
Edge is in its correct state (correctness).

Theorem 8.4. SPARK always traces back to the correct
Edge device identity due to the correctness of the ElGa-
mal encryption scheme and the unforgeability of the CL
signature scheme.

We argue that given a valid signature, our traceability
algorithm always traces back to the correct Edge device’s

identity. This property should hold even in the scenario of
colluding Edge devices from distinct branches. This is due
to the correctness of the adopted ElGamal scheme, i.e.,
using the identified Tracer’s key z, an honest Tracer will
be able to retrieve the correct T'K and the corresponding
PK relying on its records.

Traceability means that it should be infeasible for an
adversary .4 who corrupts some set C of users to output
a valid signature that cannot be traced to any member
of C. Suppose that A in our protocol corrupts a set
C of Edge devices, then the adversary outputs a valid
signature o using z}) for some i € C. The signature o =
(A/a Bl? C/a Dl7 E{)a Eia T 7E>:7,7 50, S1y- - - ,Sn,k’,c, Sr,
ENC(TK)) should be valid in order to be traced. If this
signature opens to an identity i* ¢ C, then we have sg
is constructed using two distinct keys xf # xj . This
contradicts the soundness of the Schnorr signature of
knowledge in which a valid signature (s, cr) is generated
using a unique discrete logarithm solution of PK and
TK that is known to the prover. Hence ¢* should match
to one ¢ € C since in our scheme the Issuer checks that
different group members are not sharing the same keys in
the Join Phase. Thus, SPARK’s construction ensures that
no multiple zo values match one signature which results
in correct traceability. Therefore, A will abort with a
probability of 1— % +&(\), where N represents the group
size, A is a security parameter, and (\) is a negligible
function that arises from the possibility that A abuses the
soundness of the ZKPs.

Suppose that .4 wants to output a “modified” signature
that does not trace back to the TPM that created it using
its certified key zg. If A replaces the TPM’s signature
so with s that is generated by a key xf # zo, and
replaces V' with V* such that V* traces to xj, then
this modification leads to a failed verification. Modifying
so would not allow the verification of the ZKP of the
credential CRE that is associated with xzq to pass. The only
way for A to pass the proof is to forge a credential on
¢, but this breaks the unforgeability of the CL signature.
Whenever an [oT device generates a signature, the parent
Edge device (which is assumed to be trusted in tracing
its children IoT devices) will be able to trace back the
identity of the IoT device, relying on its records that list
(k ) X ks T, C)'

Theorem 8.5. SPARK satisfies Edge-loT key Binding
property, i.e. It is computationally infeasible for an adver-
sary to replace/exclude any of the IoT devices’ signatures
while the branch attestation is still correctly verified.

Suppose that an adversary A receives SPARK signa-
ture o from an Edge device. The A modifies the output
of one of the IoT devices D;, with a signing key x;. A
replaces the signature s; by s} that is issued from a corrupt
IoT device Dj that is not a child of the Edge device. A
calculates s; = w; +cz; for arandom w; and using a key
x} # x; for the challenge c retrieved from o. We argue
that the signature will not be correctly verified.

Note that the pairings in the verification in Figure 7
will still pass as the Edge device’s contribution in o
is not modified. If a modification of the Edge device’s
signature part is applied whilst o still correctly verifies,
then this breaks the unforgeability of the DAA-A signa-
ture. After checking the pairings, the verifier calculates



/L* = ESlEi —|— e Si—lEz/'_l —|— S:E; —|— Si+1E£+1 —|- e +
snE! + soE) — c¢D’. The verifier then checks the chal-
lenge: ¢ = H(A’|B’|C’|D’\E6|E{| B X ml ks, G—

c(r@)|(s» X1 + soJr) — cV).

o verifies correctly if and only if ©* = Ro+>_,_, Ry.
Recall that if the above equation verifies then every indi-
vidual signature s; and sg should verify correctly. This
is because 7 is randomly chosen from Z, in the setup
phase to ensure that there is no known discrete logarithm
relation between any two distinct G and between G, and
G. Therefore, sy E), — cxrE; = wpE}, = Ry, for all IoT
signatures in o. In particular sfE! — cx; E. = w;El = R;
must be satisfied, but this is only valid when z} = z;
due to the unforgeability of the Shnorr signature. This
contradicts the assumption that the A chooses =} with
x} # x;. Therefore A can only pass if A guesses =} = z;,
this would happen with a probability of 1/p which is
negligible for a large p. If A excludes one of the IoT
signatures s; # 0 from o, then A only succeed if D; has
randomly chosen w; such that w; B, = R; = ca; El, if o
verifies correctly then w; = cz; since E, # 0, this yields
to s; = 0 and contradicts our assumption.

9. PoC Implementation

This section assesses the real-world applicability of the
SPARK protocol by developing a PoC implementation and
by evaluating its performance in terms of efficiency and
scalability using representative hardware platforms. Please
note that, although implemented, we do not explicitly
elaborate on the Join phase. This is because the Join
phase is a one-time process that can typically be executed
in a secure environment (e.g., during the manufacturing
phase).

For our PoC implementation, we commenced with the
DAA implementation of [75] as our initial framework. The
reference implementation was developed in C++ using the
GNU GCC compiler [36], IBM TSS software stack [39],
OpenSSL [62], and the Apache Milagro crypto library
(AMCL) [8]. Subsequently, for our PoC, we enhanced
the framework to operate in 64-bit ARMv8 mode and
updated the framework to use the more recent MIRACL
library [58] for the pairing operations. Testing and bench-
marking of our PoC were conducted by simulating one
network branch on a Raspberry Pi 4, interfacing with
an Infineon Optiga™ SLB 9670 TPM 2.0 through the
Linux TPM device driver. All elliptic curve operations
were performed along the pairing-friendly BN_P256 curve
and SHA-256 was taken as a hash function. Since these
algorithms are mandatory as per the TPM 2.0 specifica-
tion, our implementation can be generalized to work with
all TPM 2.0 devices.

Additionally, we provide an analysis of the perfor-
mance implications associated with cryptographic oper-
ations on ECUs. This analysis is particularly relevant
for an IVN setting, given the inherent constraints of
the automotive ECUs in terms of computational power
and storage capacity. The cryptographic operations of
the ECUs consist of: (1) the generation of a random
number, (2) a point multiplication, (3) a SHA-256 hash
over the firmware, and (4) the computation of a signature.
To evaluate the performance of these operations, we use

three lightweight embedded platforms that closely resem-
ble modern automotive ECUs [65], [42], [60], [70]: an
Arduino Uno R4 Minima board running a RA4M1 (Arm
Cortex M4) operating at 48 MHz, a Raspberry Pi Pico
board running a RP2040 (Arm Cortex M0+) operating at
125 MHz, and an Arduino Nano ESP32 board running a
NORA-W106 (ESP32-S3) operating at 240 MHz. In our
experiments, we use the MIRACL library to implement
our cryptographic operations.

10. Evaluation Results

10.1. Overhead on the Devices

In this section, we provide an evaluation on the device-
level overhead imposed by SPARK. We separate our
discussion according to the ECU and Zonal Gateway
overhead.

ECUs. To evaluate the overhead on the ECUs during
the Attestation phase, we measure the execution time
of the cryptographic operations over 1000 runs. Addition-
ally, we compare the memory footprint of our evaluation
program, which includes the necessary library functions,
to an empty Arduino program. By doing so, we are able
to determine the percentage of total program memory that
is occupied by cryptographic functionalities on a given
platform. Our findings are presented in Table 3.

The results demonstrate that overhead on the ECUs
during the Attestation phase is kept to a minimum.
For the case of one block of firmware, the Arduino Uno,
Raspberry Pi Pico, and Arduino Nano devices require
146.234 ms, 138.944 ms, and 34.411 ms of processing
time, respectively. It is important to note that random num-
bers were generated using a slow software-based RNG
included in the MIRACL library.

Zonal Gateway. To evaluate the scalability of SPARK
during the Attestation and Verification phase,
we measure the execution time of our protocol averaged
over 100 runs with a network size varying from 1 to 1024
ECUs. Specifically, in our PoC, we consider the following
settings:

o We strip the protocol of TPM policies. This is be-
cause the policies are independent of the network
size and are thus less relevant for this analysis.

« We consider a benign network, eliminating the need
for tracing since this is an optional procedure. A
detailed evaluation of the tracing is provided in Sec-
tion 10.3.

o We assume that all the ECUs can operate simulta-
neously, while the operations on the Zonal Gateway
(described in Sec. 7.4) happen sequentially. This im-
plies that the Zonal Gateway waits for the responses
of all ECUs before proceeding with the next step. For
the ECU timings, we consider the timings presented
in Table 3. Moreover, our PoC does not consider net-
work communication and the involved serialization.

« We perform the verification on the same hardware
platform used for the Zonal Gateway. In practice,
the Central Gateway will be more powerful than the
Zonal Gateway, resulting in improved timing.

The results of the scalability analysis are pre-
sented in Figures 6 and 7 for the Attestation and



TABLE 3: Overhead of the cryptographic operations performed on the ECUs devices during the
Attestation phase. The results are evaluated for 3 different automotive-representative embedded platforms.

| Arduino Uno (Cortex M4) | Raspberry Pi Pico (M0+) | Arduino Nano (ESP32)

| Mean (ms) Std (ms) | Mean (ms) Std (ms) | Mean (ms)  Std (ms)
Generate random 10.611 0.031 5.641 0.017 2.152 0.006
Point multiplication 134.920 0.403 132.846 0.452 31.907 0.100
SHA-256 hash (2 blocks) 0.320 0.001 0.212 0.018 0.141 0.016
Signature 0.383 0.017 0.245 0.023 0.211 0.018
Program memory overhead \ 13028 (bytes) 497 % \ 14528 (bytes) 0.69 % \ 23900 (bytes)  0.76 %
1800 r——r——+—1 ; the Arduino Uno, Raspberry Pi Pico, and Arduino Nano as
1600 | _g DeVice overhead E ECUs, respectively. Furthermore, the results demonstrate
—6— Total (Edge & M4) . . . ..
“B- Total (Edge & MOY) f that the verification phase, which involves complex pairing
1400 F..g.. Toal (Edge & ESP32) £l operations, can be executed within 166.08 ms for 32 IoT
1200 | %7 Bl /1' devices on a Raspberry Pi 4, indicating the real-world
Z ook 100 3 applicability of SPARK. ' '
;E; 3 Timing distribution. Here, we provide an analysis
g 4 of how the timings are distributed between the Zonal
£ Gateway (Edge and TPM), and the ECUs during the
Kj(’ Attestation phase. The results of the timing distri-
g bution are depicted in Figure 8. For our analysis, we
assume the same experimental settings as in our scal-

1 2 4 8 16 32 64 128 256 512 1024
Number of [oT devices

Figure 6: Device-level overhead during Attestation
demonstrating the Zonal Gateway overhead and the total
protocol overhead considering different ECU platforms.
The results are highlighted for typical branch sizes around
32 ECUs. The X-axis is of a logarithmic nature.
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Number of IoT devices
Figure = 7: Device-level overhead during the

Verification procedure depicting the overhead
for the different verification steps. The results are
highlighted for typical branch sizes around 32 ECUs.
The X-axis is of a logarithmic nature.

Verification phase, respectively. Based on the scala-
bility analysis, we conclude that the attestation procedure
for a typical CAN network branch of 32 ECUs' intro-
duces an overhead of 193.81 ms on the Zonal Gateway.
Moreover, the total attestation overhead for this network
is found to be 340.04 ms, 332.75 ms, and 228.22 ms, for

1. We consider 32 as a typical maximum branch size in modern
automotive networks.

ability experiment, and we consider the Arduino Nano
as ECU platform. Our analysis demonstrates that for a
small number of ECUs, the TPM commands constitute the
largest component in the attestation overhead. However,
for a larger number of ECUs, the operations on the Edge
platform become the predominant factor. Specifically, for
the case of 32 ECUs, we find an overhead of 53.20 ms,
140.60 ms, and 34.41 ms on the Edge, TPM and ECU
platforms, respectively. This also implies that our protocol
is more efficient for vehicles with a small number of
large branches than vehicles with many small branches.
Additionally, our timing distribution analysis highlights
that most of the overhead occurs on the TPM. Thereby
SPARK does not infer with the real-time operation of the
ECU and Zonal Gateway.

BELALE LR B UL B B DL IR B B B I
Device overhead =
1500 ¢ I Edge ]
TPM
1250 -  mmm ESP32
é 1000
o
E 750
H
500
250
- mm s Em B
0 -
1 2 4 8 16 32 64 128 256 5121024

Number of IoT devices

Figure 8: Breakdown of the timing distribution between
the Zonal Gateway (Edge and TPM), and ECUs during
the Attestation procedure considering the ESP32 as
the ECU platform. The X-axis is of a logarithmic nature.

10.2. Network Overhead Analysis

In this section, we detail the overhead of our pro-
tocol on the network resources. Since we assume that



the communication between Zonal and Central Gateway
is implemented using a high-bandwidth channel (e.g.,
100Base-T1 AE), we only detail the communication be-
tween Zonal Gateway and the ECUs. In Appendix C,
we derive the per-ECU overhead on the network con-
sidering the worst-case transmission delays for CAN,
CAN FD, and CAN XL. Furthermore, we assume the
maximum transmission speeds of the CAN standards. Our
results demonstrate that for the considered branch size
of 32 ECUs, the overhead on the network is limited
to 120.960 ms, 14.740 ms, and 8.7184 ms for CAN,
CAN FD, and CAN XL, respectively. This corresponds
to bus load increments of 12.09%, 1.47%, and 0.871%,
respectively. It is important to note that the increase in
bandwidth only applies during the attestation process. As
such, SPARK does not compromise the normal operation
of the vehicle. Moreover, we provide a discussion of
SPARK’s real-world applicability in Section 11.

10.3. Tracing Overhead Analysis

In this section, we evaluate the efficiency and effec-
tiveness of our protocol in the presence of a compromised
network. To do so, we repeat the experiments conducted
in Section 10.1 while introducing a malicious ECU in our
simulated network branch and enabling tracing. The find-
ings from the tracing analysis are illustrated in Figure 9.

. g -
4000 - Device Qverhead .
—B— Edge sign ]
—©~- Edge sign + Tracing ]
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3000 [ =¥~ Verify + Tracing
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Figure 9: Device-level tracing overhead comparing the
Zonal Gateway’s Attestation overhead and the Cen-
tral Gateway’s Verification overhead with and with-
out tracing enabled. The results are highlighted for typical
branch sizes around 32 ECUs. The X-axis is of a loga-
rithmic nature.

Our analysis shows that the tracing overhead for a
network of 32 ECUs with one malicious ECU is limited
to 136.04 ms for attestation and 8.16 ms for verification.
Additionally, we note that the majority of the tracing
overhead is caused by the TPM2_commit command. This
is because the TPM2_commit algorithm requires more
steps when using a basename [1] as required for tracing.
Furthermore, this implies that the number of malicious
ECUs and the size of the network do not have a significant
impact on the tracing overhead. We refer the interested
reader to Appendix D for a detailed summary of the
device-level overhead in SPARK with and without tracing.

11. Discussion

In SPARK, we proposed a swarm attestation protocol
that attests in a privacy-preserving manner the integrity of
IVNs that follow the Zonal architecture. However, SPARK
is not limited to this specific domain, as discussed below.

Implementation on legacy IVNs. SPARK is back-
wards compatible with older CAN standards and domain
architectures. However, establishing an authenticated and
encrypted channel between the ECUs and the Zonal Gate-
way on legacy CAN networks without dedicated hardware
support may be challenging, as it requires software im-
plementation of the symmetric algorithms. This can put
additional overhead on the resource-constrained ECUs.

Real-world applicability. As shown in Section 9,
SPARK is lightweight. However, we note that a major
factor in the attestation overhead are the TPM commands
that are performed once per branch. Hence, our solution is
more efficient for large branches than for multiple small
branches.

Application in other domains. SPARK’s applicability
extends beyond IVN domains, encompassing diverse fields
such as healthcare, wind energy, and industrial automa-
tion, to name a few. This is because the cryptographic
operation of SPARK is agnostic of the communication
protocol. Hence, SPARK is compatible with all static
swarms that exhibit an IoT-Edge-Verifier structure.

12. Conclusion

In this paper, we propose SPARK, a novel swarm

attestation protocol that aims to guarantee privacy and
anonymity and enables third-party verification of the
swarm. SPARK relies on a novel group signature scheme
that is fully implemented on standardized TPM 2.0. By
relying on TPM 2.0, SPARK enables key binding, which
enforces that the devices in the network are bound to
their physical network topology. Additionally, the pro-
posed protocol provides an efficient tracing solution that
allows an opener to trace the compromised device (e.g.,
for maintenance or replacement). Moreover, in this paper,
we provide a representative implementation demonstrating
the applicability and efficiency of SPARK in a real-world
setting involving IVNs.
As future work, we will explore the opportunities of
SPARK in a real-world V2X setting. Additionally, we will
explore state-of-the-art attestation mechanisms to provide
solutions for runtime attacks and enable interruptibility in
SPARK.
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Appendix
1. Data Availability

Our research strictly adheres to ethical guidelines and
does not involve the use of any personal information. We
have ensured that there are no vulnerabilities disclosed,
and the study does not incorporate any data or information
that could potentially lead to harm or losses for individuals
or companies. Furthermore, all aspects of our research
were conducted entirely in a lab setting, minimizing any
risk of unintended consequences or ethical concerns. The
source code for our PoC implementation is available:
https://gitlab.esat.kuleuven.be/wouter.hellemans/spark.

2. Group Signature

Formally, a group signature scheme
GS = (G.KeyGen,G.Sign, G.Vrfy, G.Open)

is a collection of four polynomial-time algorithms defined
as follows:

e The group key-generation algorithm
G.KeyGen(1*,1V) is a randomized algorithm
that takes a security parameter 1* and the group
size 1V as inputs, and outputs ((X,Y),zr, a:([)N]),
where (X,Y") corresponds to the issuer public key,
x7 is the Tracer’s key, and ng] is a list of IV
signing keys with z{ represents the signing key of
the i*" group member.

o The group signature algorithm G.Sign(x{, m) is a
randomized algorithm that takes a signing key =},
and a message m as inputs and outputs a signature
o on m.

e The group

G.Vrfy((X, Y),m, a) is a deterministic algorithm

verification algorithm

that takes as input the issuer public key (X,Y), a
message m, and a signature o, and outputs either
accept or reject, respectively.

o The opening algorithm G.Open(zr,m,o) is a de-
terministic algorithm that takes a tracing key zr, a
message m, and a signature o as inputs, and outputs
the identity ¢ € [1, N].

We formally define the main security properties of a
Group signature:

Definition A.1. (Unforgeability): We define the unforge-
ability of a Group Signature

GS = (G.KeyGen,G.Sign, G.Vrfy,G.Open) .

In this game, an adversary is required to output a valid
forgery o* on a chosen message m* after several signing
queries.

System Setup: Keys are generated using G.KeyGen. The
adversary A is given the group’s public parameters while
the private signing keys are never released to .A. Note that
in our scheme each group member is a branch that consists
of an Edge with its connected children IoT devices.

Signature Queries: The adversary issues signing queries
on messages mi,ms, ... m; for group members 1,...,1,
for some ! € N. To each query m; where i € [1,]],

a challenger responds by running the G.Sign algorithm
to generate a group signature o; on m; with the group
member ¢’s signing key, which was generated in the Key
Setup Phase and outputs o; to the adversary.
Output: At this stage, the adversary outputs a mes-
sage—signature pair (m*,c*). The experiment outcome
can be analyzed as follows: The adversary wins if
e 0% is a valid group signature of m* according to
Verify algorithm G.Vr fy;
e (m*,0*) is not among the pairs (m;,o;) that were
queried before.
We define the advantage of an adversary A in attacking
the unforgeability of our group signature scheme as the
probability that A wins the above game.

Definition A.2. (Anonymity): A group signature scheme
GS = (G.KeyGen,G.Sign, G.Vrfy, G.Open)

is anonymous if for all probabilistic polynomial-time ad-
versaries A, the advantage of A in the following experi-
ment is negligible in A:

o Compute (X,Y),xr, xBN]) —
G.KeyGen(1*,1V) and give ((X,Y), ai')
to A.

o A outputs distinct identities ig,7; € [1, N], along
with a message m. A random bit b is chosen, and
A is given G.Sign(zo,, ,m). Finally, A outputs a bit
b.

o A succeeds if b’ = b we denote this case by “Succ”.
The advantage of A is Pr[Succ] - %

Definition A.3. (Traceability): A group signature scheme
GS = (G.KeyGen,G.Sign, G.Vrfy, G.Open)

is traceable if for all probabilistic polynomial-time adver-
saries A, the success probability of A in the following
experiment is negligible in n:

. Compute (X7 Y)7 xT, m[ON]) =

G.KeyGen(1*,1¥) and give (X,Y) and zr
to A.

o A may query the following oracles:
— A Corrupt oracle that on input i € [N] returns x}.
— A Signing oracle that on input ¢, m outputs a

signature o <+ G.Sign(z}, m).

« A outputs a message m and a signature o.

Let C be the set of corrupt identities. A succeeds if

G.Vrfy((X,Y),m,o) —1

and o was never queried by any member that doesn’t
belong to C, however G.Open(xzp, m,o) ¢ C.

3. Network Overhead Analysis

In this appendix, we derive the overhead of our proto-
col on the network resources. In our analysis, we assume
that SPARK leverages the BN_P256 curve, adopted by
the TCG. As such, every point on E can be represented
with maximum 512 bits. Furthermore, the Zonal Gateway
and every ECU have to exchange values in Z,, which we
consider to consist of maximum 256 bits. In the following,
we provide an analysis of the overhead introduced by these



messages for (1) CAN, (2) CAN FD, and (3) CAN XL.
The parameters of these three protocols are summarized
in Table 4.

TABLE 4: Summary of maximum transmission speed and
payload size in different CAN specifications

| CAN CANFD CAN XL

Rarbitration,maz (MblTjS) 1* 1 1
Rdata,maz (Mblt/s) 1* 8 20
Maximum payload (bytes) 8 64 2048

* CAN does not support different data rates during the arbitration and data phase.

Since packets in CAN-based protocols are subject to
bit-stuffing, we consider the worst-case transmission time
(i.e., maximum bit stuffing) in our network overhead anal-
ysis. Furthermore, to allow for a fair comparison between
the different CAN standards, we use the base format with
11-bit identifiers>. The worst-case transmission time for
the different CAN standards can be found as:

1) CAN [29]:
tm = (55 + 10p)7bit

2) CAN FD [11]:

— 16
tn = 327ar + (28 + 52 o 100)Taara
3) CAN XL [10]:
109 + 8
tm = 377arp + (119 + I_TpJ + 8p)Tdata

with, p the number of bytes in the payload, 7;; the bit
time, 7,5 the bit time during the arbitration phase, and
Tdate the bit time during the data transmission phase.

In Table 5, we present an analysis of the worst-case
overhead on the network for a single ECU, assuming
the maximum transmission speeds of the CAN standards.
Additionally, we analyze the network overhead in terms
of the number of ECUs in the network in Figure 10.
Our results demonstrate that for the considered branch
size of 32 ECUs, the overhead on the network is limited
to 120.960 ms, 14.740 ms, and 8.7184 ms for CAN,
CAN FD, and CAN XL, respectively. This corresponds
to bus load increments of 12.09%, 1.47%, and 0.871%,
respectively. Furthermore, it can be found that SPARK
significantly benefits from the higher transmission rate and
longer payload offered by CAN FD compared to CAN. We

2. In contrast to the CAN and CAN FD standards, CAN XL does not
have support for extended identifiers.

note that the additional improvement offered by CAN XL
w.rt. CAN FD is less significant. This is because the
payloads in the different messages are relatively small and
CAN XL suffers from a longer arbitration phase. Finally,
it is important to note that the increase in bandwidth only
applies during the attestation process. As such, SPARK
does not compromise the normal operation of the vehicle.
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Figure 10: Network-level overhead for communica-
tion between ECU and Zonal Gateway during the
Attestation phase. The X- and Y-axes are of a loga-
rithmic nature.

4. Protocol Timings

In this appendix, we summarize the scalability of
SPARK during the attestation and verification for branch
sizes of 1 to 1024 ECUs. Moreover, we compare the
timings with and without tracing activated. The results
are presented in Table 6.

TABLE 5: Summary of the per-ECU network-level overhead during the Attestation phase for different CAN

specifications.

| CAN | CAN FD | CAN XL

\ # messages payload time (us) \ # messages payload time (us) \ # messages payload time (us)
E;, 8 8 1080 1 64 116.125 1 64 71.65
Ly 4 8 540 1 32 76.125 " X .
Ry 8 8 1080 1 64 116.125 ! % 85.70
c 4 8 540 1 32 76.125 1 32 57.55
Sk 4 8 540 1 32 76.125 1 32 57.55
Total | 3780 ps/loT | 460.625 ps/loT | 272.45 ps/oT

* Please note that due to the larger payload of CAN XL, the exchange of £}, and Ry, can be achieved with a single message



TABLE 6: Overview of the device-level overhead in SPARK: (1) on the Zonal Gateway during the
Attestation with and without tracing, (2) total overhead during the attestation, and (3) on the
Central Gateway during the Verification with and without tracing. The scalability is evaluated
for network branch sizes ranging from 1 to 1024

# JoT Edge Edge (Tracing) | Total M4  Total MO+  Total ESP32 | Verification  Verification (Tracing)
(ms) (ms) (ms) (ms) (ms) (ms) (ms)
1 148.390 284.384 294.623 287.334 182.800 40.570 51.203
2 150.302 285.991 296.536 289.246 184.712 43.894 54.322
4 153.221 289.595 299.455 292.165 187.632 52.475 62.577
8 158.575 294.521 304.809 297.519 192.985 67.624 76.903
16 170.432 305.969 316.666 309.376 204.842 100.568 110.576
32 193.805 328.848 340.039 332.749 228.215 166.080 174.240
64 236.662 374.509 382.896 375.606 271.073 297.410 305.781
128 327.234 461.950 473.468 466.178 361.645 556.022 567.205
256 504.575 640.421 650.809 643.519 538.985 1071.986 1084.521
512 861.046 997.743 1007.280 999.990 895.456 2106.163 2119.283
1024 1575.428 1712.185 1721.662 1714.372 1609.839 4173.503 4185.389




