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Summary in Danish

Haengebroer bygges med stadigt leengere spaend og i fremtiden planleegges ultra-lange
heengebroer, f.eks. over Messinastredet og Gibraltarstredet. Disse ultra-lange hsengebroer
vil blive fglsomme over for dynamiske belastninger, og hovedproblemet forventes at veere
flutter. Speendvidden kan f.eks. forpges ved at optimere haengebroen mht. materialer,
brodakkets tvaersnitsform og kabler. Alternativt kan den intelligente bro introduceres,
hvor aktive kontrolsystemer benyttes til at begraense svingningerne.

[ kapitel 1 beskrives to aktive kontrolsystemer med flapper. Det vaelges at undersgge det
aktive flapkontrolsystem, som bestar af flapper integreret i brodrageren. Nar flapperne
udsattes for vinden, opstar belastninger pd brodrageren. Retningerne og stgrrelserne af
disse belastninger afheenger af, hvordan flapperne reguleres. Fglere inde i brodrageren
maéler positionen af drageren. Disse mélinger benyttes i en kontrolalgoritme til beregning
af optimale flappositioner. Flapperne beveaeges herefter kontinuerligt svarende til de bereg-
nede optimale positioner. Flapkontrolsystemet kan benyttes til opfyldelse af anvendelses-
tilstanden og komfortkrav, eller det kan benyttes til forggelse af flutter vindhastigheden.

De bevaegelses-inducerede vindbelastninger pa en brosektion er defineret i kapitel 2 baseret
pé aerodynamiske koefficienter for brodrageren og yderligere aerodynamiske koefficienter
for flapreguleringen. Ved at udtrykke flappernes vinkler ved torsionsvinklen af brosek-
tionen kan man benytte eksisterende metoder beskrevet i litteraturen til estimering af
flutter vindhastigheden for en brosektion med flapper. Dette ggres ved at erstatte nogle
af de aerodynamiske koefficienter med udtryk, som indeholder parametre, der beskriver
flapreguleringen. Estimering af flutter vindhastighed ved hjeelp af Theodorsens metode
og ‘alr material command’ metoden til estimering af den ngdvendige deempning af kon-
struktionen beskrives.

Et eksempel viser den teoretiske effekt af flapperne. Flutter vindhastigheden beregnes
for forskellige flapkonfigurationer for en brosektionsmodel med flapper. I de efterfglgende
eksempler approksimeres de aerodynamiske koefficienter med aerodynamiske koefficienter
for en flad plade. Ved udledelse af yderligere acrodynamiske koefficienter for den ledende
flap antages, at bevaegelse af denne flap ikke har indflydelse p& cirkulationen. Det kon-
kluderes, at den fglgende flap er mere effektiv end den ledende flap. Det er mere effektivt
at beveege begge flapper end kun at beviege den fglgende flap. Eksemplet viser, at det
teoretisk set er muligt at eliminere flutterproblemet for den undersggte brosektionsmodel
ved benyttelse af flapkontrolsystemet.

Tre kontrolalgoritmer, som kan benyttes ved regulering af flapperne, er beskrevet i kapi-
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tel 3, nemlig klassisk linezer optimal kontrol med lukket-lpkke, gjeblikkelig optimal kon-
trol med lukket-lgkke og kontrol med lukket-lgkke med konstant fasevinkel mellem flap-
bevaegelserne og torsionsbevaegelsen for brosektionen. I klassisk linezr optimal kontrol
minimeres et ‘performance index’ over hele kontrolintervallet. Ved gjeblikkelig optimal
kontrol minimeres et tilsvarende ‘performance index’ til hvert tidspunkt i kontrolinterval-
let. Den gjeblikkelige optimale kontrollov er meget simplere end den klassiske linezere op-
timale kontrollov, da lgsning af Riccatti-matricen undgas. Ved konstant fasevinkel kontrol
udledes de optimale fasevinkler for flapperne baseret pa energi input fra den beveegelses-
inducerede vindbelastning.

Forskellen mellem klassisk lineser optimal kontrol og @jeblikkelig kontrol vises i et eksem-
pel. Formerne af flapvinkelkurverne er temmelig ens, men flapperne er en smule forsinkede
ved @jeblikkelig kontrol i forhold til klassisk lineser kontrol. Begge kontrolalgoritmer er
meget effektive til at begraense bevaegelserne. Et eksempel med konstant fasevinkel kontrol
viser, at der ikke vil opsta flutter for en flad plade med lange flapper for den undersggte
vindhastighed, hvis flapperne bevages med optimale flapvinkler og amplituder som am-
plituden af torsionsvinklen for pladen.

[ kapitel 4 beskrives, hvordan et ‘multi-layer perceptron’ neuralt netvaerk kan benyttes ved
simulering af bevaegelsen af en brosektion baseret pa data fra eksempelvis et vindtunnel
eksperiment. Under traeningen af et aktivt kontrol neuralt netveerk benyttes det treenede
neurale netverk, som modellerer bevaegelsen af brosektionen, som simulator. I den en-
delige aktive kontrolkonfiguration med lukket-lgkke benyttes det treenede neurale netvaerk
for brosektionen som ‘one-step ahead predictor’ til estimering af bevaegelsen til det neeste
tidsstep. Kontrolkraften estimeres derefter af det traenede kontrol netveerk baseret pa de
estimerede beveegelser. Desuden beskrives, hvordan aerodynamiske koefficienter for en
brosektion kan udledes fra et treenet neuralt netveerk for brosektionsmodellen.

Vindtunnelforsgg udfgres for at undersgge princippet ved at benytte flapper til begraens-
ning af broens bevaegelser. Forsggsopstillingen ved vindtunnelforsggene er beskrevet i
kapitel 5. Vindtunnelen, brosektionsmodellen, opheengningssystemet, reguleringssystemet
og specielle detaljer er beskrevet. Modellen er realistisk i forhold til en rigtig bro, men der
undersgges ikke en bestemt bro. Reguleringssystemet har bevirket en hel del problemer
og tidsforsinkelse. Endnu er reguleringssystemet langt fra perfekt, og det gav desvaerre
problemer under vindtunnelforsggene. Derfor kunne kun en lille del af de planlagte forsgg
gennemfares.

Under vindtunnelforspgene, der er beskrevet i kapitel 6, undersgges, hvorledes deempnin-
gen af modellen er afhengig af flapkonfigurationen for stigende vindhastigheder. Men igen
var der uventede problemer, nemlig stpjfyldte milinger af flytningerne, stdende belger i
fjedrene, nar flapperne reguleres, og statisk divergens af modellen ved en vindhastighed
meget teet ved flutter vindhastigheden. For at undga at de stgjfyldte malinger skulle give
en ujeevn regulering af flapperne, saettes servomotorerne til at reagere meget langsomt.
Konstant fasevinkelkontrol benyttes ved vindtunnelforsggene. Der udfgres forsgg med
modellen uden beveegelse af flapperne og med to gunstige og to ugunstige flapkonfigura-
tioner.



Forsggene viser, at bade de cirkulzre frekvenser for den lodrette bevaegelse og torsions-
bevaegelsen og deempningsforholdet for torsionsbevagelsen er athzengige af vindhastighe-
den og flapkonfigurationen. Nar der benyttes gunstige flapkonfigurationer, forgges deemp-
ningsforholdet drastisk, selv om flappernes fasevinkler méaske ikke er optimale. Forsggene
viser ogsé, at det er muligt, at bevaege flapperne si uheldigt, at modellen udfgrer flutter
ved en relativ lav vindhastighed. Adskillige problemer under forspgene ngdvendiggjorde
nye forsgg, bl.a. var det ikke muligt at vise effektiviteten af flapperne for vindhastigheder
over fluttervindhastigheden. Men under disse nye forsgg opstod nye problemer, s& disse
forsgg kunne kun blive brugt til at finde gunstige fasevinkler for den fglgende og ledende
flap enkeltvis.

Data fra vindtunnelforsggene benyttes ikke til at treene neurale netveerk, da dataene er
meget stgjfyldte, specielt mht. de beregnede hastigheder. Desuden er mange af tidsserierne
fra forsggene meget korte og indeholder hovedsageligt data fra den langsomme start af
flapperne. Endelig antages ved de neurale netvaerksmodeller, at flapperne kan bevages
hurtigt, dvs. at der ikke er forskel pa de gnskede og aktuelle flappositioner.

I kapitel 7 sammenlignes de estimerede parametre fra vindtunnelforsggene med de teo-
retiske parametre ved benyttelse af flad pladeapproximation. Ved bade de gunstige og
ugunstige flapkonfigurationer bevaeges flapperne enten op eller ned pa samme tid, og
flapvinklerne er maksimale, nar modellen er tilnsrmelsesvis vandret. De vindhastigheds-
afheengige cirkulaere frekvenser for lodret beveegelse og torsionsbevaegelse sammenlignes
med de teoretiske kurver for approximationen for flad plade for ren lodret bevaegelse og ren
torsionsbevacgelse. For den lodrette beveaegelse stemmer kurverne kun overens for temmelig
lave vindhastigheder. Den cirkulare frekvens for den lodrette bevaegelse er uafhengig af
flapkonfigurationen. For torsionsbevaegelsen fglger de estimerede vaerdier generelt de teo-
retiske kurver; dette geelder iseer for relativt lave vindhastigheder. Den cirkulsere frekvens
for torsionsbeveegelsen er afhangig af flapkonfigurationen. Det eksperimentielle deemp-
ningsforhold er mindre for flapkonfiguration 0 og 1 end det teoretiske deempningsforhold
baseret pé approximationen for flad plade, men kurveformen er neesten den samme. For
flapkonfiguration 2 overstiger det eksperimentielle deempningsforhold det teoretiske. Ved
flapkonfiguration 1 eller 2 forpges fluttervindhastigheden, eller flutter vil ikke opsta.

Baseret pa yderligere forsgg, hvor flapperne bevaeges enkeltvis, kan det konkluderes, at
der blev benyttet gunstige fasevinkler under de fgrste forsgg. Men baseret pa de udfgrte
forsgg er det ikke muligt at konkludere, hvilke fasevinkler der er optimale, og hvad den
optimale effekt af flapkontrolsystemet er.
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Summary in English

Still longer suspension bridges are built and in the future ultra-long span suspension
bridges are planned, e.g. the Messina Crossing and the crossing of the Gibraltar Straits.
These ultra-long span suspension bridges will be sensitive to dynamic loads and the main
problem is expected to be flutter. The span length can e.g. be increased by optimizing
the suspension bridge with regard to materials, deck shape and cables. Alternatively, the
intelligent bridge may be introduced where active control systems are used to limit the
vibrations.

In chapter 1 two active control systems with flaps are described. The active flap control
system selected for investigation consists of flaps integrated in the bridge girder. When
the flaps are exposed to the wind they exert forces on the bridge girder. The direction and
sizes of the forces are dependent on the flap regulation. Sensors inside the bridge girder
measure the position of the girder. These measurements are used in a control algorithm to
calculate the optimal flap positions. The flaps are then regulated continuously according
to the calculated optimal positions. The flap control system can be used to fulfil the
serviceability state and comfort demands or it can be used to increase the flutter wind
velocity.

The motion-induced wind loads on a bridge section are defined in chapter 2 based on
aerodynamic derivatives for the bridge deck and additional aerodynamic derivatives for
regulation of the flaps. By expressing the angles of the flaps in terms of the torsional angle
of the bridge section the methods described in the literature can be used to estimate the
flutter wind velocity for the bridge section with flaps. This is done by simply replacing
some of the aerodynamic derivatives with expressions including the parameters describing
the flap configuration. Estimation of flutter wind velocity by Theodorsen’s method and
the air material command method used to estimate the necessary structural damping are
described.

The theoretical effect of the flaps is shown by an example. The flutter wind velocity is
calculated for different flap configurations for a bridge section model with flaps. In the
following examples the aerodynamic derivatives are approximated by the aerodynamic
derivatives for a flat plate. In the derivation of the additional aerodynamic derivatives for
the leading flap it is assumed that movement of this flap does not affect the circulation.
It can be concluded that the trailing flap is more efficient than the leading flap. However,
moving both flaps is again more efficient than moving only the trailing flap. The example
shows that it is theoretically possible to eliminate the flutter problem for the investigated
bridge section model by using the flap control system.
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Three control algorithms that can be used to regulate the flaps are described in chapter 3,
namely classical linear optimal closed-loop control, instantaneous optimal closed-loop con-
trol and closed-loop control with constant phase angle between the motion of the flaps
and the torsional motion of the bridge. In classical linear optimal control a performance
index is minimized during the entire control interval. In instantaneous optimal control
the performance index is minimized at every time instant in the control interval. The
instantaneous control law is much simpler than the classical linear optimal control law as
solving the Riccatti matrix is omitted. In constant phase angle control the optimal phase
angles of the flaps are derived based on the energy input from the motion-induced wind
load.

The difference between classical linear optimal control and instantaneous control is shown
in an example. The shapes of the flap angle curves are much alike, but the flaps are
slightly delayed in instantaneous control compared to classical linear control. Both control
algorithms are very efficient to limit the vibrations. An example with constant phase angle
control shows that no flutter will occur for a flat plate with long flaps at the investigated
wind velocity if the flaps are moved with optimal phase angles and amplitudes equal to
the pitch angle of the plate.

In chapter 4 it is described how a multi-layer perceptron neural network can be used to
simulate the motion of a bridge section based on data from e.g. a wind tunmnel experi-
ment. During training of an active controller neural network the trained neural network
modelling the motion of the bridge section is used as a simulator. In the final active
closed-loop control configuration the trained neural network of the bridge section is used
as one-step ahead predictor to estimate the state vector to the next time step. The control
force is then estimated by the trained controller network based on the estimated state
variables. Further, it is described how aerodynamic derivatives for the bridge section can
be extracted from a trained bridge section model network.

Wind tunnel experiments are performed to investigate the principle to use flaps to control
the bridge excitation. The test setup for wind tunnel experiments is described in chapter 5.
The wind tunnel, bridge section model, suspension system, regulation system and special
details are described. The model is realistic compared to a real bridge, but no specific
bridge is investigated. The regulation system has caused a lot of problems and time delay.
Still the regulation system is far from perfect and unfortunately it caused problems during
the wind tunnel experiments. Therefore, only a small part of the planned experiments
could be performed.

During the wind tunnel experiments described in chapter 6 it is investigated how the
damping of the model is dependent on the flap configuration for increasing wind velocities.
Again, however, there were unanticipated problems, namely noisy measurements of the
displacements, standing waves in the springs when the flaps are regulated and static
divergency of the model at a wind velocity very close to the flutter wind velocity. To
avoid the effects of the noisy measurements on the flap regulation the reaction of the
servo motors is specified to be very slow. During the experiments constant phase angle
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control is used. Experiments are performed with the model without moving the flaps, two
favourable and two unfavourable flap configurations.

The experiments show that both the circular frequencies of the vertical and torsional
motion and the damping ratio of the torsional motion are dependent on the wind speed
and the flap configuration. When using favourable flap configurations the damping ratio
is increased considerably even though the delay of the flaps compared to the torsional
motion might not be optimal. The experiments also show that it is possible to make
the flap configuration very unfavourable so the model makes flutter at a rather low wind
speed. There were several problems during the experiments that recommended further
experiments, e.g. that the effectiveness of the flaps could not be shown for wind speeds
above the flutter wind speed. Therefore, new problems were introduced during these new
experiments. However, they could only be used to find favourable phase angles for the
trailing and leading flap, separately.

Data from the wind tunnel experiments are not used to train neural networks as the data
are very noisy, especially with respect to the calculated velocities. Further, many of the
time series from the wind tunnel experiments are very short and mainly contain data with
slow start of the flaps. Finally, the neural network models assume that the flaps can be
moved fast, i.e. that no distinction is made between the desired and actual flap positions.

In chapter 7 the estimated parameters from the wind tunnel experiments are compared
with the theoretical parameters by using the flat plate approximation. In both the
favourable and unfavourable flap configurations the flaps are moved either up or down
at the same time and there are maximum angles of the flaps when the model is ap-
proximately horizontal. The wind speed dependent circular frequencies for vertical and
torsional motion are compared to the theoretical curves for the flat plate approximation
for pure vertical and pure torsional motions. For the vertical motion the curves only agree
for rather low wind speeds. The circular frequency for the vertical motion is independent
on the flap configuration. For the torsional motion the estimated values generally follow
the theoretical curves especially for relatively low wind speeds. The circular frequency for
the torsional motion is dependent on the flap configuration. The experimental damping
ratio is smaller for flap configurations 0 and 1 than the theoretical damping ratio based
on the flat plate approximation. However, the shape of the curve is almost the same.
For flap configuration 2 the experimental damping ratio exceeds the theoretical ratio. By
using flap configuration 1 or 2 the flutter wind velocity is increased or perhaps no binary
flutter will occur.

Based on further experiments where flaps are moved separately it can be concluded that
favourable phase angles are used during the first experiments. Based on the performed
experiments, however, it is not possible to conclude which phase angles are optimal and
the optimal effect of the flap control system.
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Nomenclature

The list in this section contains the most frequently used symbols, typically applied in
several sections of the thesis. Symbols used for several quantities are explained when used
in the cases where the interpretation deviates from the list. Symbols not included in the
list are explained when used.

Symbols:
a flap amplification factor for leading flap
Ao actual flap amplification factor for leading flap
ay flap amplification factor for trailing flap
O actual flap amplification factor for trailing flap
Al aerodynamic derivatives
Aq amplitude of the envelope curve for the torsional motion
b half-chord length of plate or bridge section
B width of plate or bridge section with flaps
B width of plate or bridge section without flaps
c location of flap hinge relative to mid-chord
C Theodorsen circulation function
Eais structural dissipated energy during a period

Einpus  energy input from motion-induced wind load during a period

F real part of Theodorsen circulation function

I, motion-induced force

g damping coefficient used in AMC method

G imaginary part of Theodorsen circulation function

Gw instantaneous optimal closed-loop control gain matrix
Gl classical linear optimal closed-loop control gain matrix
HY aerodynamic derivatives

¢ mass moment of inertia of bridge section per unit length

J performance index in structural control
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Qg

a4}

Gia

Aty
Aty

Pl

reduced frequency based on half-width of plate or bridge section
time step in neural networks

reduced frequency based on width of plate or bridge section
reduced frequency for flutter based on half-width of plate or bridge section
mass of bridge section per unit length

Riccatti matrix

weighting matrix in structural control

weighting matrix in structural control

time

end of control interval

Theodorsen constants

control vector

mean wind velocity measured in undisturbed stream

flutter wind velocity

reduced wind velocity

horizontal co-ordinate of plate or brige section, positive in the direction of the
mean wind velocity

vector af structural motion
vertical displacement of plate or bridge section, positive downwards
angle of plate or bridge section relative to horizontal, positive clockwise

angle of leading flap relative to undeflected position of plate or bridge section,
positive clockwise

actual angle of leading flap relative to undeflected position of plate or bridge
section, positive clockwise

angle of trailing flap relative to undeflected position of plate or bridge section,
positive clockwise

actual angle of trailing flap relative to undeflected position of plate or bridge
section, positive clockwise

time delay of leading flap compared to the torsional motion
time delay of trailing flap compared to the torsional motion
damping ratio

mass density of air

phase angle for leading flap relative to torsional motion of plate or bridge
section



xvil

Pla

2

Pta

actual phase angle for leading flap relative to torsional motion of plate or bridge
section

phase angle for trailing flap relative to torsional motion of plate or bridge
section

actual phase angle for trailing flap relative to torsional motion of plate or
bridge section

circular frequency
weights in neural networks

circular flutter frequency

filtered values

leading flap

model

prototype

trailing flap

vertical bending motion

torsional motion
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Chapter 1

Introduction

1.1 Motivation

During the last decades the span length of suspension bridges has grown rapidly. In
figure 1.1 major suspension bridges for the period 1973-1998 with the longest spans in
Japan are shown. The Akashi Katkyo Bridge with span length 1,991 m was opened for
traffic in April 1998 and it is so far the longest suspension bridge of the world. Another
long suspension bridge which was opened for traffic in June 1998 is the Great Belt Bridge
with span length 1,624 m. Of future ultra-long span suspension bridges that may be
constructed can be mentioned the Messina Crossing with the span length 3,300 m and
the crossing of the Gibraltar Straits with the span length 3,550 m, see Brown [6]-

As described by Ostenfeld [29] there are two major limitations for the growth of span
length for suspension bridges:

1. The limits for known materials in carrying their own weight. The solution to this
problem may be trial and error.

2. The inherent flexibility of long span bridges will cause such bridges to be very
sensible to dynamic loads. Possible solutions to this problem are summarized below.

To increase the span length the suspension bridge can be optimized with regard to ma-
terials, deck shape and cables as described by Brown [6], Gimsing [12], Astiz [4], Os-
tenfeld [29] and Ostenfeld & Larsen [30]. Another possibility may be to introduce the
intelligent bridge, where active control systems are used to limit the vibrations. A step in
this direction is to introduce passive control systems, e.g. viscoelastic damping elements,
tuned mass dampers and eccentric masses, as described by Ostenfeld & Larsen [30].

In advanced aircrafts actively controlled surfaces are moved relatively to the main surfaces
(wings, flaps or ailerons) on which they exert control [30]. The control surfaces are moved
by hydraulics based on measurements from sensors attached to the main surfaces. The
same principle could be applied to bridges as patented by COWIconsult [1].

The main problem in designing ultra-long span suspension bridges is flutter, which is an
aeroelastic phenomenon, see Astiz [4]. Flutter occurs when the bridge is exposed to a wind
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Figure 1.1: Longest span of suspension bridges in Japan during the last
decades with data from Ito [21].

speed above a critical value called the flutter wind velocity. The oscillations in flutter are
perpendicular to the wind direction and may be torsional, vertical or a combined torsional
and vertical motion. The flutter wind velocity is decreased with decreasing structural
stiffness and damping. The problem of flutter, therefore, becomes more important with
increasing span lengths of bridges as flutter is closely related to the stiffness of the bridge,
which in turn is dependent on the span length, see Madsen & Ostenfeld-Rosenthal [27].

Failure of bridges due to flutter has been experienced. The most famous example of bridge
failure due to torsional oscillations is the Tacoma Narrows Bridge, which was destroyed
by a relatively low 20 M/ wind in 1940, see e.g. Ostenfeld & Larsen [30].

If the safety of a long suspension bridge has to rely on a control system it is preferred
that such a system is passive. Active control systems for limitations of vibrations of civil
engineering structures have primary been used to fulfil serviceability state and comfort
demands. In this case failure of the control system is not critical for the users of the struc-
ture or the structure itself. Therefore, the reliability of such systems is of less importance.
Active control systems may in the future be common elements in wind sensitive bridges
to enhance the comfort of the users [30].

The safety of a suspension bridge is governed by its response to infrequent and extreme
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loading, e.g. when it is exposed to the flutter wind velocity. As a result the active control
system in an intelligent bridge may remain in stand-by mode for many years and perhaps
decades without being activated. In this case it is very important that the control system
is reliable at the very moment the dimensioning load is acting on the structure. The
reliability of the control system can be improved by making several independent systems
with separated power supplies and by performing regular tests, e.g. by frequent use of the
active control system also to fulfill serviceability state and comfort demands.

1.2 Patented Control System with Flaps

In this section the active control system with flaps patented by COWlIconsult [1] is de-
scribed. Two types of actively controlled flaps are described in the patent:

o Flaps arranged on pylons below the leading and trailing edge of the streamlined
bridge girder, see figure 1.2.

e Flaps integrated in the bridge girder so each flap is the streamlined part of the
edge of the girder, see figure 1.3. This configuration obviates the additional flaps
suspended below the bridge. This is important in terms of costs and gives the bridge
an aesthetically nicer appearance [1].

Figure 1.2: Flaps arranged on pylons under bridge girder [1].

When the flaps are exposed to the wind they exert forces on the bridge girder. The
directions and sizes of the forces can be regulated by regulating the flaps. By providing
forces which counteract the motion of the girder the oscillations are damped.
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Figure 1.3: Flaps as integrated parts of the bridge girder [1].

A number of sensors are placed inside the bridge girder to measure the position or motion
of the girder. The measurements are transmitted to the control unit, e.g. a computer.
The flaps are regulated based on a control algorithm that uses the measurements. In this
way the flaps can be regulated continuously to counteract the motion of the girder.

The flaps are divided into sections in the longitudinal direction of the bridge, and each
of these sections can be regulated independently. The overall safety of the active control
system is increased by the number of main control units and thus the number of indepen-
dent sections.

It is not necessary to mount flaps to the bridge girder over the entire span of the bridge.
They may be mounted where they have the greatest effect, i.e. where the girder has the
largest deflections. For symmetric modes of oscillations the optimal place is about the
central part of the span and for asymmetric modes the optimal places are near the quarter
points of the span.

1.3 Scope of the Thesis

Much research is needed before the flap control system can be used in practice. Especially,
if the safety of the bridge is dependent on the flap system it is very important that the
flap control system is reliable. The following questions must be answered:
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1. What is the optimal shape of the flaps and where should they be placed on the
bridge?

2. How are the flap positions calculated?
3. Do the flaps have the expected effect?
4. How is the system made reliable?

The shape of the flaps and the placement are not optimized in this thesis. Instead,
the flaps integrated in the bridge girder as described in the patent [1] are examined,
see figure 1.3. Reliability of the flap control system can be increased by using several
independent control systems and frequent tests. A reliability analysis of the flap control
system involves formulation of all failure modes of the system, e.g. failure of energy supply.
The reliability analysis is not performed in this thesis.

The main goal of this thesis is:

Comparing the theoretical and experimental effect of flap control based on wind
tunnel experiments with a bridge section model.

The specific goals of this thesis are:

e Extend the existing theory for dynamics of a long suspension bridge to include
leading and trailing flaps.

Formulate control algorithms.

Neural networks modelling and system identification.

Describe bridge section model, test set up and wind tunnel experiments.

Compare the results from experiments with theory.

1.4 Thesis Outline

The structure of the thesis follows from the specific goals stated above.

All derivations and long descriptions are in the appendices. In the main report the
conclusions are drawn and examples are shown. Whenever possible the parameters for
the bridge section model used in the wind tunnel experiments idealized to a flat plate are
used as example to illustrate the theory.

In chapter 2 dynamics of long suspension bridges is summarized with special attention
on the flutter phenomenom. The aerodynamic derivatives for a flat plate with flaps are
derived based on the Theodorsen theory. Estimation of the flutter wind velocity is shown
when both the Theodorsen method and the Air Material Command method are used.
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Three control algorithms are described in chapter 8, namely Classical Linear Optimal
closed-loop control, Instantaneous Optimal closed-loop control and control with constant
phase angles between the motion of the bridge section and the flap motions.

In chapter 4 it is described how data from wind tunnel experiments can be used to train an
Innovation State-Space neural network model of a bridge section model and a closed-loop
controller. Further, it is described how structural parameters and aerodynamic derivates
can be extracted from the trained neural network model of the bridge section model.

The wind tunnel, bridge section model, suspension system and regulation system used in
the wind tunnel experiments are described in chapter 5. The wind tunnel experiments are
described in chapter 6 and the experimental data are analysed. The results of the wind
tunnel experiments are compared to the theory in chapter 7.

Finally, the conclusions of each chapter and the overall conclusion are given in chapter 8.



Chapter 2

Dynamics of Long Suspension Bridges

2.1 Introduction

Wind engineering of bridges is based on known or inferred meteorological data for the
bridge site, see e.g. Scanlan [31]. By using extreme value statistics the design wind velocity
for the bridge 1s estimated.

The motion-induced wind loads on a streamlined bridge deck with integrated flaps are
described in section 2.2 by a number of coefficients called aerodynamic derivatives. For
new bridge designs these coefficients must be estimated by wind tunnel tests or by numer-
ical flow simulations. For flexible bridges the cross-sectional shape of the bridge deck is
the most dominating factor on the wind loads, see Scanlan [32]. Therefore, bridge section
models are used to estimate the aerodynamic derivatives. During preliminary design the
aerodynamic derivatives may be approximated by the values for a flat plate which are
summarized in section 2.2.

Estimation of the flutter wind velocity by Theodorsen’s method is described in section 2.3.
The Air Material Command (AMC) method for estimating the necessary structural damp-
ing of the bridge section as a function of the mean wind velocity is described in section 2.4.
As an example, the flutter wind velocity and necessary structural damping are estimated
for the model used in the wind tunnel experiments described in chapters 5 and 6. In the
example the aerodynamic derivatives for a flat plate are used.

2.2 Wind Loads on Bridge Section with Flaps

A rather streamlined bridge section is investigated, see figure 2.1. As shown by Ostenfeld
& Larsen [30], streamlining the bridge deck increases the flutter wind velocity. A coordi-
nate system is defined in the centre of mass gravity CG of the bridge section. The z-axis
is horizontal and defined to be positive in the direction of the trailing edge. The y-axis
is horizontal and perpendicular to the z-axis. The z-axis is vertical and is defined to be
positive downwards.
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Figure 2.1: Definition of positive directions for bridge section.

The bridge section is considered to be stiff and the motion in the direction of the z-axis is
ignored. Thereby, the bridge section has two degrees of freedom, selected as the vertical
displacement in the z-direction and the rotation o of the centre of mass gravity of the
bridge section (positive clockwise). The angle ; of the trailing flap and the angle c, of
the leading flap are positive clockwise and refer to the undeflected position, i.e. relative
to the bridge deck.

The modes that give coupled oscillations in vertical bending and torsion have their largest
deflections in the same part of the bridge, i.e. the first symmetrical vertical bending mode
may couple with the first symmetrical torsional mode, see Dyrbye & Hansen [9]. In the
following it is assumed that the horizontal motion for the bridge deck is uncoupled with the
bending/torsional motion. As described by Dyrbye & Hansen [9] the horizontal deflections
may be significant for suspension bridges with very long spans. When the whole bridge
span is analysed the following approach must therefore be extended by additional motion-
induced load terms.

The wind is composed of a mean wind velocity U, measured in the undisturbed stream,
and the turbulence components u, and u,, see figure 2.1. The turbulence component in
the y-direction u, is ignored. The stream around the model results in pressure differences
on the upper and lower surface of the model. These pressure differences can be integrated
into a load FP (positive downwards) and a moment F'™ (positive clockwise) both per
unit length in the y-direction, see figure 2.2.

Figure 2.2: Definition of positive directions for load and moment.

The total wind load F,, on a bridge section is composed of three components: the mean
wind load Fy, wind load from turbulence F, and the motion-induced (or aeroelastic) wind
load F,, see Dyrbye & Hansen [9].

Fmt:FU-l-Fu-l-Fa (21)

The suspension bridge must be designed to withstand the drag forces from the mean
wind U and aeroelastic effects, such as torsional divergence, vortex-induced oscillation,
flutter, galloping, and buffeting (caused by wind turbulence components u), see Simiu &
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Scanlan [33].

For ultra-long span suspension bridges the main aeroelastic effect of concern is flutter,
see Astiz [4] and Larsen & Walther [24]. In flutter the motion-induced wind load F,
is dominating in equation (2.1). Flutter occurs at a critical wind velocity at which the
energy input from the motion-induced wind load is equal to the energy dissipated by
structural damping, see Dyrbye & Hansen [9]. The critical wind velocity is called the
flutter wind velocity Uy.

The flutter phenomenon was first investigated in aerospace engineering and the relevant
terms were carried over to wind engineering. Flutter of bridge sections is described by
Simiu & Scanlan [33] and Larsen & Walther [24]:

o Single-degree flutter in torsion, also called stall flutter, is a pure torsional motion of
the bridge section. The amplitude of the torsional oscillation grows with increasing
wind velocity.

e Binary flutter, also called classical flutter, is a coupled vertical and torsional motion
of the bridge section. Once the wind velocity exceeds the flutter wind velocity the
oscillations grow to catastrophic amplitudes.

As described by Simiu & Scanlan [33], flutter may involve nonlinear aerodynamics. How-
ever, the flutter problem has been successfully solved by linear analysis methods.

The motion-induced force F, is divided into the motion-induced vertical load F,] and the
motion-induced moment F. The equations of motion of a bridge section exposed to the
motion-induced forces are

m(3 + 2w, 5 + wiz) = Ff = FL+ FL + F} (2.2)
I(G + %awads + wla) = FM = Flf + Foft + Ff (2.3)

where m and I are the mass and the mass moment of inertia, respectively, both per unit
length, z denotes the vertical bending motion, a denotes the torsional motion, ¢ is the
damping ratio and w is the undamped circular eigenfrequency.

The motion-induced wind loads FF and FM are described by three components:
o Loads FF, and FM due to movement of the bridge deck, see section 2.2.1.

e Loads FF and F due to movement of the trailing flap, see section 2.2.2.

e Loads FJJ and F} due to movement of the leading flap, see section 2.2.3.

2.2.1 Loads due to Movement of Bridge Deck

Based on principles of potential flow theory, Theodorsen [37] has shown that for thin
airfoils (without flaps) in incompressible flow the expressions for F}/; and F, "M are linear in
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z and o and their first and second derivatives. The results are shown in appendix A.2.1.
Assuming harmonic vibrations at the frequency w the motion-induced forces due to move-
ment of the bridge deck can be written, see Scanlan [32],

o z

P .
Fiy= 5pUB [KHN(K) £ + KH(K)ZF + KB (K)a+ KU G (24)

U
v e T 2 L gan0 B 4 k2 AN (K e+ K2AN (KOS 2.5
a.uf'_2p 4 )U"‘ a( )U+I 3(K)a+ 4l )B (2.5)

where p is the mass density of air, B is the width of the bridge section, K = Bw/U
is the reduced frequency and Hj,...,Hj, A3j,...,Af are non-dimensional aerodynamic
derivatives.

The aerodynamic derivatives must be estimated by wind tunnel experiments or by nu-
merical flow simulations, see Larsen & Walther [24]. During preliminary design of bridges
the aerodynamic derivatives may be approximated by the corresponding values for a flat
plate as derived by Theodorsen [37]. The results are summarized in appendix A.2. For a
flat plate the aerodynamic derivatives are as follows, see appendix A.4.

Hi(K) = - (26)
% o 2G (k)

Hi(K) = -0 [1 + F(k) + T} (2.7)

HE(K) = *5% [F(k) - k—GZ(i} (2.8)

Hi (K) = -g [1 4 3%@} (2.9)
gy o T (K]

ANK) =~ (2.10)
" o B 2G(k)

A(K) =~ {1 - F(k) - == } (2.11)

Ay(E) = [%— L F) = f“iﬂ] (2.12)

ANK) = —%9% (2.13)

where F(k) and G(k) are the real and imaginary parts of the Theodorsen circulatory
function, see figure 2.3. The reduced frequency k is based on the half width of the bridge
section, i.e. k = K/2. As seen in figure 2.3, the functions F(k) and G(k) are almost
constant for & > 1.

The aerodynamic derivatives are shown in figure 2.4 and figure 2.5 for a flat plate as
functions of the reduced velocity U, defined by
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Figure 2.3: Real and imaginary parts of Theodorsen circulation function, see
appendiz A.2.3.
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Figure 2.4: Aerodynamic derivatives for force on flat plate.

U 20 2w
U = — =0 2.14
B wB K ( )

where f is the frequency.

As seen in figures 2.4 and 2.5 the numerical values of the non-dimensional coeflicients Hf
and A} are generally increasing with increasing reduced velocity.
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Figure 2.5: Aerodynamic derivatives for moment on flat plate.

2.2.2 Loads due to Movement of Trailing Flap

As for the bridge deck, Theodorsen [37] has shown that the loads due to movement of a
trailing flap on a thin airfoil in incompressible flow are linear in the angle of the trailing
flap o; and the first and second derivatives. The results are shown in appendix A.2.2.
Assuming that the trailing flap is moved at the same frequency w as the bridge deck, the
motion-induced forces due to movement of the trailing flap can be expressed by additional
aerodynamic derivatives.

1 Bay

Fli = 5pU"B [KHS*(K)T]— + Kzﬂg(K)a»t} (2.15)

M = émeQ {KAQ(K)% + KA (K)o

at

(2.16)

where HX(K), Hi(K), A{(K) and A%(K) are aerodynamic derivatives. For a flat plate
with a trailing flap the derivatives are derived in appendix A.4.2.

H(K) = {ﬂ _ F(E)Ty - 3G<ﬁin} (217
Hi(K) = &—;5 [~K2T1 — 2F (k)Tio + kG (k)T (2.18)
AY(K) = Slk P (Tl ~ Ty — Ty + %) + F(Z)T“ + G(?Tw} (2.19)
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1
AE(K) = — (T} + Tm) = k‘z(T? o CTl) + F(k)Tw -

- kG (k)T
8k?2

5 (2.20)
where T}, i = 1,4,7,8,10,11 are the Theodorsen constants [37]. The relevant constants
are shown in appendix A.2.4. The constants depend on the location of the flap hinge
relative to mid chord denoted by ¢, see figure 2.6. The width of the flat plate excluding
flaps is denoted B’. In this section two lengths of flaps are investigated, namely with
lengths 0.15B8' (short flaps) and 0.25B' (long flaps). The lengths of the flaps and the
corresponding ¢ values are shown in figure 2.6.

oy 0.255°
T o T 1
Long flaps |
oz e
¢=0.667
2} 0.158"
- 1
Short flaps |
o ! o
N —
¢=0.769

Figure 2.6: Different lengths of flaps investigated.

The Theodorsen constants are shown in table 2.1 for long and short flaps, see figure 2.6.

Constant | Long flaps | Short flaps

¢ 0.667 0.769
Ti —0.0475 —0.019
Ty —0.344 —0.202
17 0.011 0.006
T 0.091 0.068
T1o 1.586 1333
B 0.712 0.414

Table 2.1: Theodorsen constants for long and short flaps.

The additional aerodynamic derivatives are shown in figure 2.7 and figure 2.8 for long and
short flaps. The forces and moments introduced due to movement of the trailing flap are
generally bigger for the long flaps than for the short flaps.
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Figure 2.8: Aerodynamic derivatives for moment on flat plate due to
movement of trailing flap. Indices | and s denote long and short
flap, respectively.

2.2.3 Loads due to Movement of Leading Flap

In appendix A.3 Theodorsen’s theory for a flat plate is extended to include a leading flap
by assuming that the angle of the leading flap has no effect on the circulation. It is shown
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that loads due to movement of a leading flap on a thin airfoil in incompressible flow are
linear in the angle of the leading flap o and the first and second derivatives. The results
are shown in appendix A.3.1. Assuming the leading flap is moved at the same frequency
w as the bridge deck and the trailing flap, the motion-induced forces due to movement of
the leading flap can be expressed by additional aerodynamic derivatives.

o

FP — -;-pUQB [KH;(K)% T KzHg‘(K]al] (2.21)
M 1 2 n?2 * BCE,! 2 A*

Flf = SoU"B {KA7(K)4U— + K AS(K)QI] (2.22)

where H¥(K), Hi(K), A%(K) and A§(K) are acrodynamic derivatives. For a flat plate
with a leading flap the derivatives are derived in appendix A.4.3.

Hi(K) = 74 (2.23)
Hy(K) = -2 (2.24)
A3(K) =~ [Ty~ Ty = Tl (2.25)
ALK = 8_;:5 B (2.26)

The additional aerodynamic derivatives for short and long flaps are shown in figures 2.9
and 2.10. As for the trailing flap, the forces and moments due to movement of the leading
flap are bigger for long flaps than for short flaps. By comparing figures 2.7 with 2.9 and 2.8
with 2.10 it is seen that turning the trailing flap is more efficient than turning the leading
flap the angle oy = —c. This is due to the effect of the trailing flap on the circulation.

2.3 Estimation of Flutter Wind Velocity

As described in section 2.2 two types of flutter are investigated, namely single-degree
flutter in torsion and binary flutter. Estimation of flutter wind velocity for the two flutter
types by using Theodorsen’s method is described in appendix B. In this section the results
are shown for a bridge section with leading and trailing flaps.

The angles of the leading flap oy and the trailing flap oy are expressed in terms of the
torsional angle « of the bridge section, see appendix B.3.

at) = ;e a(t) (2.27)
oy (t) = are™ " a(t) (2.28)

where ¢, and ¢, are the phase angles between the flaps and the torsional angle and a
and a; are the flap amplification factors. A flap amplification factor is defined as the
amplitude of the flap relative to the amplitude of the torsional motion. In the following,
a flap configuration refers to fixed parameters a;, a, ¥ and ¢, for the flaps. The results
for a bridge section without flaps can be found by setting a; = a; = 0 in the expressions
shown in this chapter.
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Figure 2.9: Aerodynamic derivatives for force on flat plate due to movement
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Figure 2.10: Aerodynamic derivatives for moment on flat plate due to
movement of leading flap. Indices [ and s denote long and short
flap, respectively.

2.3.1 Single-Degree Flutter in Torsion

In single-degree flutter in torsion the flutter wind velocity Uy is defined as the velocity
at which the total damping (structural and aerodynamic) in torsion is zero. The bridge
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will oscillate at a circular eigenfrequency close to w,, see Dowell et al. [8]. Estimation

of flutter wind velocity for single-degree flutter in torsion is derived in appendices B.2
and B.3.

The total damping is zero for

41¢,

A5 (K) = — (2.29)
where
A (K) = A3(K) + A3(K)a,cos(—py) + Af(K)arsin(—p1) +
A5(K)ay cos(—py) + Ag(K)a sin(—g) (2.30)
For a flap configuration the flutter wind velocity is
Buw
~ = 281
Uy X (2.31)

where K is the largest value of K (corresponding to the smallest value of U ) for which
equation (2.29) is true.

For a flat plate without flaps the flutter condition yields
e

= Bt

where A%(K) is negative, see figure 2.5. Thereby a flat plate will not perform single-degree
flutter in torsion. ;

A3 (K) (2.32)

2.3.2 Binary Flutter

In binary flutter the oscillations of the bridge in both vertical and torsional directions
will become harmonic at the circular eigenfrequency w; at a critical wind velocity Uy.
Thereby the structural dissipated energy in the period Ty = 27 /w; will be equal to the
energy input of the motion-induced wind load, see Dyrbye & Hansen [9]. The circular
flutter eigenfrequency wy is between the circular eigenfrequencies for the bridge section in
bending and torsion, i.e. w, < Wy < Wy.

Estimation of flutter wind velocity for binary flutter is derived in appendices B.2 and B.3.
The binary flutter condition is

:B(t) - moeiwft (233)
where
_ | z(®)
z(t) = { o } (2.34)

moz[ o } (2.35)
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where z; and aq are the amplitudes of the vertical and torsional motion, respectively, and
@, 1s the phase angle between the vertical and torsional motion.

By inserting the flutter condition in the matrix equation of motion the flutter point can
be found graphically by the method described by Dowell et al. [8]. For a number of values
of the reduced frequency K the values X, (K) and X;(K) are calculated as solutions to

the following equations:
A (X (K), K) X} (K) =

XHK) [mI - %pB‘lmAg’(K) - %;»B‘*IH:(K) - %pﬂBﬁ ( ~ H*(K)A} (K)
FH () AY (1) + H (K)AL(K) — HY () A3(0) | +

XY(K) [pBUma.A3 () + pB*IC 2 HY(K) | +

g2 o g L BtmA (K) - LpBAIZS Hy(K)| +
X:(K) —mI@—mI4§ZCaE~mI*§p mAj ( )—~2-p o2
2
mfg% =0 (2-36)
wz

A(XG(K), K) X} (K) =
X3(K) [%pB“mAE'(K) - épBQIHf(K) + %szﬁ (H;(K)Ag’(f{)
H () A3 (K) — HY (K)A3(K) - HY (K)A3(K)) | +

XK [—mIECQ% — I, — pBmGAY (K) + pBIC ZE HA(K)| +

Z wz

1 o 1 wi
2
mI20, 2 4 mI2( 22 = 0 (2.37)
w2 W,
where
Hy(K) = H}(K)+ Hi(K)a,cos(—¢,) + H (K)a;sin(—p,) +
H}(K)a; cos(—p,) + Hg (K)asin(—) (2.38)

HY (K) = H}(K)— Hf(K)asin(—p) + HE(K)aq cos(—pr) —
H}(K)asin(—;) + Hi (K)a; cos(—y) (2.39)

AY(K) = A5(K) + A3(K)a; cos(—g;) + A(K)aysin(—p,) +
A (K)ay cos(—wr) + Af (K )a;sin(—r) (2.40)

AY(K) = ALNK) — AL(K)agsin(—g,) + AL(K)aq cos(—p;) —
A3(K)aysin(—p) + A§(K)a; cos(—@;) (2.41)
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The flutter point (X, K) is the point where the solution curves X, (K) and X;(K) cross.
The circular flutter frequency w; and the flutter wind velocity Uy can determined by

wp = Xyw, (2.42)
Buw

Up =21 2.43

I~ K, (2.43)

When there is more than one intersection of the solution curves, the flutter point corre-
sponds to the intersection point with the largest value of K (corresponding to the smallest
value of U).

The factor —Qe““‘”f* defined by equations (2.33) and (2.35) can be calculated by inserting
the values wf and K into the matrix equation of motion with the flutter condition, see
equation (B.19). The phase angle ¢, between the vertical and torsional motion is

o = —tan™" (M) (2.44)

Re (g‘le—i%)
)

As an example, the flutter wind velocity for binary flutter is estimated for the bridge
section model used in the wind tunnel experiments described in chapters 5 and 6. The
bridge section model is equipped with long flaps, see the corresponding flat plate in
figure 2.6. The parameters of the model are shown in table 2.2. The scaling factors
for the model are shown in table 5.1. The aerodynamic derivatives for the model are
approximated by the values for a flat plate shown in section 2.2.

Parameter Symbol | Value

Width of model incl. flaps B 0.937 m

Mass per unit length m 17.94 kg/m
Mass moment of inertia per unit length | I 0.589 kgm?/m
Circular frequency for bending W, 5.2 rad/s
Circular frequency for torsion W 10.1 rad/s
Structural damping in bending s 0.012
Structural damping in torsion (o 0.008

Mass density of air p 1.28 kg/m?

Table 2.2: Parameters for bridge section model used in exzample.

The solution curves X,(K) and X;(K) are shown in figure 2.11. The flutter point is
(X;, K¢) = (1.273,0.758). The circular flutter frequency w; and flutter wind velocity Uy
are

wr= X;w, = 127352 =6.62 rad/s (2.45)

Bw;  0.937-6.62

7 - -
'~ K 0.758

=8.18 m/s (2.46)
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Figure 2.11: Solution curves for bridge section model.

As expected, the circular flutter frequency is between the circular frequencies for bending
and torsion, see table 2.2.

By using equation (2.44) the phase angle between the vertical and torsional motion can
be calculated

—1.192
1.568

e = —tan™" ( ) =850 Fhd =B1" (2.47)
The flutter wind velocity Uy for binary flutter is calculated for different flap amplification
factors a; and phase angles (; for the leading flap. The trailing flap is not moved, i.e.
a; = 0. The results are shown in figure 2.12.

The flutter wind velocity is increased when the phase angle for the leading flap ; 1s in
the interval [0.67/6;6.6m/6], otherwise the flutter wind velocity is decreased. The phase
angle for maximum increase of the flutter wind velocity is dependent on the value of the
flap amplification factor a,.

The flutter wind velocity U; for binary flutter is calculated for different values of a; and
g for the trailing flap. The leading flap is not moved, i.e. ¢y = 0. The results are shown
in figure 2.13.

The interval where the flutter wind velocity is increased, when the trailing flap is moved,
is dependent on the flap amplification factor a;. The flutter wind velocity is generally
decreased when the phase angle of the trailing flap ¢, is in the interval [r/6;6m/6]. For
phase angles outside this interval the flutter wind velocity is generally increased. Again
the phase angle for maximum increase of the flutter wind velocity is dependent on the
value of the flap amplification factor a;.
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Figure 2.12: Flutter wind velocity when only the leading flap is used.
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Figure 2.13: Flutter wind velocity when only the trailing flap 1s used.
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By comparing figures 2.12 and 2.13 it is seen that the trailing flap is much more efficient
than the leading flap. The potential theory used assumes that there is no separation of
the flow around the flat plate. This assumption can hardly be met in practice, therefore it
is expected that the effect of the trailing flap is overestimated by the Theodorsen theory
for a flat plate. '

For small values of the flap amplification factors the optimal phase angles are ¢, ~ 37/6
and ¢, ~ 8 /6. These phase angles are used in figure 2.14 where movement of both flaps
compared to movement, of the leading and trailing flap separately is shown.

b 7, |m/s] ==
: \ff-‘!n::iﬂ'/b‘
pi=8n/6
et
- 0= B
w,=8m/6
! it,=0
10
(,=u
’ BEEST &
tr,=Q
g

Figure 2.14: Movement of both flaps compared to movement of the flaps
separately.

As seen in figure 2.14 the flutter wind velocity is only slightly increased for flap amplifica-
tion factors below approximately 0.8 when only one flap is moved. When the trailing flap
is moved with a flap amplification factor a, above 0.8 the flutter wind velocity is increased
considerably and for a; > 0.95 binary flutter will not occur. By using both flaps, binary
flutter will not occur when both flap amplification factors are above approximately 0.6.

2.4 Estimation of Damping by the AMC Method

In the Air Material Command (AMC) method the necessary structural damping of the
bridge section for fulfilling the binary flutter condition in equation (2.33) is plotted against
the mean wind velocity, see Fung [11]. Flutter occurs when the necessary structural
damping exceeds the actual structural damping of the bridge section. The AMC method
is described in appendix B.4.
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By using the AMC method the following equation is solved with respect to the complex
variable Z

w 2 " 2 W, 2 4 , ) ,

7 {(i) ] vz {__1 - () - (%) G i+ 4 () -
%(H{‘(K}i + HJ(K))] +1+ %?(Aé"(ff)i + A3 (K)) +

o8 (b (k)i + HI(F) + 2

(HY (K)i + HE (K)) (A (K )i+ A5(K))) =0 (2.48)

((H3(K)i + Hi(K)) (A3 (K )i + A3 (K))-

For a number of reduced frequencies K1, Ko, . .., equation (2.48) is solved and correspond-
ing values of the mean wind velocity U and the damping factor g are calculated

Buw,
V) = ez e
_ Im(Z (X))

The damping factor g is defined as twice the necessary structural damping ( for binary
fAutter. It is assumed that the structural damping is the same for bending and torsion,
i.e. ¢ = (, = (. The flutter wind velocity Uy is found by

g(Us) =2¢ : (2.51)

As in section 2.3, the bridge section model used in the wind tunnel experiments is used in
the example. The parameters for the model are shown in table 2.2 and the aerodynamic
derivatives for a flat plate are used. The following approximation is made: { = 0.01. The
results are shown in figure 2.15 for no movement of the flaps, i.e. @ = ar = 0, and for
a; = a; = 0.6, p, = 37/6 and ¢, = 87/6.

The flutter wind velocity for the bridge section model is found as the mean wind velocity
for which g = 0.02. For no movement of the flaps the flutter wind velocity is 8.22 m/s. This
value is very close to the flutter wind velocity found by Theodorsen’s method in section 2.3,
i.c. 8.18 m/s. If it is assumed that the structural damping ¢ is in the interval [0.008;0.012]
corresponding to the structural damping for torsion and bending, respectively, then the
flutter wind velocity is in the interval [8.18;8.27] m/s, which agrees very well with the
flutter wind velocity found by Theodorsen’s method.

When both flaps are moved using a; = a; = 0.6 and the phase angles found in section 2.3,
i.e. ¢, = 3n/6 and @, = 8x/6, then the flutter wind velocity is increased to 10.43 m/s
in the interval [10.08,11.24] m/s. Again, this flutter wind velocity agrees very well with
the Autter wind velocity of 10.53 m/s for this flap configuration found by the Theodorsen
method.
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Figure 2.15: Damping factor as a function of the mean wind velocity.

2.5 Concluding Remarks

In this chapter, wind loads on a streamlined bridge section are described with emphasis
on the motion-induced part. The aerodynamic derivatives for a flat plate with leading
and trailing flaps are derived, and curves of the aerodynamic derivatives are shown for
two lengths of flaps on a flat plate. Theoretically, the trailing flap is more efficient than
the leading flap and, as expected, long flaps are more efficient than short flaps.

Two types of flutter are investigated, namely single-degree flutter in torsion and binary
flutter. Estimation of flutter wind velocity for both types of flutter is given. In an example
it is shown that single-degree flutter in torsion will not occur for a flat plate. Further, it
is shown that binary flutter can be avoided for a flat plate if the trailing and/or leading
flap is moved with specified phase angles compared to the torsional motion.



Chapter 3

Active Control Systems

3.1 Introduction

In active structural control the motion of the structure is controlled by means of the
action of a control system through some external energy supply. The basic active control
configuration consists of:

e Sensors located on or in the structure to measure excitation and/or structural re-
sponse variables.

e Devices to process the measurements and to compute the control action based on a
control algorithm.

e Actuators to make the control action.

A schematic diagram of closed-open-loop active control is shown in figure 3.1.

External Structure Structural
excitation response

Control action

Sensors Actuators Sensors

Computation
of control action

Figure 3.1: Schematic diagram of active control (from Soong [34]).

When the motion of the bridge is measured and used to calculate the flap positions (i.e.
the control action), the control configuration is referred to as closed-loop control. The
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effect of closed-loop control is to modify the structural parameters (stiffness and damping)
so that the bridge responds more favourably to the excitation. When the wind velocity
(i.e. the excitation) is measured and used to control the bridge the control configuration is
referred to as open-loop control. The effect of the open-loop component is a modification
of the excitation. In closed—open-loop control the flap positions are calculated based on
both the measured motion of the bridge and the measured wind velocity.

Three methods of computing the flap positions are described:
e Classical linear optimal closed-loop control, see section 3.2.
¢ Instantaneous optimal closed-loop control, see section 3.3.

o Closed-loop control with constant phase angles between the motion of the flaps and
the torsional motion of the bridge, see section 3.4.

Classical linear optimal closed-open-loop and open-loop control are generally not feasi-
ble in structural control applications since for this type of control the excitation must
be known a priori during the control interval, see Soong [34]. For instantaneous opti-
mal control it is possible to derive the open-loop and closed—-open-loop control laws, see
Soong [34]. But these control laws that contain information about the excitation term
are much more complicated than the closed-loop control law.

3.2 Classical Linear Optimal Closed-Loop Control

In structural control applications of classical linear optimal control the usually studied
performance index J to be minimized in the control interval [0;tf] can be written as
follows, see Soong [34]

7= Y [y (OQu(E) +uT () Ru(t)] dt (3.1)

where the vectors y and u are composed of the structural parameters and the control
actions, respectively.

[ 2(t)
(3.2)

u(t) = | 2t (3.3)
Q and R are weighting matrices, where the elements are selected to achieve the desired
connection between the control effectiveness and the control energy consumption. [Le.
large values of the elements in @ compared to the elements in R indicate that the reduction
of the motion of the model is more important than the energy required to turn the flaps.
The following weighting matrices are used by Wu et al. [39].
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Q= [ Igs 11(4}’3 ] (3.4)
R =4I (3.5)

where M, and K, are the mass and stiffness matrices, respectively. I is the identity
matrix. The factor J is the relative importance of the control effectiveness compared to
the control energy consumption. For the uncontrolled case, § = co.

The linear optimal closed-loop control law is e.g. derived by Soong [34].
u(t) = G*(t)y(t) (3.6)
where the control gain matrix G'°(t) is given by

G"(t) = —%RIBTP(t) (3.7)

The Riccatti matrix P(#) is found by solving the Riccatti equation
P(t) + P(t)A - %P(t)BR‘lBTP(t) L ATP() +2Q =0, P{)=0  (38)

The matrices A and B are defined in appendix C.1. The Riccatti equation can be solved
as described in appendix C.2. The elements in the Riccatti matrix are constant during
most of the control interval dropping to zero near the end of the control interval, i.e.
near t;. Therefore, the time-dependent Riccatti matrix is approximated by the constant
matrix P corresponding to the values in the first part of the control interval,

Then the control gain matrix is
lo L rn
G = _ER B'P (3.9)

As an example, the gain matrix G is calculated for the bridge section model used in
the wind tunnel experiments described in chapters 5 and 6 for § = 10 and § = 100. The
parameters of the model are shown in table 2.2. The aerodynamic derivatives for the
model are approximated by the values for a flat plate shown in section 2.2. It is assumed
that the model performs binary flutter with wy; = 6.62 rad/s and Uy = 8.18 m/s, see
equations (2.45) and (2.46). The Riccatti matrices for § = 10 and § = 100 are shown in
appendix C.2.

_ W [289 091 176 0.09
A= = Gm*[o.m ~0.28 0.22 —0.30 (3.10)
_ L 034 017 057 0.04
A=100 = Gip= [0.10 ~0.03 0.01 —0.08 (3.11)
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Figure 3.2: Uncontrolled and controlled vertical motion for 8 = 10 and
B = 100 using classical linear optimal control.
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Figure 8.3: Uncontrolled and controlled torsional motion for # =10 and
B = 100 using classical linear optimal control.

As expected, the elements of the gain matrix are reduced when the f-value is increased.

Motion of the model with closed-loop control is described in appendix C.1. The vertical
and torsional uncontrolled motion and controlled motion with f# = 10 and # = 100 are
shown in figures 3.2 and 3.3, respectively. Both the vertical and torsional oscillations are
reduced very fast, especially for g = 10.
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The movements of the trailing and leading flap are shown in figure 3.4 for § = 10 and in
figure 3.5 for § = 100. The maximum flap angle for § = 10 is about 16° and for § =100
the maximum angle is about 8°. For both f-values the trailing flap is turned more than
the leading flap and there is a phase angle between the motion of the trailing flap and the
leading flap.
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Figure 8.4: Flap angles for B = 10 using classical linear optimal control.
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Figure 3.5: Flap angles for B = 100 using classical linear optimal control.
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3.3 Instantaneous Optimal Closed-Loop Control

In instantaneous optimal control a time-dependent performance index J{(t) is defined by
e.g.

J(t) = y* (HQu(#) + u” () Ru() (3.12)

This performance index is minimized at every time instant ¢ during the control interval,
i.e. for all 0 < t < ty, see Soong [34].

In instantaneous optimal closed-loop control the control law is

u(t) = G*y(t) (3.13)
The control gain matrix is
G = —%ER”BTQ (3.14)

where At is a small time interval, see Soong [34]. By comparing the gain matrices G
and G for linear optimal and instantaneous optimal closed-loop control it is seen that
the Riccatti matrix P in equation (3.9) is replaced by AtQ in equation (3.14). The
instantaneous control law is thus much simpler than the linear optimal control law because
solving the Riccatti matrix is omitted.

The control gain matrix is calculated for the example described in section 3.2 for § = 2
and § = 10. The weighting matrices in equations (3.4) and (3.5) for classical linear
optimal control are used

., [0.000 0.000 1.230 0.060 |
- io 15
b=2 = G [0.000 0.000 —0.004 ;0.098} (3.15)
. [0000 0.000 0246 0.012
= i = 7
=il = b [U.DOO 0.000 —0.001 —0.020] (3.16)

When § is multiplied by a factor a, G is multiplied by 1/a, as R™! = 1/8I. The flap
angles only depend on the vertical and torsional velocities for the current selection of
welghting matrices R and Q.

Motion of the model with closed-loop control is described in appendix C.1. The vertically
and torsionally uncontrolled motion and controlled motion with § = 2 and § = 10 are
shown in figures 3.6 and 3.7, respectively. Both the vertical and torsional oscillations are
reduced very fast, especially for § = 2.

The movements of the trailing and leading flap are shown in figure 3.8 for # = 2. The flap
angles shown in figure 3.8 can be compared with the flap angles shown in figure 3.4, where
classical linear optimal control is used. The shapes of the flap angle curves are much alike,
but the flaps are slightly delayed in instantaneous control compared to classical linear
optimal control.
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Figure 8.6: Uncontrolled and controlled vertical motion for § =2 and § = 10
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Figure 8.7: Uncontrolled and controlled torsional motion for § = 2 and
B = 10 using instantaneous optimal control.

3.4 Constant Phase Angle

As described in section 2.3.2, binary flutter occurs when the structural dissipated energy
E4is is equal to the energy input FEipp,: from the motion-induced wind load during a
period. The binary flutter condition is

[ 2(t) } _ [ zg cos(wyt) (3.17)

a(t) ap cos(wst — @q)
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Figure 8.8: Flap angles for # = 2 using instantaneous optimal control.

where 2z and oy are the amplitudes of the vertical and torsional oscillations and ¢, is the
phase angle between the vertical and torsional oscillation.

The structural dissipated energy per metre during the period Tj = 2 /wy is

T da(t d
B, = [D 1 [ngzwz ’;(t) +fzgawait)] dt

dt

K
= %2% (m(zwzzg + Igawaa?,) (3.18)

The energy input per metre during the period T for no regulation of the flaps is

Ty dz(t do(t
Bupe = || {F;;(t)d—(t) + EM () “Eg-l] at

( 20 prs Baoy
= §prBKf?TZOC¥g [E(J_OHI(Kf)+ o A;(Kf)‘i"

(H3(K ;) + AL(K;)) cos(—pa) + (H3 (K ;) — Aj(K)) sin(—wa)] - (3.19)

As both the oscillations and the motion-induced wind load have sine-shape, this shape is
also selected for the control action and thereby the flap angles.

o, (t) _ | cos(wst — Yo — Pt) (3.20)
oy(t) v cos(wyst — Yo — 1)

where ;g and o are the amplitudes of the flap angles and ¢, and ¢ are the phase angles

between the torsional oscillation and the flap oscillations.

The additional energy input per metre AFE;pur: and AFEyyy during the period T} for
regulation of the trailing and leading flap, respectively, is

Ty dz(t do(t
AFEiputs = fo [Fj(t} dg)-l—F"‘f(t) di)}dt

1 o @ i
s 5,0U?BI(J%7TZ{)(YQ (a—tg [HE(K ) cos(—pa — i) + HE(Ky) sin(—pa — @1)] +
0

Bay
20

[A3(K7) cos(— ) + A5(K ) sin(—)]) (3.21)
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deti) + EM (1) da—m] dt

Ty
AEinI’Ui,i = [D |:Fa};(t) dt ol dt
1 « A
= SPUIBK maon (22 (B2, cos(pa — 00) + Hi(Kp)sin(—pa ~ @] +
0
B(It[)

20

[A3(K ) cos( 1) + A3(K ) sin(1)]) (3.22)
The flap configuration parameters aug, oo, @: and ¢; can be selected so the energy input
1s reduced. The optimal phase angles are found for
d(AEinput,t)
dipy

I (—ong‘(Kf) sin(—wa) + 20HE (K) cos(—pq) + BagAg(Kf)) (3.23)
20HE(Ky) cos(—pa) + 20HE(K ) sin(—pa) + Bag A§(Ky)

=) =

d(AEinput,i)
dey

oy — tan =20 Sn( ) + B (K cos( o) + BonAG(K7)\ o
20 HF(Ky) cos(~a) + wHE(Ky) sin(—pa) + BaoAj(Kp) )

=0 =

For the example described in section 3.2 the force of the motion-induced wind load FZ(¢)
and the vertical velocity z(t) are shown in figure 3.9. The moment of the motion-induced
wind load FM(t) and the torsional velocity ¢(t) are shown in figure 3.10.
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Figure 8.9: Sign of contribution to energy extracted from force of
motion-induced wind load.

The time intervals with positive contribution to Ey,p,: are marked with ‘+’ in figures 3.9
and 3.10. The time intervals with negative contribution to FEj,,,; are marked with
The dissipated structural energy and the energy input are Eg = Fjppye = 0.136 Nm/m.

1
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Figure 8.10: Sign of contribution to energy extracted from moment of
motion-induced wind load.
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Figure 3.11: Energy input due to movement of trailing flap.
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Figure 8.12: Energy input due to movement of leading flap.

The additional energy input per metre AFingu: and AEjp,, during the period 1% is
dependent on ¢, and ¢, respectively, see figures 3.11 and 3.12.
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The optimal flap angles and maximum contribution to energy input per metre are

Pt,opt = 7.91 - = 2370 = min(AE’inmt,t((pt)) == —12.68C}5w Nm/m (325)

Gropt =2.02- = =61° = min(ABnpui(91)) = —1.786c9 Nm/m (3.26)

> Py o

For flap angle amplitudes equal to the amplitude of the torsional motion, i.e. ap = =
ap = 0.098 the total energy input is

Einput o AEmput,t((pt,upt) + AEinput,t(SDi,opt)
=0.136 — 1.243 — 0.175 = —1.282 Nm/m (420

As seen the effect of the trailing flap is about seven times the effect of the leading flap.
The flap configuration described decreases the energy extracted from the wind, so binary
flutter will not occur for the investigated wind velocity.

3.5 Concluding Remarks

In this chapter three active closed-loop control algorithms are described, namely classical
linear optimal closed-loop control, instantaneous optimal closed-loop control and closed-
loop control with constant phase angles between the motion of the flaps and the torsional
motion of the bridge.

In classical linear optimal closed-loop control a performance index is minimized during
the entire control interval. In instantaneous optimal closed-loop control the performance
index is minimized at every time instant. The importance of the control effectiveness
compared to the control energy consumption can be regulated for both algorithms. In the
examples with a flat plate with flaps it is shown that both algorithms are very efficient.

In constant phase angle closed-loop control the optimal phase angles of the flaps are
derived based on the energy input from the motion-induced wind load. The example
shows that no binary flutter will occur for a flat plate with long flaps for the investigated
wind velocity if the flaps are moved with optimal phase angles and amplitudes equal to
the pitch angle of the plate.
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Chapter 4

Neural Network Modelling

4.1 Introduction

In this chapter it is described how neural networks trained with data from wind tunnel
experiments can be used to

e simulate the motion of a bridge section model, see section 4.2,
¢ calculate flap positions, see section 4.3,

e extract the aerodynamic derivatives, see section 4.4.

The neural networks used are structured as Multi Layer Perceptron (MLP) neural net-
works as described in appendix D.1. A MLP neural network consists of three layers,
namely an input layer with connections to a hidden layer, which again is connected to an
output layer. During training of a neural network the connections, also called weights, are
adjusted so the deviation between the actual output and the desired output is minimized.

Data from the wind tunnel experiments are not used to train neural networks as described
in this chapter since the data are very noisy, especially with respect to the calculated
velocities. Further, many of the time series from the wind tunnel experiments are very
short and mainly contain data with the slow start of the flaps, see chapter 6. Finally, the
neural network models described in this chapter assume that the flaps can be moved fast,
i.e. no distinction is made between the desired and actual flap positions. In the performed
wind tunnel experiments the flaps are moved very slowly.

4.2 Modelling of Bridge Section

The following Innovation State Space Model is used for a linear system where p state
variables are observed, see Sgrensen [36] and Hansen et al. [15]

g(k) = ®yk—1)+Tulk—1)+ Ke(k - 1) (4.1)
z(k) = Lij(k) - e(k) (4.2)

where
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§7 (k) = (5(k), a(k), 2(k), &(k)) is the estimate of the state vector of the order n at
the time step k.

uT (k) = (ou(k), cu(k)) = (oo (k), cua(k)) is the control vector of the order m at the
time step £.

(k) is the prediction error vector of the order p at the time step k.
z(k) is the measured observation vector of the order p at the time step -3
L is the observation matrix of the order p x n.
In the linear case ®, I’ and K are constant matrices of dimension n xn, n Xm and n x p,

respectively.

Incomplete State Information may occur, i.e. § is not completely measurable. The matrix
L can be chosen as L = [1,,0p,-p], Wwhere 1,, is a p X p unity matrix and Opn_p 18 &
p x (n— p) zero matrix. In this way the elements in L§ (k) are equal to the first p elements
of (k).

For a non-linear model the parameters @, I' and K are not constant matrices, but depend
on the actual values of the state, control and output vectors. The following multivariable
Non-linear Innovation State Space Model is used, see Sgrensen {36],

Y(k) = F(¥(k-1),U(k=-1),Ek-1)) (4.3)
Zk) = LY (k) + E(k) (4.4)

where 7 is a non-linear function of the vector of weights w in the MLP neural network.

The input vector I of the order n to the neural network is

Y(k—-1)
Ik-1)=|U{k-1) } (4.5)
E(k-1)
The output vector O of the order n is
O(k) = Y (k) (4.6)
The desired output vector O of the order p is
O(k) = Z(k) (4.7)
The prediction error E of the order p is
E(k) = Z(k) — LY (k) (4.8)

On-line extraction of the parameters & T and K from the network gives an actual
linearized Innovation State Space Model.

gk) = dgk—1) +Tulk—1)+ Ke(k - 1) | (4.9)
z(k) = Lylk)—e(k) (4.10)

The parameters are extracted from the network in the following way
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(k) = oY (k) 80 (k) (411)
AYT(k—1) 0YT(k-1) '

. 0Y(k) 80k

LW =557 -1 = 507 - 1) (412)

(k) = oY (k) _ 00(k) (4.13)

OET(k—1) OBET(k-1)

Qutput O differentiated with regard to the input is shown in appendix D.1.2.

4.2.1 Training of Neural Network

The weights w in the neural network F in the model (4.3) are found by training. The
training set consists of N input time series, each of the length K. The net is a partially
recurrent network since output from the net is used as input in the next step.

Feedforward as described in appendix D.1.1 is used to estimate the output of the network.
There are several methods for updating the weights w, e.g. backpropagation and the
second-order Recursive Prediction Error Method (RPEM). According to Billings et al. [3],
RPEM often yields better predictions and faster convergence than backpropagation. In
the following a second-order RPEM with a Gauss-Newton search direction is used as
training algorithm.

Let E(n,k,w) be the error vector between the estimates and measurements of the nth
training time series at the kth time step. In the second-order RPEM with a Gauss-Newton
search direction the following performance index J(w) is minimized, see Billings et al. [5]

= %Z Z ET(n, k,w)E(n, k,w) (4.14)

The gradient of J(w) with respect to the weights w is needed as search direction in the
iteration scheme. This is calculated from

dJ(w
dwT

dy
= ZZET nkwLM (4.15)

T
n=1k=1 dw

The gradient of the estimated state variables Y(n, k,w) with respect to the weights w
can be updated from the recursive equation

dY (n, k,w)
dwT

Win, k) = = (n, k) + [&(n, k) — K (n, k) L] (n, & — 1) (4.16)

where

Y (n, k, w
p(n. k) = “%‘T—) (4.17)
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(4.18)

T 8Y T (nk — 1, w)
- Y (n, k, w)

K(n k)= FET(n.k — Lw) (4.19)

@(k), ®(k) and K (k) can be found by differentiation of the output of the network with
respect to the weights and input. ®(k) can be interpreted as the dynamic transfer matrix
of an equivalent linear system. K (k) is the corresponding extended Kalman filter gain.

With increasing time the measurements obtained previously are discounted by assigning
less weight to older measurements that are no longer representative of the system. A
forgetting factor A is introduced, see Soderstrom and Stoica [35]. The smaller the value of
the forgetting factor, the quicker the information in previous data will be forgotten. The
choice of the forgetting factor in the algorithm is often very important. Theoretically,
one must have A = 1 to get convergence. On the other hand, if A < 1 the algorithm
becomes more sensitive and the weight estimates can change quickly. For that reason the
forgetting factor is updated at every time step by

AR =o)L= (4.20)

Further, the matrix P(n,k) is introduced. P(n,k) indicates the asymptotic accuracy
of the estimate and corresponds to the stationary covariance matrix in the equivalent
extended Kalman filter approach

P(n,k) = ﬁ {P(n, k—1)— P(n, k- 1)y (n, k) LT
(Mk)Lpp + Ltb(n, k) P(n, k — 1), k) LT]
Eabln, k) P(n, k= 1)} (4.21)

The RPEM algorithm can be summarized as follows, see Billings et al. [5] or Ljung [26].

1. Initialize the weights w of the neural network with small random values. Choose
P(0,0) as a diagonal matrix with large diagonal values typically in the range 10% to
10%, see Billings et al. [5]. Assign a value to the factor used to update the forgetting
factor, typically Ay = 0.99, see Billings et al. [5].

2. At the start of each time series the following values are initialized: the forgetting
factor A(0) = 0.95, the initial errors E(n,0, w) = 0 and the gradient (n,0) = 0.
The matrix P(n, k) is not initialized as it determines the asymptotical accuracy of
the estimate, see Billings et al. [5].

3. Present input to the network and compute the network output l;'(n, k,w) by feed-
forward, see appendix D.1.1.

4. Compare the network output with the desired output to give the prediction errors

E(n, k,w) = Z(n,k) — LY (n, k, w) (4.22)
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5. Compute elements of 1(n, k) by using equation (4.16).
6. Compute the matrix P(n, k) by using equation (4.21).

7. Adjust the weights w
w(n, k) = wn, k — 1)+ P(n, k)" (n, k) LT E(n, k, w) (4.23)

8. Update input vector I with network output l}(n, k,w), new measurements of the
flap positions w(n, k) and the errors E(n, k, w).

Steps 2 to 8 are repeated until convergence.

By using the last estimate of the weights the trained network J can estimate the response
of the oscillator.

4.2.2 Simulation and State Prediction by Trained Neural Net-
work

When the trained neural network F given by equation (4.3) is used as a simulator, only
the initial values Z(n,0) = LY (n,0) of the measurable state variables and the complete
flap positions time series U{(n, k) are measured without any error. The non-observed
state variables are set to 0 to obtain the initial values ¥ (n,0) = Yo(n). As no further
measurements of the state variables are made, the prediction error vector E(n,k,w) is
fixed as 0. The state variables in the simulator neural network are predicted by

Y(n, k,w)=F (Y’(n,f’c -Lw),U(nk—-1),E(n k- 1,'w),'w) (4.24)
Y (n,0) = Yo(n) (4.25)
Emk—1w) =0 (4.26)

When the trained neural network is used as a one-step ahead predictor the measurable
state variables Z(n, k) = LY (n, k) and the flap positions U(n, k) are measured at every
time step. In this case the state variables are predicted by

Y (nkw)=7F (Y(nk—1,w),U(nk—1),E(nk - L,w), w) (4.27)

E(n,k—1,w)=Znk—-1)— LY (n, k- 1,w) (4.28)

4.3 Modelling of Active Controller

After the neural network model of the motion of the bridge section model has been settled,
an active closed-loop controller is coupled to the system. The control force U (k), i.e. the
vector of flap positions, is used to minimize the mean square of the observable part of
the response Y (k) of the bridge section model. In the final active closed-loop control
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configuration the neural network model of the bridge section is used as a one-step ahead
predictor to estimate the state vector to the next time step. The control force can then
be estimated by the controller network based on the estimated state variables.

Because no state variables can be measured during training of the controller neural net-
work, the trained network F given by (4.3) is used as a simulator to estimate the response
of the controlled bridge section model Y (k). Hence,

Y(k)=F (Y (k—1),U(k-1), Bk 1), w), E(k-1)=0 (4.29)
The control force U (k) is modelled by an MLP neural network by using closed-loop control
Uk) =G (Z(k),w.), Z(k)=LY (k) (4.30)

where w, is a vector of weights in the network modelling the controller. Obvmusly, the
feedback part of the control law can only depend on the state variables Zk) = LY (k)
which are measured {observed), and no noise term is present in the model.

The weights w, of equation (4.30) are estimated, so the response predicted by equation
(4.29) becomes minimum.

4.3.1 Training of Neural Network

The following performance index J,, which is widely used in structural control, see e.g.
Soong |34], is minimized for the controller network in equation (4.30)

N K
w,) = % Z Z (Z27(n, k,we) Z(n, b, we) + aUT (n,k, w)U (n, kawe))  (4.31)
Z(n,k,w,) = LY (n, k,w,) (4.32)

where a is a positive scaling factor and Y (n, k,w,) specifies the output of (4.29) for the
nth time series at time step k using the controller (4.30) with the weights w..

The gradient of J.(w.) with regard to the weights w, is

dl(we) LE [ dY (n, k,w,) - dU (n, k, w,)
R k — e Gk i PG| F.BE
T nglk}::l Z (n, k,w.)L T + all* (n, &, we) T (4.33)

The gradient of the estimated state variables Y (n, k,w,) and the control force U (n, k, w,)
with respect to the weights organized in the vector w, can be updated from the recursive
equations, cf. (4.16)

dl;'(n, k,w.)

Yon, k) = —— 5 = &(n, k)ip (n, k — 1) + L(n, k)v.(n,k — 1) (4.34)
Walm.k) = M = p.(n, k) + ®,(n, k)Hap(n, k) (4.35)

7
dw!
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where
B(n, k) = 333(220 ;),,c) e
p.(n, k) = B—U%MC) =S5
8. 2] = oU (n, k,w,) (4.38)

8ZT(n, k,w,)

As seen the gradient is no longer dependent on variations of the observation noise, because
this has been fixed as E = 0 during the training phase.

4.4 Aerodynamic Derivatives for Bridge Section

The matrix equation of motion in discrete state-space form for a bridge section with flap
control is

y(k) ~ (1+ At(A+ HF))y(k— 1) + AtB'u/(k - 1) (4.39)

see appendix D.2 for description of the parameters.

As described in section 4.2, the parameters of the Innovation State Space model can be
extracted from a trained neural network by using equations (4.11})-(4.13). When the
trained neural networks are used to extract aerodynamic derivatives the control force
vector UT (k) = (ou(k), (k) in the multivariable Non-linear Innovation State Space
Model in equations (4.3) and (4.4) is replaced by U7 (k) = (ay(k), ou(k), cu(k), du(k)). By
comparing the Innovation State Space model in equation (4.9) and the matrix equation
of motion in equation (4.39) the following relations are derived

5  J
®=1+At(A+HF) = F=H" E(@—l) - A (4.40)
I'=AtB' = B'= r (4.41)
At '
where the matrix F contains the aerodynamic derivatives H{(K), ..., Hf(K), Aj(K), ...,

A3 (K) and B contains the aerodynamic derivatives H2(K),..., H} [K) ALK s ¢ o 5K )
The reduced frequency K is equal to
Buwq
P9l gor Hy, HE, HE, . HE AL, AL, AR A

K= (4.42)

Buw,
o 5, Hy, A and 4;

where wq gy is the torsional frequency for the actual wind velocity and w,y is the vertical
frequency for the actual wind velocity.
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4.5 Concluding Remarks

In this chapter it is described how a Multi Layer Perceptron neural network can be
used to simulate the motion of a bridge section based on data from e.g. a wind tunnel
experiment. During training of an active controller neural network, the trained neural
network modelling the motion of the bridge section is used as a simulator. In the final
active closed-loop control configuration the trained neural network of the bridge section is
used as one-step ahead predictor to estimate the state vector to the next time step. The
control force is then estimated by the trained controller network based on the estimated
state variables.

Further, it is described how aerodynamic derivatives for the bridge section can be ex-
tracted from a trained bridge section model network. Data from the wind tunnel exper-
iments described in chapter 6 are not used to train the described networks because of
the short and noisy time series from the experiments. Further, the very slow reaction of
the flaps in the experiments does not agree with the very fast movement assumed in the
neural network models.



Chapter 5

Test Set Up

5.1 Introduction

‘This chapter describes test set up for the wind tunnel experiments. The purpose of the
experiments is described in section 5.2. In section 5.3 the Wind Tunnel for Building
Aerodynamics at the Instituto Superior Técnico in Lisbon used during the experiments is
described. The bridge section model and the suspension system are constructed by the
Structural Research Laboratory at the Department of Building Technology and Structural
Engineering at Aalborg University. The bridge section model and the suspension system
are described in sections 5.4 and 5.5, respectively. The main part of the regulation system
is designed and implemented by two students at the Institute of Electronic Systems at
Aalborg University. It is described in section 5.6. Finally, in section 5.7, special details
during setup are mentioned.

5.2 Purpose of Experiments

The purpose of the experiments with the bridge section model in the wind tunnel is
primarily to investigate the principle to use flaps to control the bridge excitation. The
bridge section model is dimensioned to fit into the Wind Tunnel for Building Aerodynamics
at the Instituto Superior T'écnico in Lisbon, Portugal, whereby a practically usable model
is dimensioned. Further, it is important that the model is realistic compared to a real
bridge — but no specific bridge is investigated.

Both the trailing flap and the leading flap can be regulated in the model, since the effect
of two flaps instead of one is essential. The purpose of the flap in the leading edge is
primarily to introduce a load on the bridge opposite to the motion of the bridge. The
purpose of the flap in the trailing edge is primarily to change the direction of the wake.
The flaps are able to rotate approximately £20° from the horizontal positions. It is of
interest to investigate flaps with different lengths. Therefore, flaps with lengths 0.15B’
and 0.258’ are constructed, where B’ is the width of the bridge section model excluding
flaps. Unfortunately, there were many problems during the wind tunnel experiments, and
therefore, only the long flaps have been used.
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5.3 Wind Tunnel

The Wind Tunnel for Building Aerodynamics at the Instituto Superior Técnico in Lisbon,
Portugal is described in the ROLLAB Report RR 079 [2]. The general layout of the wind
tunnel is shown in figure 5.1.

. 16800
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1 ] | -]
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Figure 5.1: General layout of the wind tunnel [2]. Lengths in mm.

The tunnel is of the open return type and has a test section size of 1.5 m x 1.5 m x 5.0 m
(nominal values). The maximum speed is 40 M. The fan can be controlled by means
of a variable pitch device from 4 Mf to 40 M. A collector (a funnel) will duct the air
to a settling chamber, where a honeycomb and two gauzes are installed, whereupon a
contraction unit (ratio 5.44:1) takes the air to the test section.

The test section steel ‘cage’ is mounted on separate steel frames bolted on concrete pads
in the floor. Between the long top beams of the cage there are short cross beams to make
the test section rigid. The nominal dimensions of the entrance to the test section are
1.5 m x 1.5 m. The general layout of the test section is shown in figure 5.2. In this basic
version of the wind tunnel the side walls of the test section cannot be hoisted (opened).

In the test section the model can be elongated through two circular holes each with
diameter 200 mm in the wind tunnel walls, see figure 5.3. The suspension system can be
fixed to the metallic profiles shown in figure 5.3.
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Figure 5.2: General layout of the test section [2].

After the test section there is a diffuser/transition unit. At the end of the transition unit
(from square to circular) a safety gauze has been installed so that the fan will be protected
from loose elements or tools which may be forgotten in the test section.

5.4 Bridge Section Model

Experiments have shown that the critical wind velocity for a streamlined girder is much
higher than for a rectangular girder, see Ostenfeld & Larsen [30]. The bridge section
model is therefore made streamlined with the flaps as the streamlined part.

A simplified model of the bridge section equipped with flaps is illustrated in figure 5.4.
The width of the model excluding flaps is B’ and the height of the model is 0.15B8’. In
the experiments two short flaps with the length 0.15B’ or two long flaps with the length
0.25B" are used. For illustration the model in figure 5.4 is shown with a long flap at the
left hand side and a short flap at the right hand side.

The length of the model is 1,480 mm corresponding to the width of the test section of
the wind tunnel minus 10 mm in each side. To avoid large end-effects where the model is
elongated through the holes in the wind tunnel walls it is important to have a high aspect
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Figure 5.8: Holes in the wind tunnel walls and metallic profiles to fiz the
suspension system. Dimensions in mm.
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Figure 5.4: Simplified model of suspension bridge section with flaps.

ratio between the length and the width of the model as described by Hjorth-Hansen [20].

5.4.1 Model Laws

The model laws are described in appendix E.1. Three scaling factors are selected, namely
the length scale, the wind velocity scale and the mass density scale for the surroundings.
The selected and calculated scale factors are summarized in table 5.1.

The assumed (‘typical’) values of width, mass etc. for the prototype bridge equipped with
long flaps are shown in table 5.2. Further, the corresponding calculated values for the
model are shown.
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Scale factor Symbol Value
Length AL 1/40
Wind velocity Ay 1/4
Mass density of surroundings Ay 1
Frequency AR 10
Time Ap 1/10
Mass density of model per unit length Au 1/1600
Mass moment of inertia per unit length A 1/2.56 - 10°

Table 5.1: Selected and calculated scale factors.

Prototype | Model
Bridge | Width B’ (excl. flaps) [m] 25 0.625
Mass per unit length incl. cables uy [K&m] | 25-10° 15.6
Mass moment of inertia per unit length
incl. cables I, [kg - m%/y] 2.1-105 | 0.820
First eigenfrequency (bending) f; [Hz] 0.08 0.8
Second eigenfrequency (torsional) fa [Hz] 0.16 1.6
Long flaps | Mass per unit length iy [kg/m] 1.16- 103 0.725
Mass moment of inertia per unit length
around rotation point I; [kg - m%y] 50 16° | 7510~

Table 5.2: Assumed values for the prototype and corresponding values for the
model.

The dimensions of the simplified model are shown in figure 5.5.

156 625 94
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Figure 5.5: Dimensions of simplified model in mm.

5.4.2 Construction of Model

As the part of the regulation system to be fixed inside the model (two servo motors and two
reduction gears) is relatively heavy the model is made as light as possible. Therefore, the
model is made of foam with an aluminium frame to make it stiff. The aluminium profiles
have a thickness of 1 mm and they are described/shown in [13]. Where it is possible
there are holes in the aluminium frame to reduce the weight. Drawings for construction
of the model are shown in [14]. The bridge section model has been constructed by the
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Structural Research Laboratory at the Department of Building Technology and Structural
Engineering at Aalborg University.

The bridge section model with main dimensions is shown in figure 5.6. The aluminium
profiles and other aluminium elements of the model are hatched in figure 5.6. Hidden
aluminium is shown with a light hatch. The aluminium plate over the servo motors and
reduction gears is not shown. The foam parts of the model are coated after construction.

The actual (measured) and calculated (based on table 5.2) masses of the model are shown
in table 5.3.

Long flaps | Short flaps
Mass of model incl. flaps [kg] 14.653 13.820
Mass of regulation system inside model [kg] 11.400
Assumed mass of wires etc. [kg] 0.500
Measured total mass [kg] 26.553 25.720
Calculated total mass (kg 25.234 —

Table 5.8: Actual and calculated masses of the model.

In figure 5.7 the model is shown suspended in a very simplified suspension system only
used for testing of the behaviour of the model and regulation system.

To prevent the air flow from being interupted or separated in the joint between the flap
and the model the hole inbetween is closed by a piece of fabric, see figure 5.8. Two types
of fabric are used, namely a piece of airproof fabric covering the gap and a piece of elastic
fabric around the edge of the flap.

5.5 Suspension System

The model is connected to a horizontal extension rod in each side which is going through
the wind tunnel wall, see figure 5.6. Each of the extension rods can be separated into two
parts, see the separation line in figure 5.6, so as the model can be placed inside the wind
tunnel (the walls cannot be hoisted). The suspension system is the same in both sides.
The extension rod is connected to an arm with dummy masses that can be moved on the
arm so the model can represent the correct mass and mass inertia, see figure 5.9. Each
side of the arm is suspended in a helical spring. The springs can be moved on the arm so
the stiffness corresponding to the torsional motion of the model can be justified. Finally
the extension rod is connected to a windward drag wire and a leeward drag wire.

The suspension system has been designed and constructed in the Structural Research Lab-
oratory at the Department of Building Technology and Structural Engineering at Aalborg
University. The resulting suspension system is very flexible as it can be regulated in both
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Figure 5.6: Bridge section model with main dimensions in mm. A long flap
s shown in the left-hand side and a short flap is shown in the
right-hand side. In the experiments two long flaps are used.

horizontal and vertical directions. As shown in figure 5.3, the suspension system is fixed
to the metallic profiles by bolts. A simplified illustration of one side of the suspension
system is shown in figure 5.9.



52 Test Set Up

Figure 5.8: Hole between flap and model covered by two types of fabric.

During the experiments long wires are fixed to the wind tunnel to prevent movement in
the wind direction. Four HBM load cells type Z8 with the nominal mass 10 kg are used
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Figure 5.9: Simplified suspension system.

to measure the motion of the model.

The spring constant & for each suspension point is adjusted so the two-dimensional model
has the same eigenfrequency as the lowest symmetric bending eigenmode of the real
bridge, depending on the model laws. The torsional eigenfrequency can be adjusted by
moving the springs horizontally. The ordered stiffness of each of the four helical springs
is £ = 165 Ny, see appendix E.3. The damping of the model is not justified in the
experiments. Additional damping can be made by letting a vane at each support plane
shear through silicone oil as described by Hjorth-Hansen [20].

5.6 Regulation System
The regulation system to move the flaps consists of three parts:
1. A servo system, see section 5.6.1.
2. Regulation software to position the flaps in the desired positions, see section 5.6.2.

3. Control software to calculate the desired positions of the flaps, the control algorithm
used is described in the test programme in section 6.2.

The general layout of the regulation system for one flap is shown in figure 5.10. The
control software is linked to the regulation software.
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Figure 5.10: General layout of regulation system for one flap.

5.6.1 Servo System

The following servo system is recommended by Sven Hvid Nielsen, associate professor at
the Department of Production at Aalborg University. A servo system consists of a servo
amplifier, a servo motor and a reduction gear. Two servo systems are necessary as the
flaps are regulated independently. -

Specifications for the recommended servo amplifier, servo motor and reduction gear are
shown in appendix E.4. The reduction gears and servo motors are fixed inside the bridge
section model, see figure 5.11. Each reduction gear is connected to a flap via cables, see
figure 5.12. Each servo motor is connected to a servo amplifier, which is placed outside
the model.

Figure 5.11: Servo system fized inside model.

The servo amplifiers and a filter box are shown in figure 5.13.
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Figure 5.12: Cables to move to the flaps. At the left hand side the connection
between the reduction gear and the cables is shown. At right
hand side the connection between the cables and the flap is

shown.

Figure 5.13: Servo amplifiers and filter boz.

5.6.2 Regulation Software

The regulation software to position the flaps in the desired positions has been designed and
implemented by Seren Rennest and Lars Jakobsen (in 1995 students of the 9th semester
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at the Institute of Electronic Systems at Aalborg University based on the servo system
described in secion 5.6.1. The position regulator for one flap is illustrated in figure 5.14.

;

__‘ Mechanical :
part |

=]

a, —lm={  Position .L Velocity
-y regulator

regulator

Figure 5.14: Tlustration of position regulator for requlation of one flap.

In figure 5.14 the mechanical part consists of a servo motor, a reduction gear and a flap.
The velocity regulator is a PID-regulator in the servo amplifier. The position regulator
is basically also a PID-regulator implemented by Sgren Rgnnest and Lars Jakobsen in a
program called SERVOREG. Further, in figure 5.14, the following notation is used

oy s the desired position of the flap as calculated by the control software.

of isthe actual position of the flap, this position is used to learn about the behaviour
of the regulation system.

Viep is the reference velocity calculated by the position regulator.

V' is the velocity send to the servo motor.

The flaps can be positioned in the horizontal positions by using the keyboard on the
computer or a manual box as shown in figure 5.15. During the experiments the flaps can
only be regulated by the regulation and control software, i.e. the keyboard and manual
box cannot be used. '

If the flaps are turning too much with the risk of damaging the model then power to
the motors is cut off by micro switches placed at the top and bottom of the model, see
figure 5.16.

A lot of problems could have been avoided if the servo amplifiers had been position regula-
tors instead of the recommended velocity regulators. Further, there were a lot of problems
because of noise in the regulation system and an fundamental error on a counter card in
the PC that caused random pauses of the software. All these problems caused about one
year’s delay of the regulation system and a lot of time was spent testing the different
versions of the system.

The regulation software SERVOREG uses a kernel which switches between several processes
(calculation of the desired positions of the flaps, position regulator, menu, storing results
in a file and text on the screen). The flap positions are regulated by the software to fit
the specified values at an interval of 6 ms.
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Figure 5.15: Manual boz with buttons to regulate the flaps.
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Figure 5.16: Micro switches to prevent damaging of the model.

5.7 Special Details during Set Up

The part of the regulation system placed inside the model requires power, and therefore
there are wires inside the model too. Some of these wires are relatively stiff. Of practical
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reasons the wires are guided through only one end of the model. To prevent these wires
from dominating the motion of the model they are suspended by springs connected to the
wind tunnel so they are almost horizontal when they leave the model, see figure 5.17.

Figure 5.17: Wires from servo motors inside model.

As seen in figure 5.17, there is a string going downwards from one side of the extension
rod. Another string is connected to the other extension rod. These strings are used to
make a ‘standard’ initial motion of the model as described in chapter 6.

5.8 Concluding Remarks

In this chapter the wind tunnel, bridge section model, suspension system, regulation
system and purpose of the experiments are described. A realistic (not specific) model is
dimensioned to fit in the wind tunnel. The suspension system is made very flexible so it
can be regulated both horizontally and vertically. There has been a lot of problems with
the regulation system, but after approximately one year of delay (including a lot of tests)
the regulation system was ready for the experiments. Still, the regulation system is far
from being perfect and it caused a lot of problems during the experiments. The result
was that only a small part of the planned experiments could be performed, as described
in chapter 6.



Chapter 6

Wind Tunnel Experiments

6.1 Introduction

The purpose of the wind tunnel experiments with the bridge section model is to investigate
how the damping of the model is dependent on the flap configuration for increasing wind
velocities. These results are compared with the theoretical results for a flat plate by using
the Air Material Command (AMC) method described in section 2.4.

During the preparations of the wind tunnel experiments in Lisbon there were some unan-
ticipated problems:

e Noisy measurements of the displacements from the load cells. This noise comes
from the servo motors and it was also present in Aalborg, but then it was possible
to reduce it to an acceptable level by grounding of the components and by using an
extension rod. Further, there is noise due to vibrations of the frame on the wind
tunnel where the suspension system is connected. These vibrations are observed
during experiments with wind.

e Standing waves in the springs when the flaps are regulated.
e Static divergence of the model.

The noisy measurements are in the experiments dealt with by decreasing the value of P in
the PID-regulator in the regulation software, see section 5.6.2, whereby the servo motors
react very slowly and are not so sensible to noise. By using a P-value of 7 it is possible
to position the flaps with a phase angle of approximately +7/9 compared to the desired
values.

The test programme used during the experiments is described in section 6.2. Examples
of results of damping experiments are shown in section 6.3 and estimation of parameters
is described in section 6.4. Because of the problems during the experiments as mentioned
above, further experiments were planned as described in section 6.5. The results of the
wind tunnel experiments are compared with the flat plate approximation in chapter 7.



60 | Wind Tunnel Ezperiments

6.2 Test Programme

In the experiments the following control algorithm is used to calculate the desired angles
o (t) and oy(t) of the trailing and leading flap:

o (t) = a(t) 6.1)
ay(t) = —ao(t)
where (t) is the torsional angle of the model at the time ¢, a; and a; are amplitude

amplification factors for the trailing and leading flap, respectively.

The flaps are started slowly by multiplying the desired positions by a factor YT, when
t < Tp. The time for slow start is selected equal to Tp = 1 s.

The following experiments are performed:
e The flaps are not regulated, flap configuration 0: a; = a; = 0.

— Free vibration (vertical motion, torsional motion, both vertical and torsional
motion).

— Both vertical and torsional motion with the following wind speeds: 2.5 My,
4.0 m/s, 5.9 m/s, 7.1 m/s, 7.5 m/s and 8.2 m/s.

Both flaps are regulated, flap configuration 1: a; = —6 and a; = 6.

— Free vibration (torsional motion, both vertical and torsional motion).

— Both vertical and torsional motion with the following wind speeds: 2.5 ™M,
4.0 Mg, 5.9 Mg, 7.1 Mg and 7.7 M.

Both flaps are regulated, flap configuration 2: a; = —20 and a; = 20.

— Free vibration (torsional motion, both vertical and torsional motion).

— Both vertical and torsional motion with the following wind speeds: 2.8 M,
4.1 m/s and 6.1 m/s.

Both flaps are regulated, flap configuration 3: a; = 6 and a; = —6.

— Free vibration (torsional motion, both vertical and torsional motion).

— Both vertical and torsional motion with the following wind speeds: 2.5 mye.
4.0 m/s, 9.9 m/s and 7.1 l'Il/S_

Both flaps are regulated, flap configuration 4: a; = 20 and a; = —20.

— Both vertical and torsional motion with the following wind speeds: 2.8 g,
4.2 m/s and 6.1 m/s.

For the above-mentioned experiments the distance between the springs is 704 mm and
the distance between the loads on the horizontal arms is 150 mm.
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All experiments are repeated 3-5 times. A damping experiment follows the following
procedure:

1. Justification of wind velocity.

2. The model is given a ‘standardized’ initial displacement by pulling a rope that is
connected to the horizontal arms of the model.

3. Start of the program that measures the position of the model every 12 milliseconds.

4. The flaps are started slowly at the first upcrossing of the torsional motion with the
desired flap configuration. The actual positions of the flaps are measured and new
values are specified every 12 milliseconds.

5. The results are stored and used to estimate the damping of the model from the free
vibration following the initial displacement.

During a damping experiment the following parameters are stored every 12 milliseconds:
e ¢: time in milliseconds.
e z: the vertical displacement in metres.
e a: the angle of torsion in degrees.
e o, the specified angle of trailing flap in degrees.
e oy the specified angle of leading flap in degrees.
® oy, the actual angle of trailing flap in degrees.
e oy, the actual angle of leading flap in degrees.

A list of all damping experiments is shown in appendix F.1. For each type of experiment
the vertical motion, the torsional motion and the flap positions are shown in appendix F.2.

6.3 Examples of Damping Experiments

In this section the torsional motion is shown as a function of time for wind speed 6.1 My
and flap configurations 0, 2 and 4.

Figure 6.1 shows the torsional motion when the flaps are not regulated. The measurements
are very noisy. During the first period the amplitude of the torsional motion is reduced
from 2.6° to 2.4°, i.e. 8%. Figure 6.2 shows that flap configuration 2 is very efficient
to control the torsional motion of the model. Even though the flaps are started slowly
during the first second the amplitude of the torsional motion is reduced from 2.7° to 1.1°,
i.e. 62%. Figure 6.3 shows the actual positions for the trailing flap for the example in
figure 6.2. The flap movement is smooth because of the very slow regulation. Figure 6.4



62 Wind Tunnel Ezperiments

e

a{l) |deg]

RN]

;_ /\/\f/\ﬂ o ¢ [s]
N vvvwwww%

Figure 6.1: Ezample of torsional motion for flap configuration 0 and with
wind speed 6.1 m/s.
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Figure 6.2: Ezample of torsional motion for flap configuration 2 and with
wind speed 6.1 m/s.

shows that the angular motion is growing, i.e. there is flutter, when flap configuration 4
is used.

This example shows that moving the flaps in the right way can reduce the oscillations
considerably. Flap configuration 2 shows very good results even though it might not be
the optimal configuration. Further, this example shows that it is possible to make the
flap configuration very unfavourable so that the model makes flutter at a rather low wind
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Ezample of torsional motion and actual flap positions for the
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Figure 6.4:

speed.

Ezample of torsional motion for flap configuration 4 and with
wind speed 6.1 m/s.
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6.4 Estimation of Parameters

The following parameters are estimated based on the experiments:

e w, and w,: the circular frequencies for the vertical and torsional motion, respectively.
The circular frequencies are estimated by counting a number of cycles for the time
series z(t) and «f(t).

e (,: the damping ratio for the torsional motion. The damping is estimated by using
Hilbert transformation.

» a,, and a;: the actual amplitude amplification factors between the angular motion
of the model and the actual positions of the flaps. These factors are estimated by
optimization.

e ¢, and @y, the phase angles between the angular motion of the model and the
actual positions of the flaps. These factors are estimated by optimization.

As described, the measured postions z(t), a(t), au(t) and oy, (t) are noisy, and therefore
they are filtered. The filtered positions zf{t), as(t), ca,r(t) and ay,,¢(t) are then used to
estimate the above-mentioned parameters. The methods used to filter the positions and
estimate the parameters are described in appendix G.

6.4.1 Estimated Frequencies

In figure 6.5 the circular frequencies for the vertical motion without wind are shown based
on the estimated values in appendix G.3. The estimated frequencies are rather constant
independently of the flap configuration and the main motion. The mean value of the
circular frequency for the vertical motion is 5.2 rads,.

The circular frequency for the vertical motion can be estimated without wind. When
the wind is blowing the vertical motion becomes rather irregular until it is possible to
estimate it again. The frequencies based on the estimated values in appendix G.3 are
shown in figure 6.6. With increasing wind velocity the circular frequency for the vertical
motion is reduced. It is not possible to estimate the circular frequency for the vertical
motion when flap configuration 2 is used.

In figure 6.7 the circular frequencies for the torsional motion without wind are shown
based on the estimated values in appendix G.3. As for the vertical motion, the estimated
frequencies are rather constant independently of the flap configuration and the main
motion. But there is a small tendency towards larger deviation of the results the more
the flaps are moved. Note that flap configurations 1 and 3 specify small movement of the
flaps. The mean value of the circular frequency for the torsional motion is 10.1 rady,

The circular frequencies for the torsional motion used to estimate the damping of the
motion are shown in figure 6.8. Again, with increasing wind velocity the circular frequency
for the torsional motion is reduced dependent on the flap configuration used.
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Figure 6.5: Estimated circular frequency for vertical motion without wind.
The configuration is described by the flap configuration and the
main motion, i.e. za denotes a combined motion.
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Figure 6.6: Estimated circular frequency for vertical motion with wind.

6.4.2 Estimated Damping Ratios

In figure 6.9 the damping ratios for the torsional motion without wind are shown based on
the estimated values in appendix G.3. The estimated damping ratios are rather constant
independently of the flap configuration and the main motion. But when the flaps are
moved the damping ratio is larger for the main torsional motion than for the combined
motion. Further, the more the flaps are turned the larger the damping ratio. The mean
value of the damping ratio for the torsional motion is 0.008.
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Figure 6.7: Estimated circular frequency for torsional motion without wind.
The configuration is described by the flap configuration and the
main motion, 1.e. za denotes a combined motion.
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Figure 6.8: Estimated circular frequency for torsional motion with wind. For
the wind speed 6.1 m/s the motion is damped very fast when flap
configuration 2 is used. The frequency for this wind speed and
flap configuration is therefore predicted based on the estimated
values for other wind speeds and flap configurations.

The damping ratio for the torsional motion for different flap configurations is shown as
a function of the wind speed in figure 6.10. When flap configurations 1 and especially 2
are used the damping ratio is increased considerably, and when flap configurations 3 and
4 are used the damping ratio is decreased.
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Figure 6.9: Estimated damping ratio for torsional motion without wind. The
configuration is described by the flap configuration and the main
motion, i.e. za denotes a combined motion.
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Figure 6.10: Estimated damping ratio for torsional motion with wind.
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6.4.3 Estimated Amplifications and Phases

The torsional motion can be described by

a(t) = A(t) cos(wt) (6.2)
where A, (t) is the amplitude of the envelope curve for the torsional motion and wy, is the
circular eigenfrequency for the damped torsional motion.

The actual flap position for e.g. the trailing flap can be described by

Qta(t) = ataAa(t) cos(wlt — ¢ia) (6.3)
where ay, is the amplification factor and ¢, is the phase angle for the trailing flap. The
phase angle is equal to the damped circular frequency multiplied by the delay of the
flap compared to the torsional motion, i.e. @;, = w,A#;. In the same way the actual flap
position for the leading flap can be described by the amplification factor a;, and the phase

angle y,.

e (t) = aeAg(t) cos(wit — i) (6.4)
where ¢, = w,,At;. The amplifications as, and a;, and the phase angles ¢y, and ¢, are
estimated for each flap configuration as described in appendix G.4. The mean values are
shown in table 6.1.

. Amplification Phase angles
Flap configuration i - 5. [cad] | i, [redl]
0 0 0 — —
1 1.9 2.0 4.5 4.5
2 34 3.6 4.6 4.6
3 2.0 2.0 1.5 1.5
4 J4%| BB 1:5% La*

Table 6.1: Estimated amplification factors and phase angles. * For flap
configuration 4 the parameters are predicted based on the results
for other flap configurations.

As seen in table 6.1 the trailing and leading flaps are moving with the same delay compared
to the torsional motion. Note that the phase angles are equal because the angles of both
flaps are positive downwards. Further, the amplitudes of the leading flap are slightly
bigger than the amplitudes of the trailing flap. As expected the flap amplication factors
are almost the same for flap configurations 1 and 3 and the phase angles are almost the
same for flap configurations 1 and 2. Finally, as aspected the difference between the phase
angles for flap configurations 1 and 3 is approximately equal to .
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6.5 Further Experiments

As described in section 6.1 there were some unanticipated problems during the experi-
ments, therefore new experiments were planned.

A major problem is the noise of the position measurements from the load cells from the
servo motors and vibrations of the wind tunnel frame. The noise problems can be elimi-
nated by using a second-order filter with pole 0.5 as described in appendix G.2. Thereby
a minor amplitude reduction and phase angle is introduced, as shown in figure G.1. This
1s not any problem, however, as these factors can be taken into account in the control
algorithm. By using the filter when the desired flap positions are calculated the flaps can
be moved faster, i.e. the P-value in the PID-regulator is increased.

Another problem is that the divergence wind velocity is too small for the model. All focus
was on the flutter problem as flutter is usually a greater problem for suspension bridges
than divergence. It was therefore an error not to check the divergence wind velocity for
the model before the experiments. The divergence and flutter velocities are calculated in
appendix G.5 based on the estimated parameters from the experiments. The divergence
velocity is 8.5 M/ and the flutter velocity is 8.7 Mj5. Thereby it is not possible to perform
experiments with wind speeds above the flutter wind velocity. This problem is eliminated
by regulating the positions of the springs and loads of the suspension system and to use
stiffer springs so the divergence and flutter wind velocities are separated. By using the
regulated parameters and stiffer springs the divergence wind velocity is 12.1 M/ and the
flutter wind velocity is 10.0 M,

Stiffer springs will also have another eigenfrequency with regard to the standing waves,
so this problem is also solved. The divergence and flutter wind velocities are estimated
in appendix G.5 for both existing and new springs.

As described in chapter 7, it is not optimal to move the flaps using the same phase angle
as in the described wind tunnel experiments. In the next experiments it is therefore the
intention to move first one flap and then the other flap with different amplification factors
and phase angles. Finally, the optimal flap configuration can be found by experiments
with combinations of the optimal amplifications and phase angles.

The following control algorithm is used

a(t) = aza(t) {cos(—pa — ;) — tan(wjt — 7/2) sin(—pa — @)} } (6.5)
oy (t) = —aya(t) {cos(—pa — @) — tan(wlt — Tp) sin(—pa — @)} '

where a; and q; are the flap amplication factors. @, is the delay of the flap, i.e. the time
to move the flaps in the desired positions. Note that this delay is independent of the angle
the flap is turned. ¢; and ; are the desired phase angles between the torsional motion
and the flaps. The algorithm is derived in appendix G.6.

The control algorithm in equation (6.5) gives numerical problems because the desired
angles of the flaps can have maximum when the torsional angle of the bridge section



70 Wind Tunnel Experiments

model is zero. Theoretically, this should not give any problems as shown in appendix G.7,
but anyway there are numerical problems.

Another problem when using the control algorithm in equation (6.5) is that the damped
circular torsional frequency must be known. This is really a problem as the frequency
is both dependent on the wind speed and the flap configuration, as shown in figure 6.8.
Different solutions were applied but none of them was working well. Anyway, it was
possible from the experiments to see if the phase angle used was favourable or unfavourable
to control the motion. In the following the factors f; and f; are used to describe the flap
configurations.

oy = fz% (6.6)

-
01 = fi 6 (6.7)
As seen in table 6.2, the favourable phase angles of the leading flap are for f; € [9, 10,11, 0].
For the trailing flap the favourable phase angles are for f; € [8,9, 10], see table 6.3. These
phase angles cannot directly be compared with the results in chapter 2 because of the
changed bridge section model parameters. Further, it should be noted that the defined
positive direction in this chapter for the leading flap is opposite to the defined positive
direction in chapter 2.

u fi

[m/s] |01 |2|3|4]5]6]7|8]|9]10]|11
40 [+ - 1-|-1-|-|- +|+ |+
60 [+ |+ |-|-|-|-|-|-|-|+|+|+
80 [+ |-|-|-|-|-|-|-|+|+]|+|+
90 [+ |+ +|-|-[|-|-|-|-1+[+]+

Table 6.2: Favourable (+) and unfavourable (-) phase angles when only the
leading flap is used.

U fi

[m/s] | 0]1]2|3|4|5]|6]7|8]9]10]1l
40 |- |-1-1-1-T-1+]+{+7+1+]+
60 |- |-|-|-[-|-]+]+]+]+]+]+
80 |-|-[-|-[-[-1-T+]+[+][+]-
9.0 |- |-[-[-[-1-1-1-T+{+]+1]-

Table 6.3: Favourable (+) and unfavourable (-) phase angles when only the
trailing flap is used.

Unfortunately, the problems with the control algorithm made it impossible to train a
neural network with data from the experiments to model the motion of the section model
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for different flap positions.

6.6 Concluding Remarks

In this section the wind tunnel experiments are described. Experiments are performed
with the model without moving the flaps, and two favourable and two unfavourable flap
configurations are examined. The experiments show that both the circular frequencies
of the vertical and torsional motion and the damping ratio of the torsional motion are
dependent on the wind speed and the flap configuration. When using favourable flap
configurations the damping ratio is increased considerably even though the delay of the
flaps in the experiments compared to the torsional motion might not be optimal. The
experiments also show that it is possible to make the flap configuration very unfavourable
so the model makes flutter at a rather low wind speed.

There were several problems during the experiments that recommended further experi-
ments, e.g. that the effectiveness of the flaps could not be shown for wind speeds above
the flutter wind speed. During these further experiments, new problems were introduced.
Based on the experiments, however, it was possible to find favourable phase angles for
the trailing flap and leading flap, separately.
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Chapter 7

Experimental Results Compared with
Theory

7.1 Introduction

In this chapter the estimated parameters from the wind tunnel experiments described in
chapter 6 are compared with the theoretical parameters by using the flat plate approxi-
mation described in chapter 2.

The flap configurations used in the wind tunnel experiments are shown in section 7.2.
The wind dependent change of frequency and damping are compared with the theoretical
values in sections 7.3 and 7.4. The optimal phase angles found in chapter 2 are in sec-
tion 7.5 compared to the phase angles used during the experiments.

7.2 Flap Configurations

The positive directions of the vertical and torsional motions of the bridge section model
and of flap positions are shown in figure 7.1. The positive directions are equal to the
positive directions defined in chapter 2. In chapter 6 the angle of the leading flap is
defined as positive downwards, e.g. opposite to the definition used in this chapter.

Figure 7.1: Definition of positive directions.

The positions of the flaps (with positive directions as shown in figure 7.1) at selected time
instants for flap configurations 1-4 described in chapter 6 are shown in figures 7.2-7.5.
When flap configuration 0 is used the flaps are not moved. Based on the torsional motion
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a(t), the actual flap positions oy and «; are calculated by using equations (6.3) and (6.4)
with the estimated parameters shown in table 6.1 for each of the flap configurations. At
eight time steps during a period the angle of the model and flaps are shown in the upper
part of figures 7.2-7.5.

Figure 7.3: Movement of flaps for flap configuration 2.

For all flap configurations the flaps are near their horizontal positions when the angle of
the torsional motion is maximum. Further, for all flap configurations the flaps are moved
either up or down at the same time and the maximum angles of the flaps are when the
model is approximately horizontal.

7.3 Wind Dependent Change of Frequency

In figure 6.6 the circular frequency for the vertical motion as a function of the wind velocity
is shown based on the wind tunnel experiments. The stiffness of the bridge section model
with flaps for a pure vertical motion is
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Figure 7.5: Movement of flaps for flap configuration 4.

1
k.u= mwg - §pU2K§,UHI(Kz,U) (7-1)
with the notation used in appendix B.2 and
Buw,
Kz,U = __Uﬁ (72)

where w, 7 is the circular frequency of the vertical motion dependent on the wind velocity
U. The wind dependent circular frequency of the vertical motion is

B2 2 Bu,
i = wz\/1 o BE (“’Z’U) i (—“E) (7.3)
! 2m \ w, U
According to Dyrbye & Hansen [9] the following approximation is quite accurate
Wy u 2 sz U (sz>
: 4 — ) ~ H} 4
(wz)H4(U) i\ (74

where w, is the circular eigenfrequency for the vertical motion, i.e. without wind. Equa-
tion (7.3) can thereby be written

(7.5)

pB? [ Buw,
s (5
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Note, that the vertical frequency is independent of the flap configuration. The frequencies
estimated based on the experimental data are compared to the theoretical frequencies by
using Theodorsen’s theory for a flat plate, see figure 7.6.

| @. [rad/s|

O no movement of flaps
o flap configuration 1
10 - X flap configuration 3
| O flap configuration 4
9 X
%
8 g
e
7 @0
6.
- A
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Figure 7.6: Theoretical and ezperimental circular frequency for vertical
motion with wind.

As seen in figure 7.6, only the first values of the circular frequency for the vertical motion
for flap configuration 1 are on the theoretical curve. However, the theoretical curve for
pure vertical motion does not agree with the binary flutter theory either, since the flutter
wind velocity for the bridge section model is w; = 6.62 rad/s and the flutter wind velocity
is Uy = 8.18 m/s, see section 2.3. This may be explained by the pure vertical motion
assumption for equation (7.5) contrary to the combined vertical and torsional motion
for binary flutter. Perhaps the results would fit better if a Fourier Analysis had been
made. Also, for the experimental data the vertical frequency is independent of the flap
configuration.

In figure 6.8 the circular frequency for the torsional motion as a function of the wind
velocity is shown based on the wind tunnel experiments. The stiffness of the bridge
section model with flaps for a pure torsional motion is

i ,
koy = Tw? — ngQKiUBEAg (Kav) (7.6)

with the notation used in appendix B.2 and

Bwa U
— ToT
U (1.7

where wq ¢ is the circular frequency of the torsional motion dependent on the wind velocity
U and

I(oz,U =
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A (K) = A3(K) — A3(K)asin(—.) + A5(K)aq cos(—) ~
A% (K)asin(—q,) + Az(K)a, cos(—yy) (7.8)

The wind dependent circular frequency of the torsional motion is

We = W - —
o o 9T \ w, AR

1
B wa\/l _rB ¥ (B;“) (7.9)

where w, is the circular eigenfrequency for the torsional motion, i.e. without wind. Note
that the torsional frequency is dependent on the flap configuration specified by the flap
amplification factors a; and @, and the phase angles ¢; and ;. The frequencies estimated
based on the experimental data are compared to the theoretical frequencies by using the
aerodynamic derivatives for a flat plate for flap configurations 0-4, see figure 7.7.
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Figure 7.7: Theoretical and experimental circular frequency for torsional
motion with wind for flap configuration 0-4. The number at the
end of a solid line denotes the actual flap configuration.

As seen in figure 7.7 the estimated values generally follow the theoretical curves for wind
velocities below approximately 5 m/s. The only exception is flap configuration 2, but
the deviations for this flap configuration can be caused by the relatively short time series
because of the effective damping. The pure torsional motion does not completely agree
with the binary flutter theory but the fit is much better than for the pure vertical motion
described above.
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7.4 Wind Dependent Change of Damping

In figure 6.10 the damping ratio for the torsional motion is shown as a function of the
wind velocity based on the wind tunnel experiments. The damping ratio can also be
estimated by the AMC method described in section 2.4. The damping ratio g(U/) defined
in section 2.4 as twice the necessary structural damping is replaced by —0.5g(U) + (o
to be compared with the experimental damping ratios. The mean value of the damping
ratio without wind is {40 = 0.008, see section 6.4.2.

The damping ratios estimated based on the experimental data are compared to the theo-
retical damping ratios by using the AMC method and the aerodynamic derivatives for a
flat plate for flap configurations 0-4, see figure 7.8.
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Figure 7.8: Theoretical and experimental damping for torsional motion with
wind for flap configuration 0-4. The number at the end of a solid
line denotes the actual flap configuration.

As seen in figure 7.8, the experimental damping ratio is smaller for flap configuration 0
and 1 than the theoretical damping ratio but the shape of the curve is almost the same.
For flap configuration 2 the experimental damping ratio exceeds the theoretical ratio. For
flap configurations 1 and 2 the theoretical curves show that no binary flutter will occur.
For the flap configurations 3 and 4 the flutter wind velocity is decreased compared to
flap configuration 0, where the flaps are not moved. Unfortunately, it was not possible
during the wind tunnel experiments to perform experiments with wind velocities above



7.5 Optimal Flap Positions it

the relatively low divergence wind velocity (8.5 m/s) without the risk to damage the
model.

7.5 Optimal Flap Positions

There is no guarantee that the phase angles used in the wind tunnel experiments ¢; ~
1.5 rad and ¢, ~ 4.5 rad are optimal. When the flat plate approximation is used then the
optimal phase angles are about ¢, ~ 37/6 = 1.57 rad and ¢; ~ 87/6 = 4.19 rad for small
values of flap amplification factors a; and a;, see section 2.3.

With changed bridge section model parameters described in section 6.5 the favourable
phase angles are ¢; € [37/6; 67 /6] and ¢, € [87/6;107/6]. These favourable phase angles
fit the results in section 2.3 mentioned above very well. Therefore, it can be concluded that
favourable phase angles are used during the first experiments. Based on the performed
experiments, however, it is not possible to conclude which phase angles are optimal for
the model, and therefore, it is also not possible to predict the optimal effect of the flap
control system.

7.6 Concluding Remarks

In this chapter the estimated parameters from the wind tunnel experiments are com-
pared with the theoretical parameters by using the flat plate approximation. The time-
dependent torsional angle and the flap positions are shown for flap configurations 1-4.
The flaps are moved either up or down at the same time and there are maximum angles
of the flaps when the model is approximately horizontal.

The wind speed dependent circular frequencies for vertical and torsional motion are com-
pared to the theoretical curves for the flat plate approximation for pure vertical and pure
torsional motions. For the vertical motion the curves only agree for rather low wind
speeds. The circular frequency for the vertical motion is independent of the flap config-
uration. For the torsional motion the estimated values generally follow the theoretical
curves especially for relatively low wind speeds. The circular frequency for the torsional
motion is dependent on the flap configuration.

The experimental damping ratio is smaller for flap configurations 0 and 1 than the theoret-
ical damping ratio based on the flat plate approximation. However, the shape of the curve
is almost the same. For flap configuration 2 the experimental damping ratio exceeds the
theoretical ratio. By using flap configurations 1 or 2 the flutter wind velocity is increased
or perhaps no binary flutter will occur. Unfortunately, it was not possible to perform
experiments with wind speeds above the flutter wind velocity for flap configuration 0.

Based on further experiments, where flaps are moved separately, it can be concluded that
favourable phase angles are used during the first experiments. However based on the
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experiments performed it is not possible to conclude which phase angles are optimal and
the optimal effect of the flap control system.



Chapter 8

Conclusion

This chapter is divided into two parts. In section 8.1 there is a summary of the thesis and
some conclusions. Main conclusions, a list of new contributions in the thesis and some
suggestions for future research are shown in section 8.2.

8.1 Summary of the Thesis

Still longer suspension bridges are built and in the future ultra-long span suspension
bridges are planned, e.g. the Messina Crossing and the crossing of the Gibraltar Straits.
These ultra-long span suspension bridges will be sensitive to dynamic loads and the main
problem is expected to be flutter. The span length can e.g. be increased by optimizing
the suspension bridge with regard to materials, deck shape and cables. Alternatively, the
intelligent bridge may be introduced where active control systems are used to limit the
vibrations.

In chapter 1 two active control systems with flaps are described. The active flap control
system selected for investigation consists of flaps integrated in the bridge girder. When
the flaps are exposed to the wind they exert forces on the bridge girder. The direction and
sizes of the forces are dependent on the flap regulation. Sensors inside the bridge girder
measure the position of the girder. These measurements are used in a control algorithm to
calculate the optimal flap positions. The flaps are then regulated continuously according
to the calculated optimal positions. The flap control system can be used to fulfil the
serviceability state and comfort demands or it can be used to increase the flutter wind
velocity.

The motion-induced wind loads on a bridge section are defined in chapter 2 based on
aerodynamic derivatives for the bridge deck and additional aerodynamic derivatives for
regulation of the flaps. By expressing the angles of the flaps in terms of the torsional angle
of the bridge section the methods described in the literature can be used to estimate the
flutter wind velocity for the bridge section with flaps. This is done by simply replacing
some of the aerodynamic derivatives with expressions including the parameters describing
the flap configuration. Estimation of flutter wind velocity by Theodorsen’s method and
the air material command method used to estimate the necessary structural damping are
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described.

The theoretical effect of the flaps is shown by an example. The flutter wind velocity is
calculated for different flap configurations for a bridge section model with flaps. In the
following examples the aerodynamic derivatives are approximated by the aerodynamic
derivatives for a flat plate. In the derivation of the additional aerodynamic derivatives for
the leading flap it is assumed that movement of this flap does not affect the circulation.
It can be concluded that the trailing flap is more efficient than the leading flap. However,
moving both flaps is again more efficient than moving only the trailing flap. The example
shows that it is theoretically possible to eliminate the flutter problem for the investigated
bridge section model by using the flap control system.

Three control algorithms that can be used to regulate the flaps are described in chapter 3,
namely classical linear optimal closed-loop control, instantaneous optimal closed-loop con-
trol and closed-loop control with constant phase angle between the motion of the flaps
and the torsional motion of the bridge. In classical linear optimal control a performance
index is minimized during the entire control interval. In instantaneous optimal control
the performance index is minimized at every time instant in the control interval. The
instantaneous control law is much simpler than the classical linear optimal control law as
solving the Riccatti matrix is omitted. In constant phase angle control the optimal phase
angles of the flaps are derived based on the energy input from the motion-induced wind
load.

The difference between classical linear optimal control and instantaneous control is shown
in an example. The shapes of the flap angle curves are much alike, but the flaps are
slightly delayed in instantaneous control compared to classical linear control. Both control
algorithms are very efficient to limit the vibrations. An example with constant phase angle
control shows that no flutter will occur for a flat plate with long flaps at the investigated
wind velocity if the flaps are moved with optimal phase angles and amplitudes equal to
the pitch angle of the plate.

In chapter 4 it is described how a multi-layer perceptron neural network can be used
to simulate the motion of a bridge section based on data from e.g. a wind tunnel experi-
ment. During training of an active controller neural network the trained neural network
modelling the motion of the bridge section is used as a simulator. In the final active
closed-loop control configuration the trained neural network of the bridge section is used
as one-step ahead predictor to estimate the state vector to the next time step. The control
force is then estimated by the trained controller network based on the estimated state
variables. Further, it is described how aerodynamic derivatives for the bridge section can
be extracted from a trained bridge section model network.

Wind tunnel experiments are performed to investigate the principle to use flaps to con-
trol the bridge excitation. The test setup for wind tunnel experiments is described in
chapter 5. The wind tunnel, bridge section model, suspension system, regulation system
and special details are described. The model is realistic compared to a real bridge, but
no specific bridge is investigated. The regulation system has caused a lot of problems
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and time delay. Still the regulation system is far from perfect and unfortunately it caused
problems during the wind tunnel experiments. Therefore, only a small part of the planned
experiments could be performed.

During the wind tunnel experiments described in chapter 6 it is investigated how the
damping of the model is dependent on the flap configuration for increasing wind velocities.
Again, however, there were unanticipated problems, namely noisy measurements of the
displacements, standing waves in the springs when the flaps are regulated and static
divergency of the model at a wind velocity very close to the flutter wind velocity. To
avoid the effects of the noisy measurements on the flap regulation the reaction of the
servo motors is specified to be very slow. During the experiments constant phase angle
control is used. Experiments are performed with the model without moving the flaps, two
favourable and two unfavourable flap configurations.

The experiments show that both the circular frequencies of the vertical and torsional
motion and the damping ratio of the torsional motion are dependent on the wind speed
and the flap configuration. When using favourable flap configurations the damping ratio
is increased considerably even though the delay of the flaps compared to the torsional
motion might not be optimal. The experiments also show that it is possible to make
the flap configuration very unfavourable so the model makes flutter at a rather low wind
speed. There were several problems during the experiments that recommended further
experiments, e.g. that the effectiveness of the flaps could not be shown for wind speeds
above the flutter wind speed. However, new problems were introduced during these new
experiments. Therefore, they could only be used to find favourable phase angles for the
trailing and leading flap, separately.

Data from the wind tunnel experiments are not used to train neural networks as the data
are very noisy, especially with respect to the calculated velocities. Further, many of the
time series from the wind tunnel experiments are very short and mainly contain data with
slow start of the flaps. Finally, the neural network models assume that the flaps can be
moved fast, i.e. that no distinction is made between the desired and actual flap positions.

In chapter 7 the estimated parameters from the wind tunnel experiments are com-
pared with the theoretical parameters by using the flat plate approximation. In both the
favourable and unfavourable flap configurations the flaps are moved either up or down
at the same time and there are maximum angles of the flaps when the model is ap-
proximately horizontal. The wind speed dependent circular frequencies for vertical and
torsional motion are compared to the theoretical curves for the flat plate approximation
for pure vertical and pure torsional motions. For the vertical motion the curves only agree
for rather low wind speeds. The circular frequency for the vertical motion is independent
on the flap configuration. For the torsional motion the estimated values generally follow
the theoretical curves especially for relatively low wind speeds. The circular frequency for
the torsional motion is dependent on the flap configuration. The experimental damping
ratio is smaller for flap configurations 0 and 1 than the theoretical damping ratio based
on the flat plate approximation. However, the shape of the curve is almost the same.
For flap configuration 2 the experimental damping ratio exceeds the theoretical ratio. By
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using fap configuration 1 or 2 the flutter wind velocity is increased or perhaps no binary
flutter will occur.

Based on further experiments where flaps are moved separately it can be concluded that
favourable phase angles are used during the first experiments. Based on the performed
experiments, however, it is not possible to conclude which phase angles are optimal and
the optimal effect of the flap control system.

8.2 Overall Conclusion

The main conclusions are summarized as:

e Both theoretically and experimentally the flap control system was very efficient to
limit the vibrations of the bridge section model.

e Theoretically, long flaps are more efficient than short flaps.

e Theoretically, the trailing flap is more efficient than the leading flap. It is optimal
to use both flaps.

e It is very important that the flaps are regulated as specified by the selected control
algorithm as the flutter wind velocity can be decreased if the flap configuration is
unfavourable.

To the author’s knowledge, new contributions in the thesis are the following:

e The existing theory for dynamics of long suspension bridges is extended to include
leading and trailing flaps.

e Formulation of constant phase angle control with derivation of optimal phase angles.

e Derivation of aerodynamic derivatives for bridge section based on trained neural
networks.

e Wind tunnel experiments with bridge section model with flaps.

List of topics suggested for further research:
e Further wind tunnel experiments.

e Investigation of the optimal shape of the flaps and where they should be placed on
the bridge.

e Reliability analysis of the flap control system with formulation of all failure modes
of the system.
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Appendix A

Loads on Flat Plate with Flaps

A.1 Introduction

In this appendix the Theodorsen theory for a flat plate with a trailing flap is reviewed
and the theory is extended to include a leading flap. Section A.2 reviews Theodorsen’s
results for loads on a flat plate with a movable trailing flap. The context is extended in
section A.3 to include a movable leading flap. It is assumed that rotation of the leading
flap has no effect on the circulation. In section A.4 the corresponding flutter derivatives
for a flat plate with flaps are derived.

A.2 Theodorsen Theory for Flat Plate with Trailing
Flap

This section reviews Theodorsen’s results described in: NACA Report 496 General Theory
of Aerodynamic Instability and Mechanism of Flutter [37], and all equations in this section
are from the report. The lift force and pitching moment on an oscillating flat plate
equipped with a movable trailing edge flap are considered, see figure A.1. Secondary
effects such as: the effects of a finite span, of section shape, of deviations from potential
flow, twisting and bending of the plate are not considered.

Figure A.1: Parameters of the flat plate with o movable trailing edge flap.

The half-chord length of the plate is denoted b and the location of the flap hinge relative
to mid-chord is denoted c. The centre of rotation of the plate is located at mid-chord (i.e.
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a = 0 compared to the report of Theodorsen). The mean wind velocity U is to the right
and horizontal. The angles o and a; are positive clockwise. The angle of attack o refers
to the horizontal. The angle of the flap o refers to the undeflected position, i.e. relative
to the flat plate. The leading edge is located at £ = —1 and the trailing edge is located
at £ = 1. The vertical displacement z of the plate is positive downwards.

The lift force (positive downwards) and pitching moment (positive clockwise) are found
for a flat plate in section A.2.1. The effect of the trailing edge is shown in section A.2.2.

A.2.1 Flat Plate

The surface potential of a straight line is described by the function @

€ ($_$1)2+(yﬁy1)2
= or %8 (oo Tt (g E 1) )

where the z-axis is shown in figure A.1, (z,y) and (z,,7;) are points on a circle with
radius 1 and centre at mid-chord, i.e. y =1 - 22 and y, = /1 — 2%,

The following integrals are used to determine @4, @; and 4.

/ log (z-m)*+{y—n dr; = —2mV1 — 22 (A.2)

)

$~:r12+(y+y1)2
fl (z—21)*+ (¥ —11)
(z — 21)* + (y + 11)?

To obtain the effect of the angle a of the plate, —~Uab is substituted for ¢ and the
contribution is integrated over the entire plate.
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By = / (—Uablog z—a) "+ -5 )daxl
1

2 (z—z1)% + (¥ + 11)*

= Uabv1l - 2? (A.4)

The effect of a downward motion z of the plate is found by setting @ = 2/U in equa-
tion (A.4).

ps = 2bV/1— 22 (A.5)

A rotation around the mid-chord at an angular velocity & consists of a rotation around

2

2

(x1 + 1)dz) = —(z + 2)7V1 — 2? (A.3)

the leading edge z = —1 at an angular velocity & plus a vertical motion at the velocity
—ab, i.e. e = —(x; + 1)&b?® + &b? and the contribution is integrated over the entire plate.
boab?, (z—z)’+ (y— )’
gy = ——1o z1 + 1)dz
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Lift Force and Pitching Moment on Flat Plate

The pressure difference p, between the upper and lower surfaces of the flat plate is given
by

N a@p 59013
where
. abx
(Pp:Sﬁa-i-‘ﬂz'*“ﬂa:bvl—-fz(Uﬂf"‘Z'!‘T) (A.8)

The total force P, on the plate (positive downwards) is

Oz ot
= —pb*(Uré + 72) (A.9)

1 1 0 d '
. = b[lpp(z)dmZ—Qpbﬂl (Uﬂ-i-ﬁ) d:n:—Qpb/_lqbpdm

In the same way the moment M, on the plate (positive clockwise) can be found, see
Theodorsen [37, eq. (III)].

M, = —pb? (—'NU‘?CM + Sbh quz) (A.10)

Lift Force and Pitching Moment on Flat Plate due to Circulatory Flow

The force F,; and the moment M, on the plate corresponding to the circulatory flow are
given by Theodorsen [37, eq. (VIII) and (X)].

Flp =—2plbar (Ua + 2+ gd) (A.11)

b
Mye = wpUb*(C — 1) (Ua +z+ §d) (A.12)
where C is the Theodorsen circulation function, see appendix A.2.3.

Total Lift Force and Pitching Moment on Flat Plate

The total lift force F,; and the total pitching moment M,; on the flat plate are given by

Py = P, + Pypo = —pb*(Uncy + m5) — 2pUbrC (Ua + 54 goz) (A.13)

b
My = M, + Mye = —pb? (g—Ubd + gb%) + 7pUbC (Ua + i+ 5@) (A.14)
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A.2.2 Trailing Flap

The following integrals are used to determine ¢,, and g, -

/l log (z—20) + (v = yl)%dml =2(z — ¢)log N(c,z) — 2v/1 — z2cos™'(¢) (A.15)
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N(ea) = —

The effect of the trailing flap bent down at an angle a; is found by setting ¢ = —Uaub,
and the contribution is integrated over the trailing flap.

_ M Uad, (z—z:)+(y—wn)’
e = /c ( 2 log ($—x1)2+(y+y1)2) da
_ Leb (\/1 —z?cos {c) — (z — ¢) log N (e, m)) (A.18)

m

The effect of the trailing flap going down at an angular velocity & is found by setting
g = —(z; — c)oub?, and the contribution is integrated over the trailing flap.

1 s h2 _ 2 _ 2
2 / (_azb 1Og(:c z1)° + (v y1)2($1_c)) dr,

2r - (r—z)*+ Y+ )
= S (VT AVT= 7+ cos™ )z — 20VT = &
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Lift Force and Pitching Moment due to Movement of Trailing Flap

The additional force P, on the plate due to movement of the trailing flap is given by
Theodorsen [37, eq. (I)].

P, = —pb®(—UTyoy — b1 ) (A.20)

where T}, i = 1,2,...,14 are constants defined by Theodorsen. The definitions of the
constants used in this appendix, namely Ty, Ty, T7, Ts, T1o and T1; are shown in ap-
pendix A.2.4.

The additional moment M, on the plate due to movement of the trailing flap is given by
Theodorsen [37, eq. (III)].

M, = —pb* (U‘ZTM + (T}, — Ty — cTy)beU — (T + ch)bﬂat) (A.21)
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Lift Force and Pitching Moment due to Movement of Trailing Flap and Cir-
culatory Flow

The force P, and the moment M;. on the plate due to movement of the trailing flap and
corresponding to the circulatory flow is given by Theodorsen [37, eq. (VIII) and (X)].

T; 1

P, = =2pUbnC (MLQ b“"l—ldt) (A.22)
T 2

My, = mpUB(C — 1) (ﬁ“u o b%at) (A.23)

Total Lift Force and Pitching Moment on Flat Plate due to Movement of
Trailing Flap

The additional lift force Py and additional pitching moment My on the flat plate due to
movement of the trailing flap are given by

T T
ng _Pg + PLC = —,Ob ( UT;;C:Q = bT'LC}ft) = 2pUbTFC (‘—;rl‘“(‘)‘U b-g%(!g) (A24)

.[14“ = Mt + Mtc
T
= il ((1@1 + Tyo) Uy + (T1 Ty — oIy + 7) béwl — (Ty + ch)mt)

T
+verb26‘( g ¢ b%at) (A.25)

A.2.3 Theodorsen Circulation Function

The Theodorsen circulation function is defined by

—1&:&:0 d$0

/ W (A.26)

gl e—thTo g
:r2 1 0

k is the reduced frequency k& = bw/U where w is the circular frequency, b is the half-chord
length of the plate and U is the mean wind velocity. Eq. (A.26) can be rewritten

C(k) = F(k) +iG(k) (A.27)
where
J{h+Y)+Y (Y- Jo)
— A28
(Jy +Y5)2 + (Y7 — Jp)? ( )
G=—— Ntt ik (A.29)

(J1 + Y0)2 + (V) — Jp)?

where J; and Y are Bessel functions of the order j.
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A.2.4 Theodorsen Constants

Theodorsen defines the following constants

T= ~—;~M(2 +¢*) +ccos™c (A.30)
Ty = —cos ' c+ eVl —c2 (A.31)
T, = — (é - cz) cos e+ %CM(T + 2¢%) (A.32)
Ty == —%M(ch +1)+ceos te (A.33)
Tio=vV1—c2+cos™'c (A.34)
T =cos™e(l — 2¢) + V1 —c2(2 —¢) (A.35)

A.3 Extension of Theodorsen Theory to include Lead-
ing Flap
It is assumed that the leading flap is of the same size as the trailing flap, see figure A.2. The

angle of the leading flap o refers to the undeflected position and it is positive clockwise.
Further, it is assumed that rotation of the leading flap has no effect on the circulation.

Figure A.2: Parameters of the flat plate with movable leading and trailing
edge flap.

A.3.1 Leading Flap

The following integrals are used to determine @, and pg,.

1=

f*CIO (z—z1)?+ (y —w)®
= (@~ 2} +{o-Fg)

2(—x — ¢) log N(c, —z) — 2V1 — z®cos™ ' (c) (A.36)
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lo
1 B e —2)2t (y+ )

—v1 —c2V1 — 22 — cos™}(c)(—z — 2c)V1 — 22 +
(—z —¢)*log N(c, —x) (AT

/‘C (& &) — )*

(—z1 — ¢)dz; =

The results of these integrals are seen to be the same as the results for the trailing flap
with = replaced by —z.

The effect of the leading flap bent up at an angle o; is found by setting ¢ = —Uq;b, and
the contribution is integrated over the leading flap.

—c _ 2 _ 2
- :f (_Uazblog($ z)*+ (Y yl))dml

i 27 (z—21)%+ (y+1y1)?

. Yot (\/1——?005’1(0) — [—z— ¢} Jog N{e; “I)) (A.38)

T

The effect of the trailing flap going down at an angular velocity ¢; is found by setting
£ = —(—z, — c)yb?, and the contribution is integrated over the leading flap.

1 ah? (- 2)? + (Y —p)?
by = - 1 —I — d
ey L ( o og (T _ 151)2 il (y + yl)g( L1 C) 1

= %ﬁf (vl — /1 —z2 + COS_l(C)(“I - QC)m
~ (—z —¢)?log N(c, w;z:)) (A.39)

Lift Force and Pitching Moment due to Movement of Leading Flap

The potentials ¢, and @, are the same as the results for the trailing flap with z re-
placed by —z. When the potentials are integrated over the entire plate they will give the
same additional force F, and moment M; on the plate as the trailing flap (for the same
movement).

P, = —pb*(=UTy6y — b1 &y) (A.40)
]‘-4,1 = _pr (U2T4O.’i + (T} — Tg — CT4)bng — (T7 =+ CTl)bQ('jq) (A41)

A.4 Aerodynamic Derivatives for Flat Plate with Flaps

By assuming that both the vertical and torsional motion of the plate are harmonic at
the circular frequency w and that the leading and trailing flap are moved at the same
circular frequency, then the derived forces and moments can be expressed by aerodynamic
derivatives H} and Af. The derivatives corresponding to the flat plate without flaps are
derived in appendix A.4.1. Additional derivatives are derived for movement of the trailing
and leading flaps in appendix A.4.2 and A.4.3, respectively.
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A.4.1 Flat Plate

It is assumed that the vibration is harmonic at the frequency w. The following relations
are then valid.

2(t) = zet = () =iwz(t) = E(t) = —w’z(t) (A.42)
a(t) = aget® ) = a(t) =iwal(t) = &t) = —wla(t) (A.43)

The Theodorsen circulation function C(k) is divided into the real part F(k) and the
imaginary part G(k).

C(k) = F(k) + iG(k) (A.44)
The reduced frequencies k and K are defined by
bw
E=— A.45
=~ (A.45)
Bw
K=— A.46
- (A.46)

where B = 2b and thereby K = 2k.

To derive the aerodynamic derivatives for a flat plate the total force and moment found
in equations (A.13) and (A.14) are rewritten to contain only real parts.

b
P = —pr(U’n’d-i-?Té)—QpUb?T(F(k')JriG(k)) (U&+Z+§d)
200G (k) \ .
= (—2,0Ub7rF(k))z':+(upUwa_pUb%F(k)_ pU ]ZT ( ))a—t-

(~2pU2bm F (k) + pUbrkG (k) ) o + (pUrk? + 2pUTkG(K)) 2 (A4T)

b
M, = —pb? (gUm 4 gzﬁa) + mpUb(F(k) +iG (k) (Ua T §a)

b BrF(k) pUbTG(R) .
_ (ﬂpUbQF(k))z'-i—(pUQ T g2V g k) b : ( ))a+
o ol B 27,2 3
(M _ M) ek
8 2
(~pU2brkG (k) 2 (A.48)

+ pU?b*n F(k)

The total force and moment on the flat plate can be expressed by aerodynamic derivatives
as shown in equations (2.4) and (2.5).
z

U

Ba z

B %pUzB [KH;(K) + KH(K) 2 + K Hy(K)a+ KQH;(K)B} (A.49)

1
My = 5 pU"B? {KA’;(K)E + KALK)

™

Ba

o+ KA (K)a+ K?A:;(K)%] (A.50)
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The aerodynamic derivatives H;(K),..., Hjf(K) are found by setting equation (A.47)
equal to equation (A.49).

%pUBKH{(K):& = —20UbnF(k): = Hi(K)= —"Ti(k) (A.51)
%pUBzKH;(K)d = —pUb%r (1 + F(k) + zck(k)) é

Hi(K) = -41% [1 + F(k) + %Uﬂ (A.52)
%pUZBK"ZH;(K)a P R = e =

HA(K) = —%ﬁ- {F(k) = 5%@} (A.53)

%pUszH;(K)z = pli%n (;;2 + ZkG(k)) z = HiE)= g [1 - Qiﬂ} (A.54)

The aerodynamic derivatives A}(K),..., Aj(K) are found by setting equation (A.48)
equal to equation (A.50).

%pUBZKA‘{(K)z = (rpUBF(R)) 2 = Al(K) = ’”; gf) (A.55)
%pUBBKAg(K)d = —pUQE’BW (1 — F(k) - 26;5“) & =

AL(K) = _127 [1 ~F(k) - g%(k_)] (A.56)
%pU2B2K2A§(K)a = pU%b’n (%2 + F(k) — kGQ(’r“) ) o

AX(K) = % [5‘; + F(k) - LG;@} (A.57)
%pU25K2A;(K)z = (~pUBTG(R)E)z = A}(K) = —%%ﬂ (A.58)

A.4.2 Trailing Flap

It is assumed that the trailing flap is moved harmonically at the same frequency w as the
flat plate. The following relations are then valid

ag(t) = Oztoei(m%w‘r“"‘) = (.lfft(t) = zwat(t) = C‘t’t(t) = _WQOQ(t) (A59)



98 Loads on Flat Plate with Flaps

To derive the additional aerodynamic derivatives for movement of a trailing flap on the
flat plate the total force and moment found in equations (A.24) and (A.25) are rewritten
to contain only real parts.
_ 2 . o . TIU Tll .
Ptt, = “*pb (_‘UTz;ﬂ{t - bT}C}ft) - szb'FT(F{k) + @G(k}) TUQ!' + bgﬂfﬁ
20UV G(K)T
pUb*G(k) 10) G +

- (;;Ufﬁﬂ — pUBF(k)Ty; — z

(—pUk>T} — 20U F (k)Tip + pUPbAG(k)Th1 ) 0 (A.60)
_ 2 2 Tuy, . .
ﬂl/_fﬁ = '—pb (T4 -+ Tlo)U ey + Tl — Tg — CT4 + ? ()O.’tU - (T7 + CTl)b (e 7]
G2
+ mpUB(F(E) + iG(k)) (*;EUO% n b%di)
3 3
= (MPU()S (Tl — Ty —cTy + %) P Ry f;(k)T“ + e C;;(k)Tm) oy +

(=pUV(Ty + Tho) — pUPY*K*(Ty + cT) + pUb*F (k) Tho—

,OUQkaG(k)TM )
o

> (A.61)

The total force and moment on the flat plate from movement of the trailing flap can be
expressed by additional aerodynamic derivatives as shown in equations (2.15) and (2.16).

1 Bd

Py = 5pUB [KH;(K)% + KQHg(K)at} (A.62)
1 2 502 * Bat 2 A%

My = 5pU"B {KAE(K)7 + K AB(K)OQ] (A.63)

The aerodynamic derivatives H#(K) and HZ(K) are found by setting equation (A.60)
equal to equation (A.62).

(I 2G (k)T
5 PUB K H (K)éy = pU? (T4 T — G—()—l—(]) & =

k
HE(K) =~ |70 - FyyT, — 260 T (A.64)
ik k
1 2 2 1% 2 2
5PU*BKHy (K)o = pU% (—k*Ty — 2F(K)Tho + kG(k)T11) o =
1
HY(K) = 75 [—K*Ty — 2F (k) Ty + kG (k)T | (A.65)

The aerodynamic derivatives A%(K) and A5(K) are found by setting equation (A.61)
equal to equation (A.63).

1 Tu\  Flk )T,
S PUB K A3(K) 6 = pU® (— (TI Ty — T+ %) 4 H Q)T“ s £ 1“) B, =
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= = 1 Ty F(k)TM G(k)Tm
A5 (K) = T [ (Tl Iy —cly+ 5 ) e 5 + p (A.66)
1 kG (k)T
5PU2B2I(2AE(K)G£¢ = pUsz |:"*(T4 +T10) _ kz(T?' S CTl) 4 F(k)Tm _ ( ) 11:| o
1 kG (k)T
A5(K) = o [—m +Tho) = K2(T7 + ¢Th) + F(k)Tio — %ﬁ] (A.67)

A.4.3 Leading Flap

Derivation of aerodynamic derivatives for the leading flap follows the procedure described
for the trailing flap. It is assumed that the leading flap also is moved harmonically at the
same frequency w as the flat plate. The following relations are then valid

o(t) = ogeet@t e = Gt) = dway(t) = &(t) = —wie(t) (A.68)

To derive the additional aerodynamic derivatives for movement of a leading flap on the
flat plate the total force and moment found in equations (A.40) and (A.41) are rewritten
to contain only real parts

P, = —pb*(—~UTycy — bT1 )
= (pUbTy) 6y + (—pUbk’T) o (A.69)
M, = —pb? (U2T4afg + (T} — Tg — cT)beyU — (Tr + ch)Dde)

= (—pUb*(Ty — Ty — cTy)) éu + (—pU* Ty — pUB*KA(Ty +cT1)) oy (A70)

The total force and moment on the flat plate from movement of the leading flap can be
expressed by additional aerodynamic derivatives as shown in equations (2.21) and (2.22)

B = %pUzB {KH;(K)BUO“ + KzHg(K)az} (A.71)
r 1 22 * Bey 2 g%
M, = ~pU*B [KA7(K)—U_- + K AB(K)oq] (A.72)

The aerodynamic derivatives H3(K) and H}(K) are found by setting equation (A.69)
equal to equation (A.71)

1 g
é—pUBzKH;‘(K)d; = pUbTycy = Hi(K)= Zif? (A.73)
1 2 2 IT 271.1.2 * 13

The aerodynamic derivatives A%(K) and Aj(K) are found by setting equation (A.70)
equal to equation (A.72)

1
E,OUBEKA$(K)Qg = —pUﬁa(Tl — Tg — CT4)C¥; =
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A5(K) = - [Ty = Ty — ) (AT5)

1
SPUP B K A5(K)on = UV [-Ti - BTy + )| o =

AX(K) = 8_25 [Ty - KT + cT})] (A.76)



Appendix B

Estimation of Flutter Wind Velocity

B.1 Introduction

Two kinds of flutter are investigated
e Single-degree flutter in torsion. Pure torsional oscillation of the bridge.
e Binary flutter. Coupling between vertical and torsional oscillations.

In appendix B.2 estimation of the flutter wind velocity by Theodorsen’s method for single-
degree flutter in torsion and binary flutter is described for a bridge section without flaps.
The context is extended in appendix B.3 to include leading and trailing flaps.

The Air Material Command (AMC) method for estimating the necessary structural damp-
ing as a function of the mean wind velocity is described in appendix B.4.

B.2 Bridge Section without Flaps

The matrix equation of motion for a bridge section without flaps can be written
M,i(t) + C,2(t) + K,z(t) = Foult) (B.1)

where (2.2) and (2.3) are used with

_ | ()
o) = | 2 } (B.2)
m 0
M; = [ 0 7 ] (B.3)
m is the mass per unit length and I is the mass moment of inertia per unit length.
| m2Q,w, 0
Cs= [ 0 I2(wq ] (B

¢, and (, are the damping ratios in bending and torsion, respectively.
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mw? 0
K, = [ 0 Iw? (B.5)
w, and w, are the circular eigenfrequencies in bending and torsion, respectively.
_ | Faa®
Faalt)= [ Fi(5) (B.6)

By using equations (2.4) and (2.5) the motion-induced wind load on the bridge section is
written

Fou(t) = Cy(t) + K ya(t) (B.7)
where
_1 Hy(K) BH;(K)
Cdﬁi,oUBK{B}h(K) B Ax (K )] (B.8)
_ 1 00| Hi(K) BHi(K)
Ha=gpl™s [BA;(K) B2A(K )} (8.9)

In these equations p is the mass density of air, U is the mean wind velocity, B is the width
of the bridge deck, K is the reduced frequency based on the width of the bridge deck and
HHNK),...,H}(K), A5(K),. .., Aj(K) are the non-dimensional aerodynamic derivatives.

By inserting equation (B.7) into (B.1) the matrix equation of motion can be written
M &(t) + (Cs — Ca)(t) + (K, — Ka)a(t) =0 (B.10)

B.2.1 Single-Degree Flutter in Torsion

For single-degree flutter in torsion there is no vertical oscillation, i.e.
2(t) = 2(t) = 5(t) = 0 (B.11)

The equation of motion becomes

B+ 2Bl -+ o) = [;IB KA;(K)B‘;(” +CANK)()| =
&(t) + 2(Ca + Con)wat(t) + wia(t) = UZBQ‘;{;Ag(K)a(t) (B.12)
where
__pBA(K) y
Coa = ————# (B.13)

Flutter in torsion will occur at the circular flutter frequency wy =~ w, when the total
damping (structural damping (, and aerodynamic damping (aa) is zero, i.e. when

" 4I¢,
ga + gcm = 0 = AQ(K) = pB4 (B14)
The flutter wind velocity Uy for single-degree flutter in torsion is found by
i, =2 g B (B.15)
Ky Ky

where K is the reduced frequency for which equation (B.14) is true.
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B.2.2 Binary Flutter
The binary flutter condition is

z(t) = woe™ /" (B.16)
where

|

Iy = !: Ofoe_il’o“ ] (B].?)

2(t) = 2™t = () =iwrz(t) = (i) (B.18)
The flutter condition is inserted into the matrix equation of motion (B.10)

(Ms (fw,%) + (O — Cy)itg (K~ Kd)) xoe™’t =0 (B.19)

Equation (B.19) contains two unknowns, namely the flutter wind velocity U; and the
circular flutter frequency wy. It is more convenient to use the following variables as

unknown
w
X;=24L
i w,
Bu)f
K= —+
f Uf

Equation (B.19) is divided by w} and the variables X and K are inserted

(—M, + (C, — Ci+ (K. — Ki))) zoe™* =0

where
o Lom m2(, % 0
 wy g 0 IQCQ%“UT%;

.1 1 [ HiK;) BHiK))
Co= Ca=3pB [BA;(Kf) B243(K,)
, 1 1 [ HiK;) BHiK)
Ky= wJ%K‘i = ghe [ BA(K;) B2A%(K;)

For @y # 0 the solution is found by

=M, + (C, — Cyli+ (K — K)| = A (Xy, Ky) + i+ Ay( Xy, Kf) =0

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)



104 Estimation of Flutter Wind Velocity

where the above determinant consists of a real part A,(Xf, K;) and an imaginary part
i+ A;{(Xy, Kf) both of which must be zero for flutter. By rearranging equation (B.27) the
real and imaginary parts are found

A(Xy Kp) X} =

1 * 1 * 1 * * ol
x? [mf + SpBUmAS(K,) + pBLHI(K) + 50°B° (— H(Kp) A3(Ky)

FHI()A(K)) + B ALKY) — BREDALKD) | +

We ”
X} [pBUmG, A3 () + pB*IGa 2 HE(K) | +
2 1 2
X2 [—mfi% — M4 = mi — %pB4mA§(Kf) - EpBZI%H;(KI)] +

2
Wy z

2
mfw—‘; (B.28)

A X Kp)XE =
1 1 1
X3 [ pBUmAs(Ky) + 3oBPTHI(K) + 6°B° (HI(K ) 43(K7)
FHI(K ) A3(K,) ~ Hy (K ALK, ~ HX(KDAKD) | +

X3 [~mra¢, 2 - mi2g, - pBme. A5 (K;) - pBIC 2 H(K )| +

1 P 1 w? .
;|- Sommasticy - Jomre )| +

2
mmgz%;- 4 mI:zga‘L”T”‘ (B.29)

The flutter point can also be determined graphically by the method described by Dowell
et al. [8]. By using this method the real part A, and the imaginary part A; of the
determinant (B.27) are treated independently, see equations (B.28) and (B.29). For a
number of values of K over a chosen range the values X,(K) and X;(K) are calculated
as solutions to the following equations

A (X (K),K) =0 (B.30)
Ai(X(K),K) =0 (B.31)

The flutter point is the point where the solution curves X, (K) and X;(K) cross. The
flutter point is denoted (X, K;). The circular flutter frequency wy and the flutter wind
velocity Uy can determined by

wp = Xjw, (B.32)
Bwf

U = — B.33

1=K, (B.33)

When there is more than one intersection of the solution curves the flutter point corre-
sponds to the intersection point with the largest value of K (corresponding to the smallest
value of U).
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B.3 Bridge Section with Flaps

The angles of the flaps are expressed in terms of the pitch angle « of the bridge section
a(t) = apett %) = 4(t) = iwa(t) (B.34)
oy(t) = aype’@iPa=0) = ge~®ia(t) = @(t) = ae Piwe(t) = e a(t) (B.35)
oy (t) = qeet@i¥a?) = gem®in(t) = Gy(t) = o twa(t) = aeta(t) (B.36)

where a; and a; are the flap amplification factors for the leading and trailing flap, respec-
tively. A flap amplification factor is defined as the amplitude of the flap relative to the
amplitude of the torsional motion, i.e.

(81)]
ag = (B.38)
o]

The phase angles ¢; and ¢, for the leading and trailing flap, respectively, are relative to
the torsional motion.

Hereby the total motion-induced wind load defined by equations (2.2)-(2.5), (2.15), (2.16),
(2.21) and (2.22) can be written

1 * Z * *
Fl = SpU°B |KH{(K) 5 + K (Hy(K) + Hy(K)as cos(~py) +

U
Ba
H3 (K)ay cos(— 1) + HE(K)aqsin(—p;) + By (K)arsin(—1)) = +

U
K? (H;(K) + Hi(K)a, cos(—py) + Hy (K)a; cos(—@;) —

Hy(K)asin(—g;) — Hy(K)aysin(—p)) @ + KQH;‘(K)%] (B.39)

' |
FM = SpU°B [KA’{(K)—;; + K (A3(K) + A3(K)a cos(—py) +

ALK ) cos(—) + Af(K)agsin(—w;) + A5 (K)a Siﬂ(—sﬁe)) Ba i

U
K? (A35(K) + A5(K)ay cos(—p,) + A§(K)a cos(— 1) —

Ay(K)agsin(~g,) — A3(K)aysin(—p1)) & + KZA;(K)%] (B.40)

The expressions shown in section B.2 can thereby be used to estimate the flutter wind
velocity for single-degree flutter in torsion and binary flutter when Hj(K), Hi(K), A5(K)
and A%(K) are replaced by H? (K), Hf (K), A% (K) and A} (K) defined as follows.

Hy (K) = Hi(K)+ H:(K)acos(—gy) + Hi (K)agsin(—p,) +
H7(K)a;cos(—¢;) + H (K)a; sin(—y) (B.41)
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HY(K) = Hi(K)— Hi(K)a;sin(—@;) + H (K)a, cos(—p) —

H3(K)aysin(—g) + H (K)a,cos(—r)

AF(K) = A5(K) + A5(K)ascos(—pe) + A(K)ar sin( ) +

I

A3 (K)a; cos(—y;) + Af(K)ay sin(—¢y)

AY(K) = Aj(K) - A5(K)aesin(—y:) + A5(K)aq cos(—¢:) —

A3(K)asin(—y;) + Ag(K)a cos(—r)

B.4 Estimation of Damping by AMC Method

The Air Material Command (AMC) method described by Fung [11] can also be used to
estimate the flutter wind velocity for binary flutter. By using this method the necessary
structural damping of the bridge section for fulfilling the flutter condition is plotted against
the mean wind velocity. Flutter occurs when the actual structural damping is exceeded.

(B.42)

(B.43)

(B.44)

The equations of motion (2.2) and (2.3) with insertion of the flutter condition (B.16)-
(B.18) yields

e (2) () ()] - 5

I [—1 n (%)2 (1 +2gawi&z')] o= f;

The following complex variable is used as unknown

o~

&)2 (1+g7)

w

where the following damping coefficients are defined

w
9: = ng—
Wy
w
Jo = ECQ—
Wa
g =9: = Ga

as

1+1ige =1+19, + i{ga — gz) = (1 + igz)(l + ’i(ga - gz))

The equation of motion can thereby be written

2 FP
m [—1 + (—L—ui) Z} Z= “2
We w

(B.45)

(B.46)

(B.47)

(B.48)

(B.49)

(B.50)

(B.51)

(B.52)
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EY
I[-14+2Z)a= 3 (B.53)
For xy # 0 the solution is found by
2 P P
s (s T
det a =) (B.54)
M M
_f 2(2) I[-1+2]— £y o) ga)
w w

where F7(z) and FM(z) denote the parts of the motion-induced wind load depending
on the vertical motion z, and 7 («) and FM(a) denote the parts of the motion-induced
wind load depending on the torsional motion .

The solution can be written

az 2% +byZ +cy =0 (B.55)
where
om (2 o
be = 1= (£2) = (£2) 220 (g 1y 45 () = £ (B ()i HE(K))(B.57)
4 2
cz = 1+ p—;i_—(A;’ (K)i+ A% (K)) + %(H;(K)z' + H;(K)) +
2 N6
O (R (Vi B CK)) (A (Vi + 45 (K))-
(Hy (K)i+ Hy (K))(A7(K)i + A5(K))) (B.58)

The flutter equation (B.55) is solved for a number of reduced frequencies K, K5, ... The
interesting solution to the flutter equation is

—bz = [JQZ = 4(1.202
Zy(K) = =2V (B.59)

2(1.2

The circular frequency corresponding to K is found by
We

w(K;) = (B.60)
VRe(Z((K:)
The corresponding wind velocity is
Bw(K,_)
% . e B.61
and the damping coefficient is
Im(Z,_ Ki
9(K;) = Im(Z)(K;)) (B.62)

~ Re(Z((K.)

The damping coefficient is equal to twice the necessary structural damping of the bridge
section.
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Appendix C

Closed-Loop Control

C.1 Motion of Model with Closed-Loop Control

The matrix equation of motion for a bridge section without flaps is written
M,z(t) + C,(t) + Kz (t) = Fou(t) (C.1)

Where M, C; and K are the mass, damping and stiffness matrices, Fo4(t) is the load
on the bridge section without moving the flaps and x is the displacement vector, i.e.

() = { ) } (C.2)

The control action is described by Du(t), where

L i | HE(E) HiK)
D=l ok [BAE(K) BAL(K) (C.3)
ult) = [ . ] (C.4)

In this formulation of the control law the control action corresponding to the first and
second derivatives of the flap angles is ignored. The matrix equation of motion for a
bridge section with control action is

M i (t) + Coa(t) + K,z (t) = Fou(t) + Du(t) (C.5)

The matrix equation of motion can be written in state-space form, see e.g. Soong [34]

y(t) = Ay(t) + Bu(t) + HF.4(t) (C.6)
where
y(t) = [ :Eg } (c.7)

(C.8)
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0

B = [ M;‘lD] (C.9)
0

H = [ M- ] (C.10)

Equations (2.4), (2.5) and (3.6) are inserted in (C.6)

§(t) = (A+ BG + HF) y(t) = Ay(t) (C.11)
where
1 UKHNK) UBKHI(K) BHi(K) B*Hi(K)
F=3UK| U as(K) UB2KA;(K) B2Ai(K) BA%(K) (Gl

Equation (C.11) can e.g. be solved by using the transition matrix approach, see Meirovitch
[28]. The solution is

y(kAt) = ®5(At)y(0) (C.13)
where the transition matrix @, has the form of a series

A¢? A gt
& (At) =T+ AtA, + ?Aﬁ + ?AE . TA‘C* SEERE (C.14)
The initial conditions y(0) for a structural system performing binary flutter at the circular
eigenfrequency wy and the phase angle ¢, are found by

z(t) = zgcos(wyt) =5 2(0) =z
a(t) = agcos(wit — @a) = oa(0) = ag cos(—q) (C.15)
2(t) = —wyzosin(wyt) = B0} =0 '
&(t) = —wpagsin(wst — o) = &(0) = ~wrapsin(—yq)
where
Re %0 oo
Q{D = __#L(J__lzo (016)

cos(—@a)

By using the values for the bridge section model derived in section 2.3.2 the initial con-
ditions are calculated based on the initial vertical displacement zy = 0.05 m

1.568
= ———————0.05 = 0.098 rad = 5.64° C.17
ce cos(—0.650) 0 e ( )

a(0) = 0.098 - cos(—0.650) = 0.078 rad = 4.47° (C.18)

&(0) = —6.62 - 0.098 - sin(—0.650) = 0.394 rad/s = 22.6 °/s (C.19)
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C.2 Solution of Riccatti Equation

In order to use the classical linear optimal closed-loop control algorithm described in
section 3.2 the Riccatti equation must be solved. The matrix Riccatti equation can be
written

- 1
P(t)+ P(t)A — §P(f)BR*UBTP(t) + ATP(#)+2Q =0, P(;)=0 (C.20)
where the matrices A, B, Q and R are described in section 3.2 and appendix C.1.

Solution of the Riccatti equation follows the procedure described by Meirovitch [28]. The
following transformation is introduced

P(t) = E()F'(t) (C.21)

By using this transformation the Riccatti equation can be written

[ E(t) ] - { _%];R}ZBT _:iQ } [ ?Eg } , EB(t;))=0, F(t)=1I (C22)

This equation can be integrated backward in time by using the transition matrix approach
for a discrete-time system, see Meirovitch [28]. The solution is

[ e } = (27 (a0)" [ e ] (C.23)

where the time instants are.described by kAt = 0, At, 2A¢, ..., t;. The transition matrix
has the form of a series

Ai? To Al
& p(At) =I+AtAP+~2;!~A§;+—3—!A§;+FA?D+~- (C.24)
where
B —AT 30
AP = *%BR_lBT A (025)

As an example, the Riccatti matrix is calculated for the bridge section model used in the
wind tunnel experiments described in chapters 5 and 6. The parameters of the model are
shown in table 2.2. The aerodynamic derivatives for the model are approximated by the
values for a flat plate shown in section 2.2. The weighting matrices are selected as shown
in equations (3.4) and (3.5) with § = 10 and § = 100. It is assumed that the model
performs binary flutter with w; = 6.62 rad/s and U; = 8.18 m/s, see equations (2.45) and
(2.486).

The elements of the Riccatti matrix remain constant over the control period dropping
rapidly to zero near the end of the control interval. Therefore, the time-dependent Riccatti
matrix P(t) can be replaced by the constant matrix P corresponding to the first part of
the control period. The constant Riccatti matrix is shown below for 8 = 10 and 8 = 100.
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331.99 -10.09 14.656 -1.33

~10.09 5924 323  0.50
- :> F ard .2
A= H 1465 323 832 —0.41 (C.26)

—-1.33 050 —-0.41 0.55

722.67 -599 1746 -—1.86

—599 15192 661 053
=100 = Puwo=| 1746 661 2523 —0.26 (C.27)

-1.86 053 -0.26 147



Appendix D

Neural Networks

D.1 Multi Layer Perceptron Neural Networks

The neural networks used are structured as Multi Layer Perceptron (MLP) neural net-
works, see e.g. Hertz et al. [19]. The MLP neural networks contain:

e An input layer with n; input neurons with linear neuron functions without offsets.
e A fictitious input layer with one neuron with constant value ‘1".

e A hidden layer with a sufficient number of neurons ng with non-linear neuron func-
tions including offsets. The non-linear neuron function used is the tanh-function.

et —eF -1
tanh(z) = CERThale (D.1)

The output of the tanh-function is between —1 and 1. Offsets in the hidden layer are
organized by adding the fictitious input neuron. The necessary number of neurons
is found by trial and error.

e An output layer with no neurons with linear neuron functions.

There are connections between all input neurons (including the fictitious one) and all
hidden neurons. The weight wp; » is to the hidden neuron h from the input neuron ¢. In
the same way there are connections between all hidden neurons and all output neurons.
The weight wep, o is to the output neuron o from the hidden neuron h. The neural network
is illustrated in figure D.1.

D.1.1 Feedforward

The output O,..., Oy, of the network can be calculated based on the weights and the
LRt Ly vse s D

The activation Aj of the Ath neuron in the hidden layer is
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Figure D.1: Structure of MLP neural network with three layers: input (I),
hidden (H) and output (O).

nr+l

Ap = Z whi,HIi (D.2)
|

The output Hj of the hth hidden neuron is

ny+1
Hh = tanh(Ah) = tanh (Z whi,HIi) (DS)
i=1
The activation A, and the output O, of the oth neuron in the output layer are
nH
Ao = Z ’woh,lo (D4)
h=1
nH nr+1
@ = A= 3 wihgstank ( > whz‘,HIi) (D.5)
h=1 i=1

D.1.2 Deviations of Network Output

During training of a neural network an error or a performance index is minimized by
changing the weights of the network. In the minimization algorithm the gradients of
the error or performance index with regard to the input and weights are needed. In the
following the deviations of the output of the neural network with regard to the input
values and the weights are shown. An underlined index denotes a weight or input value
being differentiated with regard to.

Deviations of the output with regard to the input values

TH nr+1
809 % (Z Woh,0 tanh ( Z TUM’HL'))

aI@ a‘[z h=1 gy

ny 8 ny+1
== Z ’U)gh‘og (tanh (Z w,uﬂ,yfz-))
i =1

h=1
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ny nr+1
= Z Woh,0Why H tanh’ ( Z 'LUM!H'IZ) (Dﬁ)
h=1 =1
where
2z
S = e (D.7)
(e?r +1)

Deviations of the output with regard to the weights between the input and hidden layers

a0 ny ny+1
i = g (Z Woh,O tanh ( Z w;u-,gfi))

Owps, 1 Owpin \j=1 =

8 nr+1
= tanh s gl
Woh,0 a‘thi’H ( an ( Z Whi H ))

=il

nr+1
= wep,0l; tanh’ (z wﬁ.i,HIz‘) (D.8)
i=1

Deviations of the output with regard to the weights between the hidden and output layers

ny ny+1
00 | = 4 (Z Weh,0 tanh ( N whi,HIz‘))

OWeh,0 OWen,0 \j=1 =
nr+1
_ {tanh ( Z wm,HL-) fOI' o=0 (Dg)
i=1
0 foro#o

D.2 Discrete State-Space Equation of Motion

The matrix equation of motion in discrete state-space form for the bridge section model
with flap control is

g(k) = (A + HF)y(k) + B'w/ (k) (D.10)

where k is the time instant and

(k)
y(k) = ((f)) (D.11)
(k)

i
u'(k) = O”(k) (D.12)
(k)

(D.13)
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. |

e [ W2 } (D.14)
3 UKH{(K) UBKHj(K) BHK) B*H}(K)

F=SeVK [ UBKAY(K) UBXKA5(K) B2ANK) BAL(K) (D15)
, 0

B = l M_ID,} (D.16)
, 1 UKH:(K) UKH{K) BHH(K) BH:K)

B =5pl K { UBKAX(K) UBKA(K) B2AL(K) B2A%(K) (D-17)

M,, C, and K, are the structural mass, damping and stiffness matrices.

By using the approximation

) 1

§(0) = - (ylh+1) — y(#) (D.18)
where At is the time step, the matrix equation of motion can be written

ylk+1) = (1 + At(A+ HF))y(k) + AtBu(k) (D.19)

where 1 is a 4 x 4 unity matrix.



Appendix E

Parameters for Bridge Section Model

E.1 Model Laws

Ratios between such quantities as e.g. length, frequency, density and velocity must be
maintained constant from prototype to model, see Simiu & Scanlan [33]. Since this holds
true for geometric ratios as well as geometric shapes in general it implies that all model
shapes must be geometrically similar to prototype shapes and that vibrational modal
shapes of the prototype must be maintained in the model. Likewise, frequencies from all
sources must bear the same ratios to each other in model as in prototype. Further, since
oscillatory deflections must maintain proper proportionality from prototype to model,
non-dimensional damping ratios that affect such deflections must remain the same in
prototype and model.

The assumed (‘typical’) values of width, mass, etc. for the prototype bridge and long flaps
are shown in table 5.2.

In the following index p denotes the prototype, and index m denotes the model. Three
scaling factors can be arbitrarily chosen. The first factor is an arbitrary length scale

B, 1

e E.l
B, 40 ()

AL =

set by comparison of model width B;, to prototype width B,,. By this choice of Ay there
is enough room for a part of the regulation system to be fixed inside the model. The
length of the model is 1.48 m, see section 5.4. The aspect ratio is then 2.37 for the bridge
section model without flaps.

A second choice of factor is a convenient wind velocity scale

U 1
T erym - E.2
VL, T (E.2)

set by comparison of the model flutter velocity Uerm = 10 Mg to the prototype flutter
velocity U p, see Appendix E.2.

A third choice of factor is a mass density scale
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A== (E.3)
Pp

as the experiments are performed in air of the same mass density p as that surrounding
the prototype.

Given the fundamental exigencies of mass, length and time, the three fixed scale choices
condition all others in consequence of the requirement that the non-dimensional groups
maintain their constancy from prototype to model and vice versa.

The frequency scale Ar is set by the requirement that the reduced velocity in the prototype
and the model must be the same, i.e.

Up Um fm )\V

Wl Jul, T hE A
where U is the wind velocity and f is the frequency. The reciprocal of Ar is the time
scale Ar = 1/1¢.

The scale A, between the mass per unit length y in the prototype and in the model is

L Lo, 1
0B~ B T T Tagg (E:5)
jol P m m

where p is the mass density of surroundings.

The scale \; between the mass moment of inertia per unit length [ in the prototype and
in the model is

I I, 4 1
BBl T mBh M TN e 28
E.2 Flutter Velocities for Prototype and Model
The critical flutter velocity U, can be found by the Selberg formula [23]
2
Ur _ 37 "If Y (fl) (E.7)
faB pB f2

where I is the mass moment of inertia per unit length, u is the mass per unit length, p is
the air density (1.2 k&3), B = 1.5B' is the width of the bridge with the longest flaps,
f1 is the bending eigenfrequency and f; is the torsional eigenfrequency.

The constants used for the prototype are listed in table 5.2. The flutter velocity for the
prototype is

V21 10°-25- 107 0.082
Urp = 3. 1%(#) 10.16- 1.5 - 25
? 372\J 1.2- (15 25)3 016/ | 0101002
— 36.78 M) (E.8)
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Above, I =~ [, and p =~ u, are used.

The desired flutter velocity for the prototype is approximately 10 M. The following wind
velocity scale is then selected
U 1
Xip == e e E.9

et (B.9)
whereby the flutter velocity in the model is Uerm = 9.2 M. This implies the following
frequency scale A\p = 10, see equation (E.4). The mass moment of inertia per unit length
I, times the mass per unit length u.,, can then be determined for the model.

3 T ) g
Uerjn = 3.72J Tonfim [1 — (10 0'08) ] -10-0.16-1.5-0.625 =

1.2 (1.5-0.625)3 10-0.16

It = 12.82 kg? (E.10)

which is in accordance with the calculated values in table 5.2, where I,, = 15.6 kgm?®/m
and fi, = 0.820 kg/m, i.e. Inpm = 12.79 kg?.

E.3 Spring Stiffness for Suspension System

The spring constant k for each suspension point is adjusted so that the two-dimensional
model has the same eigenfrequency as the lowest symmetric bending eigenmode of the
real bridge, depending on the model laws.

The first eigenfrequency (bending) fi ., for the model is
fim=08Hz = wim=271f1m=>503rad/s (E.11)

where wy , is the first circular eigenfrequency (bending) for the model. Total stiffness
(4k) of springs

4_k =W, = 4k= wfmm = 5.03%m (E.12)
m 3

The mass of the model including flaps m is shown in table 5.3.
Stiffness k; for model with long flaps

4k, = 5.032. 26553 =671.0 Ny = k =167.7 Njyy (B.13)
Stiffness k, for model with short flaps

4k, = 5.03% . 25720 = 649.8 Ny = ky = 162.5 Ny (E.14)
The stiffness of a spring is selected as

k=165 Njy (E.15)
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Thereby, the first eigenfrequency (bending) for the model with long and short flaps is

1 [ 660
3 3 = (77 E.16
fumt = 50\ 95553 = 079 12 (E-16)
1 [ 7660
i = — =0.81H E.17
Tome = o0\ 25730 — 081 2 (L

which is in accordance with the assumed value f;,, = 0.8 Hz, see table 5.2.

E.4 Specifications for Servo System

Specifications for servo amplifier, servo motor and reduction gear:

Servo amplifier DigitAx type DB140, 3-380 V, 50 Hz, maximum motor effect /current:
1.4 kW/2.8 A.

Servo-motor DutymAx DS type 75DSA013301 with brake, standard connector,
rated torque: 1.2 Nm, rated power: 0.4 kW, power dissipated: 140-
180 W, efficiency range: 77-82%. Dimensions: 75 x 75.5 x 225 mm
(125.4 % 75.5x48.4 mm). Weight: 3.0 kg. Brake specifications: holding
torque: 2 Nm, weight: 0.3 kg.

Reduction gear Harmonic type HDGP33, 7 = 1 : 12, load limit: 12 Nm, efficiency
range: 96-98%. Dimensions: 75 x 75 x 162.5 mm. Weight: 2.45 kg.
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Damping Experiments

F.1 List of Experiments

The following tables show lists of the damping experiments performed. There is a table
for each flap configuration defined in section 6.2. A damping experiment, is stored in a
file with the name: Filename.Extension, where Filename and Eztension are shown in the
tables. Thus, results of damping experiments without wind (U = 0 m/s), vertical motion
and flap configuration 0 are stored in the following files: 00000000.000, 00000000.001,
00000000.002, 00000000.003 and 00000000.004.

U [m/s] | Main motion | File name Extensions
0.0 vertical 00000000 | 000, 001, 002, 003, 004
0.0 torsional 00000000 | 007, 008, 009, 010

0.0 vertical /torsional | 00000000 | 017, 018, 019, 020

2.5 vertical /torsional | 00000000 | 022, 023, 024, 025, 026

4.0 vertical /torsional | 00000000 | 027, 028, 029, 030, 031, 032
5.9 vertical /torsional | 00000000 | 033, 034, 035, 036, 037

7.1 vertical /torsional | 00000000 | 038, 039, 040, 041, 042

7.5 vertical /torsional | 00000000 | 048, 049, 051, 052

7.8 vertical /torsional | 00000000 | 053, 055, 056, 057, 058, 059
7.9 vertical /torsional | 00000000 | 060, 061, 062

8.2 vertical /torsional | 00000000 | 069, 070

Table F.1: List of damping experiments for flap configuration 0.
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U [m/s] Main motion | File name Extensions
0.0 torsional -0606000 | 000, 001, 002, 004
0.0 vertical /torsional | -0606000 | 005, 006
2.5 vertical/torsional | -0606000 | 007, 008, 009, 010, 011
4.0 vertical/torsional | -0606000 | 013, 014, 015, 016, 017
59 vertical /torsional | -0606000 | 018, 019, 020, 021, 022
7.1 vertical /torsional | -0606000 | 023, 024, 025, 026

Table F.2: List of damping experiments for flap configuration 1.

U |m/s] | Main motion | File name Extensions
0.0 torsional -2020000 | 000, 001, 002, 003, 004
0.0 vertical/torsional | -2020000 | 005, 006
2.8 vertical /torsional | -2020000 | 008, 009, 010, 011, 012
4.1 vertical/torsional | -2020000 | 013, 014, 015, 016, 017
6.1 vertical /torsional | -2020000 | 018, 019

Table F.3: List of damping

ezperiments for flap configuration 2.

U [m/s] | Main motion | File name Extensions
0.0 torsional 06-06000 | 001, 002, 003, 004, 005
0.0 vertical /torsional | 06-06000 | 006, 007
2.5 vertical /torsional | 06-06000 | 008, 009, 010, 011, 012
4.0 vertical /torsional | 06-06000 | 013, 014, 015, 016
59 vertical /torsional | 06-06000 | 017, 018, 019, 020, 021
7.1 vertical/torsional | 06-06000 | 022, 023

Table F.j: List of damping

experiments for flap configuration 3.

U [m/s]| Main motion | File name Extensions
2.8 vertical /torsional | 20-20000 | 000, 001, 002, 003, 004
4.2 vertical /torsional | 20-20000 | 005, 006, 007, 008, 009
6.1 vertical /torsional | 20-20000 | 010, 011, 012, 013, 014

Table F.5: List of demping ezperiments for flap configuration 4.
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F.2 Graphs of Selected Experiments

For each type of damping experiment the first experiment is selected. For the selected
experiments graphs show the vertical motion, torsional motion and flap positions.

In most of the experiments the mean value of the vertical displacement z is not zero.
During the experiments the flaps are regulated based on the torsional motion «, i.e. the
regulation is independent of the value of z. When the time series are analysed they are
justified so the mean value is zero.

Because of the very slow regulation the actual positions of the flaps c;, and ay, are smooth
although they are regulated based on the noisy torsional angle of the bridge section.
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Figure F.4: Vertical motion, torsional motion and flap positions for
experiment 00000000.022.



128

Damping Experiments

} =

[em]

o |degrees]|

/\/\N\f\

o |

_‘]O,

Figure F.5: Vertical motion, torsional motion and flap positions for

Jk & fa?

Vvvvvvvvvwvyvv”

o, |degrees]

~

experiment 00000000.027.

-



F.2  Graphs

of Selected Ezperiments 129

)

[em]

7]5_

|
5.0-

=2 D

2 4 6 8 10

l o |degrees]

/\v/\vﬂv/\v/\vﬁ\wv NN

-1

L o, o, |degrees]

=10

1

w

Figure F.6: Vertical motion, torsional motion and flap positions for

experiment 00000000.033.



130 Damping Ezperiments

i = [cm]
3.0~
0 T ¥ T T T T W~
VT 4 5 8 10t [s]
7T‘5
=3.0

I « [degrees]

5.0-

¥ o

O(\/\Af\f\/\f\f\ﬂf\mn

At

-1

b «,,. «, |degrees]

N —
B~
(@]
(o]
@
~
T

—10 A

Figure F.7: Vertical motion, torsional motion and flap positions for
experiment 00000000.058.



F.2 Graphs of Selected Experiments

L - [em]
3.0
1.5
R 4 6 8 10
_1-5__
_30,

I o [degrees]
5.0=

[RN]
w

o./\ AN zvf\vf\vn\\/\ S

—=9 G
-5.0

b oo, oy [degrees]

._IO_

Figure F.8: Vertical motion, torsional motion and flap positions for
experiment 00000000.048.

-1

%]



132 Damping Ezperiments

A = |[em]

1‘5\/\/\/\/\/\/\/\/\/\AA
O b T T T T T T T T |
2 4 6 8 10

I « |degrees]

A

_“
%]
sy

AR

A o, o, |degrees]

~1

Figure F.9: Vertical motion, torsional motion and flap positions for

experiment 00000000.053.



F.2 Graphs of Selected Ezperiments

133

5.0~

1.9+

)

z |em]

_15_

—:3:0-

9.0+~

2.9

\

o |degrees]

LA AAAAAAY

—
—_—
w

’lO._

— 5

-10

Figure F.10: Vertical motion, torsional motion and flap positions for

WAADAAAA AN
VY

\ A
IRRURARE

| o 0y, [degrees]|

ezperiment 00000000.060.



134

Damping Experiments

5.0~

54

A

[cm]|

AN AAAAS

et 7

=305

&.0=

2:5

IWERRAR LA

I « |degrees]

/\N\/\/\/\/\/\/\M

—ir

=50

U\/\/W\/WW”

| o, «, ldegrees]

....‘IO,

[ —

Figure F.11: Vertical motion, torsional motion and flap positions for

experiment 00000000.069.



F.2 Graphs of Selected Ezperiments

135

A & |
3.0~

|

10

IAAAAAAAAAARAAAR

AL LA

o, |degrees]

AMALAAARAAR AR
VU

[s]

\/W\/'\/\?\/\/Us@v\/vm K

Figure F.12: Vertical motion, torsional motion and flap positions for

experiment -0606000.000.



136

Damping Ezperiments

__“[O,,

b = [em]

JUANAAA

A

2N Wa W

L o |degrees]

A AN AAAA

vvwwwWWM“fw

, oy, |degrees]

AAAAAAAAAAAAHAA

{

[s]

VVVVUVVV%VV%UVWO

Figure F.18: Vertical motion, torsional motion and flap positions for

ezperiment -0606000.005.



F.2  Graphs

of Selected Ezperiments 137

3.0=

[em]

WAVAWWW

s ¥

10

| & |degrees]

/\/\/\ NAA A

*“wﬂﬂw*wm——ﬁ—>
: vwvvwwww
e B
_5,0,
A o, o, |degrees]
10-
5
0-hot /\ /\ /\ /\ AHAVAYM : : i
\/Uo\/VVVV 6 8 10 { [s]
—5-
_10,

Figure F.14: Vertical motion, torsional motion and flap positions for

experiment -0606000.007.



138

Damping Ezperiments

I = [em]

— T8

5.0

~ 2.5+

NAWWWMMMM
T T T T ‘ T
2 4 1$)

I « [degrees]

~ ¥

=2.5

10

Figure F.15: Vertical motion, torsional motion and flap positions for

b «,,. o, |degrees]

10

~ ¥

MR R

experiment -0606000.013.

10

-1



F.2  Graphs of Selected Ezperiments 139

z lem]|
3.:0=
o /\/\M&‘W
0 | I . 1 w \ l T I i -
W 2 4 6 8 10 £ [=]
—]nE
5.0
~ |degrees]
T T T T 1 - .
6 8 10 t [s]
i «a,. «, [degrees]
10 -
5 /\ /\
O \j T /\U/\NT i T ] T = .
\/ \) 4 6 8 0 ¢ [s]
.._5_
-10

Figure F.16: Vertical motion, torsional motion and flap positions for
experiment -0606000.018.



140 Damping FEzperiments

I - |em]
3.8=
- /\/\/W
O (B T T T T T I =
\/ 2 4 8 10 t [s]
=
— 3.0~

I « [degrees]

2.5‘/\
0-

Mo ‘ l | . 1 -
\/ \/ VoY 6 8 o 1 [s]
—2.5-
_5‘O,
A «,,. oy, |degrees]
10-
5_ /\ A/\
0 v/\(/\g T ' T T | -
V Y 4 6 8 10 (s
=2
_‘iO,

Figure F.17: Vertical motion, torsional motion and flap positions for
experiment -0606000.0235.



F.2  Graphs of Selected Ezperiments

141

L = [cm]

=3.0-

2.0

2.5

=5

_10_

Figure F.18: Vertical motion, torsional motion and flap positions for

i o [degrees]

~1

”\MM/‘\
Vv

“ 4 ta? H!.{z

\/WMVWV

|degrees]|

0o —

~1

ezperiment -2020000.000.

00—

<



142

Damping Ezperiments

MAAA
_1‘5/ VALV ALY/ A VA B R
A AAARA,
UL NN AL A
50“ Cir O |degrees]

A

-G

a6

Figure F.19: Vertical motion, torsional motion and flap positions for

expervment -2020000.005.



F.2 Graphs of Selected Experiments 143

b = [em]

5.0-

0 M/\WJWN T T | T \ | -
2z 4 ]

A « [degrees]

b o, «, [degrees]

Figure F.20: Vertical motion, torsional motion and flap positions for
experiment -2020000.008.



144 Damping Ezperiments

5.0+

T.:5

o
|
"2

~ Y

~1.5~

-3.0

i o [degrees]

5.0
2D
0 lT T T I T T T =
4 6 8 10 t|s]
=B B
will s

\ o, n, [degrees]

10-

—id

Figure F.21: Vertical motion, torsional motion and flap positions for
experiment -2020000.0183.



F.2  Graphs of Selected Ezperiments 145

I = [em]
ER
1.5
0 m\ //T\hff?MMWMﬂww%MM T T T T ' \ -
v 2 4 6 8 10 { |s]
~1 5~
_3‘07

I o [degrees]

-

T

~1

1 -]
03]
Q)

kwo_

Figure F.22: Vertical motion, torsional motion and flap positions for
experiment -2020000.018.



146 Damping Experiments

lllllll

| q\/{\\/\vﬂ\/ﬂvﬂ\/ﬂ‘\/ﬂ\/\/ﬂﬁf\ [\Vﬁ\é VTR

b o,. «, |degrees]

. AV/\\/Z/\U[\ Uf\vf\vﬂ\/\vﬂé\/ﬂ\/\vf\@[\v VATERD

Figure F.23: Vertical motion, torsional motion and flap positions for
ezperiment 06-06000.001.



F.2  Graphs of Selected Ezperiments 147

3.0

) /\w/\ﬁw/\wf\ MA

I « |degrees]

Oxﬂmﬂﬂﬂﬂﬂﬂﬁﬁm%%mm%Tm

o Aﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ _
VIRV VAV VUV VV s

Figure F.24: Vertical motion, torsional motion and flap positions for
experiment 06-06000.006.



148 | Damping Ezperiments

§ = [em]

RIAAVSYYVAVEVYYS

- |

i /\v/\ A\/A\/\Vm\/ﬁ\f AN km A\ W&V‘ )

[s]

\/ VUWVVVS\/V\/S\/\/VW ;

Figure F.25: Vertical motion, torsional motion and flap positions for
ezperiment 06-06000.008.



F.2  Graphs of Selected Ezperiments 149

b - [cm]

3.0+

] 35

S WA A
O T T T T T f T I T ] Lo
2 4 6 8 10 t [s]

_15,
=50

I o [degrees]

5.0-

2o

JAAANAADARAAAAS
VUV VTV TRV

_2.5“

.

—5.0+

A o, «, [degrees]

; /\/\[\/\/\/\/\ﬂ/\/\/\f\f\,,
VIYVEVVRVVRYYS

~

Figure F.26: Vertical motion, torsional motion and flap positions for
experiment 06-06000.015.



150 Damping Ezperiments

MMM

[s]

L o |degrees]

o/\[\/\[\/\/\/\f\ﬂf\ﬂf\ﬂ/\ﬂ o
AN EL LA

“ “{u‘ a[u. [degrees}

0 /\/\’/\[\[\/\/\/\[\f\/\/\/\( _
-VVWVVVVVVVVWVUOfM

Figure F.27: Vertical motion, torsional motion and flap positions for
experiment 06-06000.017.



F.2  Graphs of Selected Ezperiments 151

b - [cm]

ALY
LTI B

~

— 5.0

I o [degrees]
SRR

2.5{\
0

2.5

~ ¥

=15, {1

b\ o, «, |degrees]

10-

o
oo
o

t |sl

_'[O,

Figure F.28: Vertical motion, torsional motion and flap positions for
experiment 06-06000.022.



152

Damping Erperiments

[em]

—1.54

—=5:.0

1
5.0

W\vf\/\f\/\/\f\/\/\/\/\

JUSAAAAAMAAAAN
2 4 6 8 10 t [s]

| « [degrees]

—
i

ATV VTV

oy, |degrees]

|

l nf:r‘

Hiiil

6

NRTE

Figure F.29: Vertical motion, torsional motion and flap positions for

experiment 20-20000.000.



F.2  Graphs of Selected Ezperiments 153

I - [em]

t [s]

(O
o)

ST

I o |degrees]
5. 0-

T

”\/\U/\MMW\/\

| R

=

LA
PRIV

o, |degrees]

L

.,_WO_

T

-

Figure F.30: Vertical motion, torsional motion and flap positions for

experiment 20-20000.005.

|s]



AN

Vo 7 (s



Appendix G

Results of Experiments

G.1 Introduction

This appendix describes estimation of parameters for the model and flap configuration
based on the results of the wind tunnel experiments. The positions measured during the
experiments are rather noisy, all positions are therefore filtered by a software filter as
described in appendix G.2.

The following parameters are estimated for the model and flap configuration:

e The circular frequencies for the vertical and torsional motion and the damping ratio
for the torsional motion, see appendix G.3.

e The actual amplitude amplification factors and the phase angles between the angular
motion of the model and the actual positions of the flaps, see appendix G.4.

G.2 Software Filter

A second order filter is used to filter the noisy position measurements after the experi-
ments. A noisy measurement u(k) at the time step £ is filtered by

us(k) = 2pug(k—1) — p*ug(k—2) + (1 — p)*u(k) (G.1)

where u;(k) is the filtered value at the time step & and p is the pole. If p = 0, the filtered
values are equal to the measured noisy values, and if p = 1, the filtered values are not
dependent on the measured values. Therefore, a large value of p will make smooth filtered
values but the amplitude reduction and time delay compared to the measured values will
be large.

In the following a pole of 0.5 is selected. When this pole is used, the output from the
second order filter is very close to the mean value over the last five measured values. The
delay of the filter is thereby close to 24 ms, and the amplitude reduction is rather small,
see figure G.1. Estimation of the frequencies, damping and factors between the angular
motion of the model and the actual positions of the flaps is not dependent on the time
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delay and reduction of the filter, they are therefore not estimated.
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Figure G.1: Ezample of torsional motion a(t) and filtered torsional motion
oy (t) for flap configuration 2 and with wind speed 6.1 m/s.

.3 Frequency and Damping

The circular frequencies w, and w, for the vertical and torsional motion, respectively,
are estimated by counting a number of cycles for the filtered time series z¢(t) and ay(t).
The damping ratio (, is estimated for the filtered torsional motion ay(t) by Hilbert
transformation. The zero upcrossings of the motion are used to estimate the frequencies.

As described by Littler {25], the frequency will increase and the damping will decrease as
the amplitude of the response reduces. Therefore, the selected decay will be limited to an
excact number of cycles with rather large amplitudes. For the wind tunnel experiments
the part of the time series before one second is eliminated because the flaps are started
slowly during the first second.

The following procedure is used to estimate the parameters:
1. Filtering of data.

(a) The time series z(t) and a(t) are filtered through a second order filter with
pole 0.5.

2. Justification of data.

(a) The zero points of the time series are justified so the mean of each of the filtered
motions z; and oy is zero.
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3. At the start of the time series the data before the first upcrossing after one second
are eliminated. The part of the decay to be analysed is selected independently for
each time series.

(a) At thestart of the time series the data before the first upcrossing are eliminated.

(b) The number of cycles n, to include in the analysis is selected by visual inspec-
tion of the graph.

4. Bstimation of frequency for both time series.

(a) The period T is estimated by

T = Ine (G.2)
Ne

where t,_ is the time for n. cycles.
(b) The circular frequency w is then estimated
2m
7

5. For the torsional motion the damping ratio is estimated by Hilbert transformation.

w

(G.3)

(a) Fourier transformation analysis of the filtered time series
apr(t) = FFT(ay () (G.4)
(b) The first half of the Fourier components is multiplied by —¢ and the last half
of the Fourier components is multiplied by 4
aprm(j) = —i-apr(f), j=1,...,10ng (G.5)
arrm(s) =i apr(f), i=Yona+1,... 04
where ng is the number of data.

(¢) Inverse Fourier transformation of the modified Fourier components

Ky = IFFT(O{FT,m) (GG)

(d) The envelope curve A, with the theoretical expression Ase™ %! of the motion
is found by

Ac(j) = /o) + Re(@m(5)?), 5 =1,...ma (G7)

(e) The damping ratio is estimated as the slope of the logarithm of the envelope
curve for the selected part of the decay divided by minus the estimated circular
frequency

_ slope(4,)

(o = (G.8)

The estimated parameters w,, w, and (, are shown in tables G.1 and G.2 for no regulation
of the flaps, in table G.3 for flap configuration 1, in table G.4 for flap configuration 2, in
table G.5 for flap configuration 3 and in table G.6 for flap configuration 4.

The following notation is used in the tables:
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e File name: the name of the file with stored data from an experiment.
e [/: wind speed in M.

e w,: circular bending frequency in rad/ estimated by using n, cycles.
e w,: circular torsional frequency in r3dj estimated by using n, cycles.

e (,: damping ratio (between the actual value and the critical value of the torsional

damping constant) estimated by using n, cycles corresponding to the At interval in
seconds.

File name | U W] | w, [md/g] (n,) | Wa [ra,d/sl (Ne) Ca (ng; AL)
00000000.000 0.0 5.25 (20) — e
00000000.001 0.0 5.25 (20) — —
00000000.002 0.0 5.24 (20) — -
(00000000.003 0.0 5.23 (20) - —
00000000.004 0.0 5.23 (20) — —

Mean values 0.0 5.24 — —
00000000.007 0.0 — 10.14 (20) 0.0049 (20; 1.0-13.4 s)
00000000.008 0.0 = 10.16 (20) 0.0048 (20; 1.0-13.4 s)
00000000.009 0.0 | — 10.15 (20) 0.0051 (20; 1.0-13.4 s)
00000000.010 0.0 — 10.16 (20) 0.0047 (20; 1.0-13.4 s)
Mean values 0.0 — 10.15 (0.0049
00000000.017 0.0 5.28 (20) 10.15 (20) 0.0056 (20; 1.0-13.4 s)
00000000.018 0.0 5.24 (20) 10.13 (20) 0.0059 (20; 1.0-13.4 s)
00000000.019 0.0 5.23 (20) 10.13 (2 0) 0.0057 (20; 1.0-13.4 s)
00000000.020 0.0 5.24 (20) 10.13 (20) 0.0060 (20; 1.0-13.4 s)
Mean values 0.0 5.25 10.14 0.0058
00000000.022 25 — 9.51 (15) 0.0177 (15; 1.0-10.9 s)
00000000.023 2.0 — 9.52 (15) 0.0189 (15; 1.0-10.9 s)
00000000.024 2.5 — 9.52 (15) 0.0164 (15; 1.0-10.9 s)
00000000.025 2.5 — 9.55 (15) 0.0190 (15; 1.0-10.8 5)
00000000.026 2.5 = 9.54 (15) 0.0195 (15; 1.0-10.9 s)
Mean values 7D — 9.53 0.0183
00000000.027 4.0 — 9.16 (12) 0.0222 (12; 1.0-9.2 s)
00000000.028 4.0 — 9.13 (12) 0.0216 (12; 1.0-9.3 s)
00000000.029 4.0 — 9.15 (12) 0.0222 (12; 1.0-9.2 s)
00000000.030 4.0 — 9.15 (12) 0.0218 (12; 1.0-9.2 s)
00000000.031 4.0 — 9.17 (12) 0.0212 (12; 1.0-9.2 s)
00000000.032 4.0 — 9.16 (12) 0.0216 (12; 1.0-9.2 s)
Mean values 4.0 — 9.15 0.0218

Table G.1: Estimated circular frequencies and damping for no requlation of
the flaps. To be continued in table G.2.
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File name | U [M] | w, [rad/s] (n.) | wa Ira,d/S] (na) Ca (ng; At)
00000000.033 5.9 — 8.57 (10) 0.0274 (10; 1.0-8.3 s)
00000000.034 5.9 — 8.63 (10) 0.0240 (10; 1.0-8.3 s)
00000000.035 5.9 — 8.65 (10) 0.0260 (10; 1.0-8.3 s)
00000000.036 5.9 — 8.70 (10) 0.0256 (10; 1.0-8.2 s)
00000000.037 5.9 — 8.73 ( 9) 0.0265 ( 9; 1.0-7.5 s)
Mean values 5.9 — 8.66 0.0259
00000000.038 7.1 7.74 (9) 7.63 (9) 0.0192 (9; 1.0-8.4 s)
00000000.039 7.1 7.78 (9) 7.63 (9) 0.0157 (9; 1.0-8.4 s)
00000000.040 7.1 7.73 (9) 7.61 (9) 0.0232 (9; 1.0-8.4 s)
00000000.041 Tl 7.74 (9) 7.56 (9) 0.0182 (9; 1.0-8.4 )
00000000.042 Tl 7.79 (9) 7.60 (9) 0.0188 (9; 1.0-8.4 5)
Mean values 7.1 7.76 7.61 0.0190
00000000.048 .5 7.57 (7) 7.39 (7) 0.0148 (7, 1.0-6.9 s)
00000000.049 7.5 .50 (7) 7.40 (7) 0.0235 (7; 1.0-6.9 s)
00000000.051 70 7.87 (7) 7.43 (7) 0.0234 (7; 1.0-6.9 s)
00000000.062 T 751 (F) 7.46 (7) 0.0192 (7; 1.0-6.9 s)
Mean values 7.5 7.54 7.42 0.0202
00000000.053 7.8 7.31 {15) 7.23 (15) 0.0041 (15; 1.0-14.0 s)
00000000.055 7.8 7.35 (15) 7.25 (15) 0.0027 (15; 1.0-14.0 s)
00000000.056 7.8 7.29 (15) 7:23 (15) 0.0050 (15; 1.0-14.0 s)
00000000.067 7.8 7.31 (15) 7.23 (15) 0.0016 (15; 1.0-14.0 s)
00000000.058 7.8 7.27 (15) 7.20 (15) 0.0047 {15; 1.0-14.1 s)
00000000.059 7.8 7.30 (15) 7.23 (15) 0.0046 (15; 1.0-14.0 s)
Mean values 7.8 .81 7.23 0.0038
00000000.060 7.9 7.24 (12) 7.17 (12) 0.0068 (12; 1.0-11.5 s)
00000000.061 7.9 .25 (12) 7.15 [12) 0.0013 (12; 1.0-11.5 s)
00000000.062 7.9 7.22.{12) .16 {12) 0.0055 (125 1.0-11.5 s)
Mean values 7.9 7.24 7.16 0.0045
00000000.069 8.2 7.08 (20) 7.08 (20) 0.0027 (20; 1.0-18.7 s)
00000000.070 8.2 7.12 (20) 7.09 (20) 0.0016 (20; 1.0-18.7 s)
Mean values 8.2 7.10 7.09 0.0022

Table G.2: Estimated circular frequencies and damping for no regulation of
the flaps. Continued from table G.1.
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File name | 0 [0 [ : [204] () | wa [P0H] (na) | Go (nci A9

-0606000.000 0.0 — 10.08 (20) 0.0080 (20; 1.0-13.5 s)
-0606000.001 0.0 — 10.08 (20) 0.0077 (20; 1.0-13.5 s)
-0606000.002 0.0 — 10.14 (20) 0.0072 (20; 1.0-13.4 s)
-0606000.004 0.0 — 10.10 (20) 0.0076 (20; 1.0-13.4 s)
Mean values 0.0 — 10.10 0.0076 |
-0606000.005 0.0 5.25 (8) 10.09 (8) 0.0052 (8; 1.0-6.0 s)
-0606000.006 0.0 5.23 (8) 10.09 (8) 0.0059 (8; 1.0-6.0 s)
Mean values 0.0 5.24 10.09 0.0056
-0606000.007 25 5.20 (5) 9.32 (5) 0.0343 (5; 1.0-4.4 s)
-0606000.008 2.5 5.20 (5) 9.35 (5) 0.0355 (5; 1.0-4.4 s)
-0606000.009 2.5 5.17 (5) 9.35 (5) 0.0343 (5; 1.0-4.4 s)
-0606000.010 2.5 5.25 (4) 9.32 (5) 0.0381 (5; 1.0-4.4 s)
-0606000.011 2.5 5.24 (4) 9.32 (5) 0.0345 (5; 1.0-4.4 s)
Mean values 2.5 5.21 9.33 0.0353
-0606000.013 4.0 — 8.90 (5) 0.0630 (5; 1.0-4.5 s)
-0606000.014 4.0 s 8.73 (5) 0.0640 (5; 1.0-4.6 s)
-0606000.015 4.0 — 8.76 (5) 0.0571 (5; 1.0-4.6 s)
-0606000.016 4.0 —_ 8.73 (5) 0.0532 (5; 1.0-4.6 s)
-0606000.017 4.0 — 8.70 (5) 0.0552 (5; 1.0-4.6 s)
Mean values 4.0 — B8.76 0.0585
-0606000.018 5.9 — 7.89 (3) 0.0878 (3; 1.0-3.4 s)
-0606000.019 5.9 — 7.74 (3) 0.0937 (3; 1.0-3.4 s)
-0606000.020 5.9 — 7.97 (3) 0.0980 (3; 1.0-3.4 s)
-0606000.021 5.9 — 7.97 (3) 0.0997 (3; 1.0-3.4 s)
-0606000.022 5.9 — 7.89 (3) 0.1023 (3; 1.0-3.4 s)
Mean values 5.9 — 7.89 0.0963
-0606000.023 7.1 7.59 (2) 6.80 (3) 0.0684 (3; 1.0-3.8 s)
-0606000.024 7.1 7.59 (2) 6.77 (3) 0.0811 (3; 1.0-3.8 s)
-0606000.025 7.1 7.43 (2) 6.74 (3) 0.0915 (3; 1.0-3.8 5)
-0606000.026 7.1 7.70 (2) 6.71 (2) 0.0934 (2; 1.0-2.9 s)
Mean values 7.1 7.58 6.76 0.0836

Table G.3: Estimated circular frequencies and damping for flap configuration

s
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File name | U [Ws] | w, [rad/s} (n2) | Wa [rad/s] (Na) Ca (rig; OF)
-2020000.000 0.0 - 10.14 ( 8) 0.0101 ( 8; 1.0~ 6.0 s)
-2020000.001 0.0 — 10.07 ( 7) 0.0107 ( 7; 1.0- 5.4 s)
-2020000.002 0.0 - 10.18 ( 7) 0.0104 ( 7; 1.0~ 5.3 5)
-2020000.003 0.0 — 10.07 (15) 0.0104 (15; 1.0-10.3 s)
-2020000.004 0.0 — 10.12 {12) 0.0114 (12; 1.0- 8.4 s)
Mean values 0.0 — 10.12 0.0106
-2020000.005 0.0 5.25 (4) 10.12 (8) 0.0097 (8; 1.0-6.0 s)
-2020000.006 0.0 5.25 (4) 10.12 (8) 0.0099 (8; 1.0-6.0 s)
Mean values 0.0 5.25 10.12 0.0098
-2020000.008 2.8 e 8.73 (2) 0.1073 (2; 1.0-2.4 5)
-2020000.009 2.8 e 8.65 (2) 0.1011 (2; 1.0-2.4 s)
-2020000.010 | 2.8 = 8.58 (2) 0.1444 (2; 1.0-2.5 5)
-2020000.011 2.8 — 8.45 (2) 0.1195 (2; 1.0-2.5 s)
-2020000.012 2.8 — 8.58 (2) 0.1320 (2; 1.0-2.5s)
Mean values 2.8 a 8.60 0.1209
-2020000.013 4.1 — 7.93 (1) 0.2089 (1; 1.0-1.8 s)
-2020000.014 4.1 — 8.06 (1) 0.2012 (1; 1.0-1.8 5)
-2020000.015 4.1 — 781 (1) 0.2211 (1; 1.0-1.8 s)
-2020000.016 4.1 — 7.81 (1) 0.1652 (1; 1.0-1.8 s)
-2020000.017 4.1 — 7.81 (1) 0.1961 (1; 1.0-1.8 s)
Mean values 4.1 — 7.88 0.1985
-2020000.018 6.1 — LA™ 0.4209 (0.9; 1.0-1.8 s)
-2020000.019 6.l — 0% 0.4458 (0.8; 1.0-1.7 s)
Mean values 6.1 — 7.0% 0.4334

Table G.4: Estimated circular frequencies and damping for flap configuration
2. * For the wind speed 6.1 m/s the motion is damped very fast.
The torsional circular frequency for this wind speed is therefore
predicted based on the estimated values for other wind speeds and
flap configurations.
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File name | U [Mf] | w [radg] (n,) | we [rad/S] (i) Ca (n¢; At)

06-06000.001 0.0 — 10.12 (15) 0.0100 (15; 1.0-10.3 s)
06-06000.002 0.0 — 10.15 (15) 0.0098 (15; 1.0-10.3 s)
06-06000.003 0.0 — 10.09 { 8) 0.0085 ( 8; 1.0- 6.0 s)
06-06000.004 0.0 —_ 10.12 { 8) 0.0078 { 8; 1.0- 6.0 s)
06-06000.005 0.0 — 10.12 ( 8) 0.0085 ( 8; 1.0- 6.0 s)
Mean values 0.0 — 10.12 0.0089
06-06000.006 0.0 5.16 (4) 10.12 (8) 0.0079 (8; 1.0-6.0 s)
06-06000.007 | 0.0 5.16 (4) 10.14 (8) 0.0071 (8; 1.0-6.0 s)
Mean values 0.0 5.16 10.13 0.0075
06-06000.008 o5 - 9.79 ( 8) 0.0080 ( 8; 1.0-6.0 s)
06-06000.009 25 e 9.78 (15) 0.0112 (15; 1.0-10.6 s)
06-06000.010 2.5 —_ 9.79 (15) 0.0114 (15; 1.0-10.6 s)
06-06000.011 2.5 — 9.74 ( 8) 0.0087 ( 8; 1.0-6.2 s)
06-06000.012 2.5 — 9.79 ( 8) 0.0097 ( 8; 1.0-6.1 s)
Mean values 2.5 —_ 9.78 0.0098
06-06000.013 4.0 — 9.50 ( 8) 0.0115 ( 8; 1.0- 6.3 5)
06-06000.014 4.0 — 9.52 (15) 0.0104 (15; 1.0-10.9 s)
06-06000.015 4.0 — 9.54 (10) 0.0144 (10; 1.0- 7.6 s)
06-06000.016 4.0 — 9.50 (10) 0.0129 (10; 1.0- 7.6 s)
Mean values 4.0 — 9.52 0.0123
06-06000.017 | 5.9 9.13 (12) 0.07 (12) | 0.0101 (12; 1.0-9.3 5)
06-06000.018 5.9 9.08 (12) 9.07 (12) 0.0099 (12; 1.0-9.3 s)
06-06000.019 5.9 9.07 (12) 8.98 (1 ) 0.0041 (12; 1.0-9.4 s)
06-06000.020 5.9 9.08 (12) 9.03 (12 0.0013 (12; 1.0-9.3 s)
06-06000.021 5.9 9.15 (12) 9.01 (12) 0.0032 (12; 1.0-9.4 5)
Mean values 5.9 9.10 9.03 0.0057
06-06000.022 | 7.1 8.38 (6) 8.16 (6) ~0.0150 (6; 1.0-5.6 5)
06-06000.023 7.1 8.49 (6) 8.22 (6) ~0.0199 (6; 1.0-5.6 s)
Mean values Tl 8.44 8.19 -0.0175

Table G.5: Estimated circular frequencies and damping for flap configuration

3.
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File name | U [M] | w, [rad/sl (ns) | Wa [ra.d/S] (na) £ kg AL)
20-20000.000 2.8 -— 9.84 (15) -0.0024 (15; 1.0-10.6 s)
20-20000.001 2.8 — 9.83 (12) -0.0016 (12; 1.0- 8.7 s)
20-20000.002 2.8 - 9.83 (15) -0.0009 (15; 1.0-10.6 s)
20-20000.003 2.8 =2 9.88 (15) -0.0015 (15; 1.0-10.5 s)
20-20000.004 2.8 e 9.82 (15) -0.0020 (15; 1.0-10.6 s)
Mean values 2.8 === 9.84 -0.0017
20-20000.005 4.2 9.59 (15) 9.64 (15) -0.0023 (15; 1.0-10.8 s)
20-20000.006 4.2 9.57 (15) 9.64 (15) -0.0011 (15; 1.0-10.8 s)
20-20000.007 4.2 9.54 (15) 9.61 (15) -0.0006 (15; 1.0-10.8 s)
20-20000.008 4.2 9.57 (15) 9.61 (15) -0.0008 (15; 1.0-10.8 s)
20-20000.009 4.2 9.58 (15) 9.59 (15) ~0.0007 (15; 1.0-10.8 s)
Mean values 4.2 9.57 9.62 -0.0011
20-20000.010 6.1 9.12 (12) 9.00 (12) -0.0029 (12; 1.0-9.4 s)
20-20000.011 6.1 9.09 (12) 8.99 (12) -0.0018 (12; 1.0-9.4 s)
20-20000.012 6.1 9.05 (12) 8.92 (12) 0.0001 (12; 1.0-9.4 s)
20-20000.013 6.1 9.03 (12) 8.91 (12) -0.0005 (12; 1.0-9.5 s)
20-20000.014 6.1 9.05 (12) 8.91 (12) -0.0017 (12; 1.0-9.5 s)
Mean values 6.1 9.07 8.95 -0.0014

Table G.6: Estimated circular frequencies and damping for flap configuration

4.
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G.4 Amplification and Phase

The amplifications and phase angles between the filtered torsional motion and the filtered
actual positions of the flaps are found for flap configurations 1-3 by minimizing an error
defined as the sum of the squared differences between the torsional motion and flap
position.

The following procedure is used to estimate the parameters:

1. Filtering of data. The time series a(t), au, (t) and oy, (t) are filtered through a second
order filter with pole 0.5.

2. Estimation of the phase angles by minimization of the errors E,, and Ey, defined

by
min By, = ¥ (07 (2) = 040 (1+A0)° (@9)
n{lﬁiﬁn By =Y (a(t) - q (t+A1))? (G.10)

where the sum is from the time 0.996 s to 3.996 s with the time step 0.012 s. At is
the time delay that is estimated with the accuracy 0.012 s.

3. Estimation of the amplifications by minimization of the errors E; and E; defined by
main By = Z (acy(t) - Ofaa,f(t"’Att))z (G.11)
Ina'lIl E,g - Z (G.Oif(t) — Oqa,f(t+At,g))2 (Gl?)

where a is the amplification and At, and At; are the optimal time delays for the
trailing and leading flap, respectively. The sum is from the time 0.996 s to 3.996 s
with the time step 0.012 s. The optimal amplifications a;, and g, are estimated
with the accuracy 0.01.

The estimated parameters At,, Af;, as, and a;, are shown in table G.7 for flap configura-
tion 1, in table G.8 for flap configuration 2 and in table G.9 for flap configuration 3. Only
data from free torsional motion are used to estimate the parameters, i.e. when the wind
speed is zero. Experiments without wind are not performed for flap configuration 4.

The following notation is used in the tables:
e File name: the name of the file with stored data from an experiment.
e At,: estimated time delay for trailing flap in milliseconds.
e At;: estimated time delay for leading flap in milliseconds.

e i, estimated amplification factor for trailing flap.
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File name | At [ms] | Aty [ms] | a | ai
-0606000.000 444 444 1.90 | 1.99
-0606000.001 444 444 1.91 | 1.98
-0606000.002 444 444 1.94 | 1.98
-0606000.004 444 444 1.90 | 1.95
Mean values 444 444 1.91 | 1.98

Table G.7: Estimated time delay and amplification factor for flap
configuration 1.

File name | At [ms] | At; [ms] | 6w | G
-2020000.000 456 456 4.56 | 4.75
-2020000.001 444 444 3.81 | 4.02
-2020000.002 456 456 2.80 | 2.94
-2020000.003 456 456 2.70 | 2.83
-2020000.004 456 456 3.22 | 3.40
Mean values 454 454 3.42 | 3.59

Table G.8: Estimated time delay and amplification factor for flap
configuration 2.

e ay,: estimated amplification factor for leading flap.

In table G.8 the amplification factors deviate much. For the results stored in files
—2020000.002 and —2020000.003 the mean values of the positions of the flaps are os-
cillating, i.e. the flaps are not oscillating around the defined zero point.

File name | At; [ms] | At; [ms] | aw | G
06-06000.001 144 144 1.98 | 2.03
06-06000.002 144 144 2.02 | 2.04
06-06000.003 144 144 1.99 | 2.04
06-06000.004 144 144 1.97 | 2.03
06-06000.005 144 144 1.96 | 2.03
Mean values 144 144 1.98 | 2.03

Table G.9: Estimated time delay and amplification factor for flap
configuration 3.

In tables G.10-G.12 the actual phase angle ¢ and the phase angle factor f for each time
series are calculated based on the estimated time delays At. This delay is always the
same for the flaps, the calculated factors are therefore valid for both the trailing and the
leading flap. Note that the factors are equal, because the angles of both flaps are positive
downwards. The following equations are used:

0 = wl At (G.13)
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where w], is the damped circular eigenfrequency for the time series.

g G

File name | At[s] | ¢ [rad] | f
-0606000.000 | 0.444 | 4.48 | 8.55
-0606000.001 | 0.444 | 4.48 | 8.59
-0606000.002 | 0.444 | 4.50 | 8.60
-0606000.004 | 0.444 | 4.48 | 8.56
Mean values | 0.444 | 4.49 | 8.56

Table G.10: Estimated time delay, phase angle and phase angle factor for
flap configuration 1.

File name | At [s| | ¢ [rad] | f
-2020000.000 | 0.456 | 4.62 | 8.83
-2020000.001 | 0.444 | 4.47 | 8.54
-2020000.002 | 0.456 | 4.64 | 8.87
-2020000.003 | 0.456 | 4.59 | 8.77
-2020000.004 | 0.456 | 4.61 | 8.81
Mean values | 0.454 | 4.59 | 8.76

Table G.11: Estimated time delay, phase angle and phase angle factor for
flap configuration 2.

File name | At|[s] | ¢ [rad] | f
06-06000.001 | 0.144 1.46 | 2.78
06-06000.002 | 0.144 1.46 | 2.79
06-06000.003 | 0.144 1.45 | 2.77
06-06000.004 | 0.144 1.46 | 2.78
06-06000.005 | 0.144 1.46 | 2.78
Mean values | 0.144 | 1.46 | 2.78

Table G.12: Estimated time delay, phase angle and phase angle factor for
flap configuration 3.

G.5 Divergence and Flutter Wind Velocity

The divergence wind velocity is given by (see Frandsen [10])

by mp
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where b is the half width of the model, k, is the stiffnes in torsion per unit length and p
is the density of air.

The flutter wind velocity is estimated by Selberg’s formula, see Larsen & Gimsing [23]
2
L (;—) } (G.16)

pB?
where f, and f, are the eigenfrequency for bending and torsion, respectively, B is the
width of the model (with long flaps), I is the mass moment of inertia per unit length and
m is the mass per unit length.

Up = faBS.TQJ

The stiffness in torsion is
ko = a’k, (G.17)

where a is the distance between the axis of rotation and the springs.

The eigenfrequencies can be written

foe o Lk (G.18)

or  2r\m

w a |k
— X @ [Pz G.19
fe 2m 2V I ( )

Equations (G.18) and (G.19) can be combined into
LS
22 et G.20
(£) - (@20

By using the above equations and b = B/2 the divergence and flutter wind velocity can
be derived

2a |k
Bligies iy 2 G.21
2= By (G.21)
a [k VIm 1
WE Puad i -1} — G.22
Ge 2r VI & ?QJ pB? [1 azm] ( )
The fixed parameters are the width of the model and the density of air, i.e.
B=1.5-0.625=0.938 m (G.23)
p=1.2kgys (G.24)

Inserting these parameters in equations (G.21) and (G.22) yields

Up = 1.098ay/k, (G-25)
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U = 0.558\/@/\/? [a,?- - ;‘;-] (G.26)

Changing the bending stiffness k,, therefore, cannot separate the divergence and flutter
velocities.

In the following it is assumed the the total spring stiffness (for four springs) is
k, = wim (G.27)

where w, is the estimated circular frequency for bending.

For the wind tunnel experiments the following parameters are estimated and calculated

w, = 5.2 radj (G.28)
we = 10.1 radj (G.29)
26.553

= =17.94 kg G.30

= = = 17.04 - (G.30)

k, = wim =5.22.17.94 = 485 Njp2 (G.31)

o= @ =0.352m (G.32)
ko a’k, 0.352%.485 2

T e = 0.580 kg m ;.33

! w2 Wl 10.12 B3 38 T fon L)

Up = 1.098 - 0.352 - /485 = 8.5 mjg (G.34)

17.94 0.589
- B, —87m G.35
Ur 0.558\/4SSJ s (0852 | = 8 s (G.35)

Two parameters of the model can be used to separate divergence and flutter, namely by
regulating both the mass moment of inertia / and the distance a between the axis of
rotation and the springs.

The mass moment of inertia is increased by moving the four loads on the horizontal arm
of the suspension system. By moving the loads from their positions 756 mm from the axis
of rotation to 475 mm from this axis the mass moment of inertia is increased by

AT = 0.5 4(475 — 75)% - 107 = 0.320 kg m* (G.36)
Thereby the total mass moment of inertia is
I+ AJ=0.580-1.48+0.320 = 1.192 kg m® = 0.805 kg mz/m (G.37)

and the flutter wind velocity is

17947, 0805
Up = 0. 558f\j e [ ’ m} = 1212V — 0.045\/k. (G.38)
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o |m] | Ur W] | Up (4] | Unjy,
0.20 — 0.220vk, | —
0.25 | 0.161v/k, | 0.275v/%, | 1.71
0.30 | 0.258v/%, | 0.329/%, | 1.28
0.31 | 0.274/%, | 0.340v/%k, | 1.24
0.32 | 0.291v%, | 0.351v/k, | 1.21
0.33 | 0.307V%, | 0.362/%, | 1.18
0.34 | 0.322/k, | 0.373v/k, | 1.16
0.35 | 0.338/k, | 0.384/k, | 1.14
0.40 | 0.411/k, | 0.439/%, | 1.09
0.45 | 0.481/k, | 0.494/k, | 1.03

Table G.13: Flutter and divergence wind velocities for different distances
between the axris of rotation and the springs.

The flutter and divergence wind velocities and the ratio between these are shown in
table G.13 for different values of a.

The following values are selected:

a=032m G.39)

Ur = 10 My (G.40)
Thereby the total stiffness of four new springs is

Up=0.2911/k, =10 = &, = 1180 Njy2 = 1748 N (G.41)

which corresponds to 437 N/m per spring. The new springs are ordered to have the stiffness
440 Nfy,, i.e. the total stiffness is

k, =4 440 = 1760 Njp = 1189 Njp2 (G.42)
The new eigenfrequencies are
[k /1189
=4/2 =4/— =814 rad = 1350H G.43
Wy - 17.94 /S = f Z ( )
a2k 1189
= 2 =4/0.322 =12.3 rad =196 H G.44
We \/ = \/0 P o gradg = f 96 Hz (G.44)

G.6 Flap Positioning

The equation of the torsional motion «(t) of free vibration of the bridge section model is
given by

G(t) + 2awa(t) + wialt) =0, t>0}

a(0) = ap, @&(0) =dy (G.45)
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All parameters with index a refer to the torsional motion «(t). The damping ratio (o is
the ratio between the actual value and the critical value of the torsional damping constant.
The circular eigenfrequency for free vibration in torsion is denoted wq.

The solution to equation (G.45) is dependent on the magnitude of the damping ratio. For
an underdamped system the solution is

g + CaWalo

!
(’,JCE

Blt) =g tutint [ao cos(wht) + sin(wlt)|, t>0, (€01 (G.46)

where the circular eigenfrequency for the damped system is given by

W, = way/1 — (2 (G.47)

Equation (G.46) can be rewritten

a(t) = Age % cos(wit — wa), t20, (o€ [0,1] (G.48)
where
A, cos(ps) = ap
A sin(pl) = ST ifwaao (G.49)

o

A, is the start amplitude (the amplitude of the envelope curve at the time ¢ = 0) and @q
is the phase angle.
As et = cos(wt) + 1sin(wt), equation (G.48) can be rewritten

a(t) = Age “'Re (ei(w&t"’"“)) (G.50)

The positioning of the flap is delayed by the phase angle A compared to the desired
position. The desired motion of the trailing flap with amplitude amplification factor a;
and phase angle ¢, 1s

a(t) = G«tAaB*c“w"‘tRe (ei(w&""%*%uwt))
= a,Aze “='Re (6i(w;ﬂ—aaa)ei(—mww))
= g Age % cos(wht — wa) cOS(—pa — @) —
sin(wht — o) sin(—oa — ¢1)}
= a,at) {cos(—pa — ) — tan(wjt — @q) sin{—pa — @)} (G.51)
The time is set to zero at the first zero upcrossing of the torsional motion; thereby ap = 0

and ¢&p > 0 which implies that p, = /.

The final regulation formulas are

au(t) = aalt) {cos(—pa — 1) — tan(wjt — Th) sin(—pa — @)} } (G.52)
oy (t) = —aa(t) {cos(—pa — 1) — tan(wyt — T)sin(—pa — @) } '

The flaps are started slowly by multiplying the desired position by a factor tT, when
t < Ty. The time for slow start is set to Tp = 1 s.
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G.7 Numerical Problems with Control Algorithm

As described in section 6.5 there are numerical problems when the control algorithm
described by equation (G.52) is used.

Some of the problems are due to the fact that the desired flap angles for most phase angles
must have a certain value when the model is horizontal, i.e. when «(t) =0 for e.g. t = 0.
In the following L’Hépital’s Rule, see e.g. [38], is used to show that, theoretically, there
should not be any problems.

In the following only the trailing flap is examined. Equation (G.52) can be rewritten:

o cos(wht — 7/9) cos(—) — sin(w,t — T/2) sin(—¢)
()= ua(t) | iy | (@53

where ¢ = pa + ;. In this equation both the numerator N(t) and the denominator D(t)
become zero when ¢t = 0. The limit of o;(0) is

- (©30

i.e. the desired flap position has a final non-zero value when o = 0.
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