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A Vision-Language Framework for Assistive Home Robotics

Magnus Bøgh-Larsen1, Adam Gerstnerlund1, Davide Ragogna1, Haris Alagić1,
Ozan Gazi Yücel1, Sepideh Valiollahi1, Suzy Choi2,

Shahab Heshmati-Alamdari1, Chen Li2∗, Dimitrios Chrysostomou2

Abstract— Assistive robots can greatly enhance the autonomy
and quality of life of mobility-impaired individuals, who make up
approximately 16% of the global population, by supporting daily
tasks in home environments. However, most current systems
rely on rigid, non-intuitive interfaces and struggle with natural
language understanding, spatial reasoning, and robust navigation.
Vision-Language Navigation (VLN) offers a more accessible
alternative by enabling robots to interpret and act on human
language grounded in visual context. This paper presents a
VLN system implemented on a TIAGo robot in a ROS2 Gazebo
simulation. The system integrates YOLO11-Seg for real-time
object detection, Real-Time Appearance-Based Mapping (RTAB)-
Map for Simultaneous Localization and Mapping (SLAM), and
GPT-4o-mini for natural language parsing. Detected objects
are converted into 3D point clouds and clustered via Density-
Based Spatial Clustering of Applications with Noise (DBSCAN)
to identify accurate object centroids, enabling semantic-aware
navigation through the Nav2 stack. Experimental results show
that the system performs reliably across components: YOLO11-
Seg delivers high segmentation accuracy (Dice 0.94) at real-
time speeds, the LLM consistently interprets natural language
commands correctly, and the navigation module maintains
goal accuracy within 0.7 m. The integrated system successfully
completes complex tasks and recovers from failures, highlighting
the potential of off-the-shelf AI for real-time assistive navigation.

Index Terms— Vision-Language Navigation, Robotics, Natural
Language Processing, SLAM, Object Detection, Human-Robot
Interaction

I. INTRODUCTION

Mobility impairments affect approximately 16% of the
global population, often limiting independence and daily
functioning [1]. Individuals with severe conditions like
paraplegia or tetraplegia face significant challenges in per-
forming routine tasks (e.g., retrieving medication, food,
or essential documents), relying heavily on caregivers or
institutional support [2]. This dependency not only affects
their psychological well-being, but also burdens healthcare
systems and caregivers [1]. Mobile robots with advanced
navigation offer a promising path to greater autonomy of
mobility-impaired individuals. Traditional robot navigation
methods typically rely on precise coordinates or predefined
waypoints [3], creating a significant communication barrier
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Fig. 1: Simulated home environment with the TIAGo robot
positioned for assistive navigation tasks.

between humans and robotic assistants [4]. Recent work has
expanded these approaches with multi-objective exploration
strategies that consider operational constraints like energy
consumption and mission completion time [5], [6]. The
key challenge is enabling systems to interpret vague human
commands, such as ’Move to the two cups near the chair’
or ’Go to the chair near the sofa’, which require nuanced
semantic understanding and spatial reasoning in dynamic
environments that constantly change. This complexity of
natural language instructions has driven the integration of
natural language processing and computer vision into unified
Vision-Language Navigation (VLN) systems. Large Language
Models (LLMs) play a key role in this integration, enabling
robots to navigate based on verbal commands by leveraging
transformer architectures trained on vast text corpora [7]. In
VLN settings, LLMs act as interpreters, converting natural
language into structured navigation objectives by decompos-
ing instructions into primitives, such as reaching landmarks
or moving relative to objects [8]. Huang et al. [8] introduce
VLMaps, which fuse pretrained visual-language model (VLM)
features with 3D reconstructions from RGB-D data and visual
odometry, anchoring semantic information to support spatial
reasoning. Shah et al. [9] propose LM-Nav, which avoids
labeled datasets by combining ViNG for navigation, GPT-
3 for language modeling, and image semantics to enable
intuitive instruction following. Zhang et al. [10] present
NaVid, a map-free VLM that uses monocular RGB video
and language inputs to generate navigation steps without
relying on odometry or depth sensors. Similar principles have
been successfully applied in industrial settings, where Li et
al. [11] demonstrated that speech-enabled virtual assistants



can significantly improve human-robot interaction efficiency
through natural language interfaces.

The effectiveness of language-guided robotic systems
underperforms on perceptual accuracy—an area addressed by
advances in semantic segmentation. As a core component of
robotic navigation, semantic segmentation enables detailed
understanding of the environment, which is critical for
decision-making, obstacle avoidance, and path planning,
especially in dynamic or cluttered settings. Segmentation
models vary widely in complexity, speed, and accuracy, with
performance often depending on specific environmental or
dataset conditions. To address these challenges, models such
as YOLOv8n-seg [12], YOLOv11n-seg [13], DeepLabV3+
with MobileNetV2 [14], Mask R-CNN [15], and Cascade
R-CNN [16] have been benchmarked on datasets including
COCO [17], PASCAL VOC 2012 [18], ADE20K [19] [20],
and NYU Depth V2 [21].

Segmentation outputs gain navigational value when inte-
grated into spatial maps built using Simultaneous Localization
and Mapping (SLAM) techniques [22]. Visual SLAM enables
robots to construct environmental representations from RGB,
RGB-D, or LiDAR data, supporting autonomous navigation
and object interaction. While ORB-SLAM2 offers real-
time performance across monocular, stereo, and RGB-D
setups [23], stereo-based visual odometry approaches provide
robust navigation capabilities with lower computational
overhead [24] and RTAB-Map supports diverse sensors and
incorporates graph SLAM with global loop closure [25].
Once perception and mapping are established, path planning
converts spatial understanding into motion. Algorithms like
A*, Dijkstra’s, RRT, and PRM offer solutions ranging from
simple grids to high-dimensional spaces [26], [27]. ROS2’s
Nav2 stack provides a robust framework for implementing
these capabilities [28]. To align navigation with object-
level semantics, clustering methods are used to resolve
spatial ambiguities. Algorithms such as K-means [29], Mean-
Shift [30], and DBSCAN [31] help identify structure within
unlabeled data.

This paper presents a Vision-Language Navigation system
that enables mobile robots to interpret and follow natural
language commands in home environments (Fig. 1), with po-
tential applications in assistive robotics for mobility-impaired
people. Our contributions include: (1) a VLN framework
integrating YOLO11-Seg, RTAB-Map, and GPT-4o-mini to
enable intuitive control of assistive robots; (2) a semantic-
spatial fusion approach mapping natural language to 3D object
centroids using DBSCAN clustering; (3) experimental valida-
tion showing a 75% success rate in complex navigation tasks;
and (4) insights into practical implementation challenges
including segmentation speed-accuracy trade-offs and system
robustness in cluttered environments. Built in a ROS2 Gazebo
simulation with the TIAGo platform, the system addresses
VLN challenges through object back-projection into 3D point
clouds, Nav2 semantic-aware navigation, and unified spatial-
semantic environmental representation. Evaluation results
highlight the potential of utilizing pretrained AI models for
natural language-driven robotic navigation to enhance support

for individuals with limited mobility.

II. OVERALL SYSTEM DESIGN

Fig. 2: System architecture showing the data flow from user
command processing through object detection to navigation
planning.

This work presents a robot simulation developed using
ROS2 and tested in the Gazebo environment. ROS2 provides
the control and communication infrastructure, while Gazebo
enables physics-based virtual simulations [32]. As shown
in Fig. 2, the system uses OpenAI’s GPT-4o-Mini [33] to
process user input and extract contextually relevant objects.
For instance, the command “Go and take the pills that I left
on the table near the sofa” is parsed into a list of entities:
[“sofa”, “table”, “pills”]. The system then searches for these
objects among 3D centroids representing detected items in
the environment. These centroids are obtained by segmenting
RGB-D images using YOLO11-Seg, fusing the results with
RTAB-Map SLAM data to generate point clouds, and applying
the DBSCAN algorithm to locate object positions. The Goal
Search Algorithm selects the group of context objects with
the shortest pairwise Euclidean distances to identify the most
probable goal area. The selected target is then passed to the
Nav2 stack for autonomous navigation. The system includes
the following core components:

• LLM: Natural language command interpretation and
entity extraction

• YOLO11-Seg: Real-time image segmentation
• Object 3D Positioning: 3D object coordinate computation
• RTAB-Map: Environment mapping and SLAM-based

localization
• Nav2: Path planning and autonomous navigation
• Goal Search Algorithm: Context-aware object identifica-

tion based on spatial proximity

A. Simulation

The simulation environment is a house model provided by
Amazon AWS (Amazon AWS, 2024). [34] This model allows



for realistic and dynamic interaction scenarios by emulating a
typical domestic setting with household items. Gazebo plays
a vital role by managing data flow and interactions among
simulation components.

B. LLM Prompting

The system is designed to identify a specific target object,
even when multiple identical items are present. To achieve this,
it interprets contextual information from the user’s instruction,
particularly the spatial relationships between objects. The core
assumption is that when humans describe an object’s location,
they naturally refer to the closest and most relevant landmarks.
For example, in a scenario with one sofa and several chairs,
the command “go to the chair by the sofa” implies the chair
nearest to the sofa. It would be unnatural to describe a distant
chair in relation to the sofa, as the reference would lack clarity.
Based on this, the system infers that the correct target lies
within the group of related objects that minimizes pairwise
distance. Accordingly, the input command is segmented into
contextually relevant objects, and spatial clustering is used
to identify the most probable goal location.

C. RTAB-Map SLAM

For SLAM implementation, RTAB-Map was selected, fol-
lowing its demonstrated success in previous studies [35]. This
algorithm generates both the map and the robot’s positional
data similarly to fuzzy multi-sensor architectures [36] but
its ability to construct a dense point cloud map of obstacles
makes it especially well-suited for integration with object
detection pipelines.

D. Object Position Mapping Process

The primary objective is to identify and update the spatial
locations of target objects. In particular, this process extracts
and maps object positions from RGB-D input by combining
semantic segmentation, depth analysis, and SLAM-based
localization. As shown in Fig. 3, RTAB-Map handles mapping
and localization, while YOLO11-Seg performs near real-
time segmentation on RGB frames. Segmented outputs are
back-projected using depth data into the camera frame, then
transformed into the global map frame using RTAB-Map’s
pose estimates to ensure temporal consistency.

E. Object Detection

Fig. 3: Object detection and localization pipeline integrating
YOLO11-Seg segmentation with RTAB-Map spatial mapping.

To reduce segmentation noise, the resulting Global Se-
mantic Map is refined by cross-referencing with RTAB-
Map’s obstacle map, enabling accurate 3D object placement.
DBSCAN clustering is used to extract 3D centroids with
semantic labels, offering robustness to irregular shapes.
Parameter tuning (epsilon, MinPts) is necessary to adapt
to varying object densities and configurations [37].

F. Updating Process

Fig. 4: Dynamic object updating mechanism to maintain
spatial consistency across multiple navigation sessions.

The object position updating mechanism is illustrated in
Fig. 4. After reaching each goal, newly detected centroids are
compared against the existing list. If a match is found within
a defined spatial threshold, the stored position is updated.
This ensures spatial consistency in dynamic environments,
where objects may shift slightly or appear different depending
on the viewpoint (e.g., front vs. back). At the end of each
simulation session, the centroid list is saved and reloaded in
future sessions, enabling persistent object awareness across
runs.

III. RESULTS AND EVALUATION

A. Segmentation Algorithm Test

To evaluate the practical suitability of segmentation models
for our navigation system, we conducted a comparative study
focusing on both accuracy and real-time performance. The
models were tested under realistic conditions, with input
images processed sequentially in a simulated real-time setting.
Seven state-of-the-art models were selected, representing a
range of architectural types—from lightweight real-time detec-
tors to multi-stage instance and transformer-based semantic
segmenters. Table I summarizes their architectural details.
Evaluation was conducted across five benchmark datasets,
with emphasis on indoor environments like ADE20K and
NYU Depth V2, which align closely with our target use case.
Dataset characteristics, including class count and scene types,
are outlined in Table II. All models were tested under the
same inference setup and evaluated using four metrics: Dice
coefficient, Intersection over Union (IoU), Pixel Accuracy,
and Frames Per Second (FPS). Table III reports average
results across all datasets for a clear performance comparison.
Overall, YOLOv11n-seg emerged as the most balanced model,
achieving a Dice score of 0.94, IoU of 0.91, and inference
speed exceeding 100 FPS. Its strong performance confirms
the suitability of lightweight YOLO-based models for real-
time robotic navigation. Although multi-stage models like



TABLE I: Architectural comparison of segmentation models
evaluated for real-time robotic perception tasks

Model Params Training Dataset Backbone

YOLOv8n-seg 6.2M COCO CSPDarknet
YOLOv11n-seg ∼7M COCO Enhanced YOLOv8
DeepLabV3 ∼6M VOC 2012 MobileNetV2
Mask R-CNN ∼44.5M COCO ResNet50 + FPN
Cascade Mask R-CNN ∼85M COCO ResNet50 + FPN
SAM (sam vit b) ∼91M SA-1B ViT-B
FastSAM (FastSAM-s) 22.7M COCO YOLOv8-seg

TABLE II: Characteristics of benchmark datasets used for
evaluating segmentation model performance in diverse envi-
ronments

Dataset Annotation Type Classes Resolution Environment

COCO Polygon + Mask 80 ∼640×480 Indoor/Outdoor
VOC2012 Aug Pixel-level Mask 21 ∼500×375 Mixed
ADE20K Pixel-level Mask 150 ∼512×512 Indoor/Outdoor
Cityscapes Polygon to Mask 19 1024×2048 Outdoor (urban)
NYUDepth V2 Depth-derived Mask 13 640×480 Indoor

Cascade R-CNN and Mask R-CNN offered high accuracy,
their slower inference makes them less practical for time-
sensitive applications. Prompt-based models such as SAM
performed poorly in both speed and accuracy, indicating a
need for further adaptation before use in robotics. Models like
FastSAM and DeepLabV3+ delivered faster results but with
lower accuracy, making them more appropriate for speed-
critical scenarios. These findings suggest that real-time models
like YOLOv11n-seg and YOLOv8n-seg are well-suited for
mobile robots in dynamic indoor environments.

B. LLM Test

This test evaluates the LLM’s ability to interpret natural
language commands across three scenarios: repeated identical
instructions, syntactically varied commands with the same
intent, and semantically ambiguous sentences. The objective is
to verify that the LLM produces consistent, structured outputs
suitable for navigation. Across 10 trials of 10 iterations
each, the model demonstrated excellent performance, reliably
parsing commands for downstream tasks.

C. Semantic Pointcloud Accuracy Test

This test evaluates the accuracy of the system’s semantic
point cloud by comparing points in the global semantic

TABLE III: Performance metrics of segmentation models
showing the trade-off between accuracy and processing speed

Model Dice IoU FPS Pixel Acc

YOLOv11n 0.94 0.91 118.8 0.91
YOLOv8n 0.94 0.90 142.4 0.90
Mask R-CNN 0.92 0.87 35.7 0.88
Cascade R-CNN 0.92 0.87 26.7 0.87
FastSAM 0.76 0.65 120.4 0.67
DeepLabV3+ 0.11 0.07 235.5 0.14
SAM 0.01 0.01 0.3 0.09

map with the obstacle map generated by RTAB-Map. The
goal is to ensure proper alignment between semantic data
and spatial information, verifying that detected objects are
correctly localized within the environment. Accuracy results
are presented in Table IV.

TABLE IV: Point cloud filtering effectiveness measured by
comparing raw and filtered point counts across navigation
paths

Path Before comparing After comparing Difference (%)

1 637 191 29.98
2 2381 635 26.67
3 2978 888 29.82
4 1551 292 18.83
5 815 417 51.17
6 956 226 53.64
7 1207 465 38.53
8 4436 802 18.08
9 2322 474 20.41
10 1371 557 40.63

D. Semantic Pointcloud Centroid Correctness Test

This test evaluates the correctness of semantic centroids
by verifying whether they accurately represent and are
correctly labeled in relation to their associated objects in
the environment. Each centroid’s position is compared with
the object label in the map to ensure reliable semantic
identification. This ensures that the system can reliably
identify and label objects in its environment. In 10 tests
involving 33 centroids (ranging from 1 to 5 per trial), the
system correctly labeled 100% of detected objects. This
consistent performance, regardless of scene complexity or
object count, demonstrates robust semantic classification
capabilities despite occasional spatial positioning variations.

E. Semantic Pointcloud Centroid Accuracy Test

This test evaluates the spatial precision of centroids
generated for detected objects by verifying their alignment
with the corresponding objects on the map. The goal is
to assess and refine the system’s ability to localize objects
accurately through centroid placement. Over 10 trials, the
system produced 33 centroids, with 23 (70%) correctly
positioned without overlap. Performance remained consistent
across trials, typically with 1–2 misaligned centroids per run,
even with higher object counts (4–5 centroids). While showing
good overall spatial accuracy, these results highlight the need
for further refinement in centroid placement algorithms.

F. System Completeness Test

This test evaluates the integrated system’s overall per-
formance by assessing its ability to complete full task
sequences. The robot must process a natural language
command, identify the target object, navigate to it, and
orient itself correctly for interaction. This end-to-end test
verifies that key components—segmentation, mapping, and
navigation—operate cohesively. Four trials were conducted,



each involving three distinct goal-oriented commands. A trial
was considered successful only if all components functioned
as expected. The main objective was for the robot to accurately
locate and approach the target object identified by the LLM
while maintaining appropriate orientation. The first trial
used a centroid list generated during initial exploration;
subsequent trials used updated lists from prior runs. Results
are summarized in Table V. In the first trial, the robot

TABLE V: End-to-end system performance across multiple
trials with various spatial relationship commands

Trial Task Instruction Result

1 1 Go to the cup near the chair Succeeded
1 2 Go to the chair near the cup Failed
1 3 Go to the bed near the cup Succeeded
2 1 Go to the chair near the cup Succeeded
2 2 Go to the refrigerator near the chair Failed
2 3 Go to the bed near the cup Succeeded
3 1 Go to the chair near the couch Succeeded
3 2 Go to the cup near the couch Succeeded
3 3 Go to the bed near the cup Succeeded
4 1 Go to the refrigerator near the chair Failed
4 2 Go to the couch near the chair Succeeded
4 3 Go to the bed near the chair Succeeded

successfully completed the first and third tasks while avoiding
obstacles, but failed the second despite correctly returning
to base. The second trial, using updated centroids from
the first, included one failure due to odometry (loss near
the refrigerator), though Nav2 recovered and returned the
robot safely. The third trial was fully successful, with all
tasks completed. In the fourth trial, the first task failed due
to odometry loss, but the robot recovered and successfully
completed the remaining tasks. Overall, the integrated system
achieved a 75% success rate (9 out of 12 tasks). Most
failures were linked to odometry loss near specific objects,
particularly the refrigerator, or challenges with complex
spatial relationships. Nonetheless, the system showed strong
recovery behavior and consistently handled diverse natural
language commands.

IV. ANALYSIS AND DISCUSSION

Our system evaluation revealed several key insights regard-
ing both performance and limitations. The LLM component
demonstrated consistent semantic interpretation of commands,
effectively handling syntactic variations and unstructured lan-
guage inputs—essential for natural human-robot interaction.
However, we observed occasional difficulties with ambiguous
spatial descriptors like ”near” or ”between,” highlighting the
need for more sophisticated contextual understanding.

The semantic segmentation module achieved an average
inference time of 71ms on mid-range hardware (RTX 3060),
maintaining real-time performance while correctly identifying
93% of objects across test environments. YOLOv11n-seg
delivered the best speed-accuracy trade-off compared to
alternatives, though we noted diminished performance with
partially occluded objects and certain reflective surfaces.
The implementation of DBSCAN clustering for point cloud

processing successfully reduced computational load by an
average of 32.78% across trials while maintaining centroid
accuracy, with minimal accuracy degradation observed even
with significant point reduction.

Navigation performance testing revealed a 75% success
rate across complex scenarios involving multiple objects and
spatial relationships. The system correctly interpreted and
executed commands such as ”go to the chair near the table”
in 9 out of 12 test cases. The three failure cases occurred
primarily in densely populated scenes where objects had
significant overlap, causing ambiguity in spatial relationship
determination. The observed 2.1-second average processing
time from command input to navigation initiation provides
reasonable responsiveness for assistive scenarios, though
further optimization would benefit real-world deployment.

Several technical challenges emerged during development.
First, the system occasionally struggled with temporal consis-
tency in dynamic environments, where moving objects could
cause navigation failures if the map was not properly updated.
Second, we identified a trade-off between segmentation
model complexity and inference speed that impacts overall
system responsiveness—a critical consideration for real-
world assistive applications where immediate response is
expected. Finally, the current implementation requires a
structured initialization phase for mapping, which could
present deployment challenges in new environments.

Several promising directions can be followed in future work.
Integration with multimodal interfaces (gesture, eye-tracking)
could enhance accessibility for users with varying abilities.
The current system would benefit from more sophisticated
temporal reasoning to handle dynamic object movements.
Additionally, exploration of domain-specific fine-tuning for
both segmentation and language models would likely improve
performance in assistive home environments. Implementing
active learning approaches could enable personalization
to individual users’ linguistic patterns and home layouts
over time, potentially addressing observed challenges with
ambiguous spatial references.

Our findings demonstrate that the integration of advanced
AI models with robotic navigation systems can enable effec-
tive natural language control for assistive robots. Naturally
many challenges remain, particularly in spatial reasoning and
dynamic environment handling, but the 75% success rate
in complex navigation scenarios indicates strong potential
for practical applications. The system’s ability to interpret
ambiguous human commands and translate them into precise
navigation goals represents an important step toward more
intuitive assistive robotics.

V. CONCLUSION

This paper presented a proof of concept for a Vision-
Language Navigation (VLN) system capable of interpreting
natural language commands and navigating a home-like envi-
ronment. While not yet ready for real-world deployment, the
system establishes a solid foundation for future development.
The platform demonstrated reliable object recognition, spatial
mapping, and contextual language understanding. It can



identify goals based on object relationships and perform
multiple consecutive tasks without reinitialization, thanks to
persistent centroid storage. Key components, such as the LLM
and navigation module, performed consistently well within
the intended operational scope. However, several limitations
were identified. These include odometry drift in cluttered
spaces, timing mismatches in point cloud processing, and dif-
ficulty adapting to dynamic object changes. Additionally, the
system has not been fully parameter-optimized and currently
lacks mechanisms for handling object removal in changing
environments. Addressing these issues through sensor fusion
and SLAM approaches tailored for dynamic contexts will be
critical for advancing toward real-world applications. Despite
current constraints, the system demonstrates the feasibility
of integrating off-the-shelf AI tools into a cohesive, spatially
aware, language-guided robotic platform—offering a strong
starting point for further research and deployment.
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