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ABSTRACT

In environments with competing sound sources, speech intelligibility
can be significantly compromised. This paper addresses the near-end
listening enhancement (NELE) problem, i.e., the problem of pro-
cessing an available clean speech signal in order to maximize its in-
telligibility when it is subsequently presented to a human listener in
an adverse acoustic situation. We propose a time-invariant and low-
complexity NELE algorithm that maximizes an approximation of the
Speech Intelligibility Index by redistributing speech energy across
frequency bands. Unlike existing algorithms, the proposed algo-
rithm incorporates a mechanism that allows it to distinguish between
temporally fluctuating and non-fluctuating noise maskers by using
only long-term speech and noise statistics. Simulation results show
that the proposed method outperforms baseline algorithms, whether
time-invariant or time-varying, in a wide range of noise conditions.

Index Terms— Near-end listening enhancement, speech intelli-
gibility, linear time-invariant filters

1. INTRODUCTION

Speech communication plays a fundamental role in every aspect of
life. Unfortunately, it is often hindered by noise and reverberation,
which may affect the speech intelligibility of the received signal.
In this paper, we consider the situation where the clean signal is
available for processing before playback in a noisy background, e.g.,
public address systems. This problem is commonly referred to as
near-end listening enhancement (NELE) [1–4].

Many solutions to this problem find inspiration in how humans
adapt their speech production to the environment [3] in order to ef-
fectively convey their message, a phenomenon known as the Lom-
bard effect [5]. This speaking behavior occurs whenever humans
speak in a noisy environment, and is achieved by increasing the vo-
cal effort to produce an over-articulated speech signal that results
in higher intelligibility compared to neutrally-produced speech pre-
sented in the same noise and SNR level [6]. Some of these algo-
rithms apply time-invariant filters to the entire speech signal, with
the general effect of reducing its spectral tilt by boosting higher
frequencies, while maintaining the original speech energy [1, 7, 8].
More complex algorithms employ filters that can enhance the spec-
tral contour of the fundamental frequency [9] or the formants [10].
Other methods divide the speech signal into consecutive time seg-
ments and apply different time-invariant filters for each segment,
while maintaining the speech energy within each segment [11]. A
large class of methods shift energy not only across frequency bands
but also through time. This can be achieved, e.g., using dynamic
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range compression [10, 12–15], which increases intelligibility by
boosting low-energy components, such as transient sounds, at the
expense of higher energy components, like vowels. Some of these
methods further improve intelligibility by modifying the duration of
the uttered speech in an attempt to replicate this aspect of the Lom-
bard effect [12, 13] or by minimizing the temporal overlap between
the target speaker and a temporally fluctuating noise masker [16],
i.e., a type of noise whose amplitude varies significantly over time.
More recent work on NELE has focused on machine learning tech-
niques such as Gaussian mixture models [17–19] and deep neural
networks [20, 21] to learn the mapping of speech features from con-
versational to Lombard speech, or generative models [22] to learn
and produce the desired speech modification end-to-end.

In this paper, we focus on low-complexity solutions, and pro-
pose a time-invariant and low-complexity method inspired by opti-
malASII [7]. As [7], the proposed method relies on an estimate of
the per-critical-band SNR, but, unlike [7], this SNR is formulated as
a function of long-term temporal statistics of the noise. Specifically,
we modify the definition of the SNR by replacing the conventional
noise power with a fractile noise power. Despite its simplicity, in
simulation experiments, the proposed method outperforms baseline
methods such as SEO [9], the best performing algorithm in the Hur-
ricane Challenge 1 (HC-1) [2], and optimalASII [7].

2. REVIEW OF OPTIMALASII

In this section, we briefly review the original optimalASII algo-
rithm [7], as the proposed algorithm is closely inspired by it. We
note that optimalASII was named optimalSII in [23], but we use op-
timalASII to underline the fact that the objective function used is an
approximation of the SII (ASII).

OptimalASII processes the clean speech signal through a lin-
ear time-invariant filter. Let X(j, l) and V (j, l) denote the results
of passing a realization of the clean speech signal and the noise
through an auditory filterbank, whose filters are gammatone filters
with center frequencies equally spaced on the ERB scale and band-
widths of approximately 1 ERB. The indices j and l denote a sub-
band- and a time-index, respectively. OptimalASII assumes access
to the average energy of speech and noise within each sub-band,
here named long-term power, σ2

Xj
= 1/LX

∑LX
l=1 |X(j, l)|2 and

σ2
Vj

= 1/LV

∑LV
l=1 |V (j, l)|2, j = 1, ..., J , where LX and LV de-

note the number of speech and noise frames, respectively, and J is
the number of sub-bands. These are then used to compute the long-
term SNR ξj in each sub-band, defined as

ξj =
σ2
Xj

σ2
Vj

, j = 1, ..., J, (1)



Fig. 1. (a) Speech long-term power and (b) its spectrogram. (c, e) sub-band gains of the optimalASII and the proposed methods, respectively,
for SNR = -10 dB. (d, f) spectrograms of speech processed by the optimalASII and the proposed methods, respectively.

which are mapped to the ASII through the following relations [7]:

d(ξj) =
ξj

ξj + 1
, (2)

ASII =

J∑
j=1

γj · d(ξj), (3)

where the scalar 0 ≤ γj ≤ 1 is the value of the band-importance
function in the j-th sub-band as defined by the SII standard [24].
OptimalASII then maximizes the estimated intelligibility in terms
of ASII (as defined in (3)) subject to an energy constraint on the
processed signal. More specifically, optimalASII finds the optimal
set of sub-band gains α∗2

j to apply to the clean speech:

α∗2
j = argmax

α2
j≥0

J∑
j=1

γjd(α
2
jξj)

s.t.
J∑

j=1

α2
jσ

2
Xj

=

J∑
j=1

σ2
Xj

,

α2
jσ

2
Xj

≥ 0, ∀j.

(4)

Solving the problem leads to the following solution [7]:

α∗
j
2σ2

Xj
= max

(
σVj

√
γj√

ν
− σ2

Vj
, 0

)
, ∀j, (5)

where ν > 0 is chosen to satisfy the energy constraint defined in (4):

1√
ν
=

∑J
j=1 σ

2
Xj

+
∑

j∈M σ2
Vj∑

j∈M
√
γ
j
σVj

, (6)

and where M is the set of sub-bands whose optimal gains are posi-
tive. The solution of (4) can be implemented using a simple bisection
method to find the appropriate value of

√
ν [7].

3. MOTIVATION AND FORMULATION OF PROPOSED
ALGORITHM

In this section, we first provide a qualitative analysis of optimalASII
in order to identify its potential weaknesses (Sec. 3.1). This serves
as a motivation for the proposed method (Sec. 3.2).

3.1. Qualitative analysis of optimalASII

In HC-1 [2], optimalASII performed well in speech-shaped noise
(SSN), showing comparable results to SEO [9], the best performing
algorithm in the challenge. On the other hand, optimalASII per-
formed significantly worse when a competing speaker (CS) was pre-
sented along with the target speech. In fact, in this scenario, listening
tests revealed that optimalASII degraded speech intelligibility [2].

This degradation can be due to two reasons: first, it is well-
known [25] that SII is inherently incapable of dealing with fluctuat-
ing noise, since its prediction depends only on long-term averages of
the speech and noise energy, and thus temporal aspects of the noise
are ignored. Second, initial informal listening tests of optimalASII-
processed speech in the presence of CS and an analysis of the shape
of its sub-band gains over frequency revealed that optimalASII tends
to over-suppress frequency regions, especially in frequency bands
below 800 Hz, where the local SNR is low. To illustrate this, Fig. 1
shows the long-term power σ2

Xj
of speech along with its spectrogram

(Fig. 1(a, b)), as well as the frequency response of optimalASII and
the spectrogram of the processed speech signal (Fig. 1(c, d)) when
speech and CS noise are mixed at an SNR of -10 dB. The over-
suppression of low-frequency regions, which can be clearly observed
in Fig. 1(c, d), is undesirable as they contain significant information
about the target speech, e.g., the fundamental frequency and first for-
mants [26] (cf. Fig. 1(b, d)), which can be used by the listener for
speaker identification and speech understanding [27]. While in SSN
these regions are severely degraded over the entire duration of the



Fig. 2. Noise energy for SSN and CS in band j = 15 (cf = 522 Hz)
as a function of time along with the corresponding long-term fractile
noise power σ̃2

Vj
(ϕ = 0.3) and the conventional long-term power

σ2
Vj

. Note that while σ̃2
Vj

is different for SSN and CS, the long-
term noise power σ2

Vj
is the same for both signals. For visualization

purposes, the magnitudes are displayed on a dB scale.

target speech signal, in fluctuating noise, such as CS, the level of the
noise masker may be low enough to momentarily unmask the target
speech [28]. This is a well-known phenomenon, often referred to as
“listening in the dips” or “glimpsing” [16, 29].

3.2. Proposed method

Motivated by this analysis, we pursue the idea of developing an algo-
rithm which behaves like optimalASII in SSN, but avoids the over-
suppression in fluctuating noise (cf. Fig. 1(e)) to allow for glimpsing.

An immediate solution to dealing with fluctuating noise would
be to allow the model to process the clean speech signal in a time-
varying manner, e.g., where the estimate of the sub-band SNR ξj and
the optimal gain values α2

j are computed for and applied to succes-
sive time segments [11]. However, time-frequency processing often
leads to unpleasant artifacts in the processed speech and is usually
more computationally expensive than simple frequency-shape pro-
cessing. Instead, we propose to apply a simple time-invariant filter,
which is a function of not only the power but also temporal aspects
of the noise. More specifically, the proposed algorithm is based on
replacing the long-term sub-band noise power σ2

Vj
used in [7] with a

long-term fractile noise power σ̃2
Vj

. The ϕ-fractile noise power σ̃2
Vj

in the j-th band is here defined as

Prob
{
|V (j, l)|2 ≤ σ̃2

Vj

}
= ϕ, 0 ≤ ϕ ≤ 1, ∀l. (7)

i.e., the threshold value σ̃2
Vj

below which a fraction ϕ of the noise
energy |V (j, l)|2 in the j-th sub-band falls. This fractile noise power
σ̃2
Vj

then replaces the conventional noise power σ2
Vj

in (1) to get a
measure of the glimpses-aware fractile SNR ξ̃j :

ξ̃j =
σ2
Xj

σ̃2
Vj

, j = 1, ..., J. (8)

The proposed algorithm replaces ξj in (4) with ξ̃j and σ2
Vj

in (5) and
(6) with σ̃2

Vj
.

Fig. 2 helps to understand how the long-term fractile noise
power behaves differently in the presence of fluctuating and non-
fluctuating maskers by showing the noise energy |V (j, l)|2 in the
j-th sub-band (j=15, whose central frequency is cf=522 Hz) as a
function of time l for both CS and SSN noise along with their cor-
responding long-term fractile noise power σ̃2

Vj
and the conventional

long-term noise power σ2
Vj

as used by optimalASII. From the plot,

Fig. 3. Gains for each sub-band in the filterbank for different SNRs.
(a) optimalASII in SSN and (b) CS, (c) proposed method (ϕ = 0.3)
in SSN and (d) CS.

we can observe that the fractile power of the CS is much lower than
that of SSN, which is very close to the conventional noise power
used in the original method. This, in turn, means that ξ̃j ≃ ξj in
SSN, while ξ̃j ≫ ξj in CS.

Fig. 3 shows the effect of the proposed use of fractile noise
power by comparing the sub-band gains of optimalASII and the pro-
posed method for both SSN and CS. We observe that in SSN (cf.
Fig. 3(a, c)), the sub-band gains of optimalASII and the proposed
method are very similar. On the other hand, in fluctuating CS (cf.
Fig. 3(b, d)), the two methods use rather different gains, because the
fractile SNR ξ̃j is much higher than the conventional SNR ξj and,
consequently, no low frequency bands are severely suppressed.

4. RESULTS

We evaluate the performance of the proposed algorithm by com-
parison to relevant baselines. As baselines, we use the SEO algo-
rithm [9], which was the best performing algorithm in HC-1 [2], and
optimalASII [7], as the proposed algorithm is a modification of it.
All speech intelligibility improvements provided by the methods are
estimated using ESTOI [30] and STGI [31].

In the following, we assume that the proposed method decom-
poses speech and noise using a Hann window of length 512 samples
with a 50% overlap, at a sampling frequency of 16 kHz. The number
of sub-band used is set to J = 64 and the fractile ϕ = 0.15.

4.1. Sensitivity to the fractile value ϕ

The proposed algorithm relies on the choice of a single parameter,
namely the fractile value ϕ. Here, we demonstrate that the perfor-
mance is insensitive to a wide range of choices for this parameter.
To do so, the proposed algorithm is applied to the speech and noise
data from HC-1 [2] for different fractile values ϕ and evaluated in
terms of STGI and ESTOI, at SNRs between -30 and 10 dB.

Fig. 4 shows the performance of the proposed method as a func-
tion of the input SNR, for values of the fractile ϕ ∈ {0.1, 0.2, 0.3,
0.4, 0.5}. For the sake of space, only STGI scores are shown in
the figure, as ESTOI predicts similar results. Here we observe that,
as long as the fractile is chosen to be less than or equal to 0.5, the
predicted intelligibility improvements provided by the proposed al-
gorithm are very similar, thus suggesting an evident robustness to
this parameter.



Fig. 4. Performance of the proposed method in terms of STGI for
SSN (left column) and CS (right column) as a function of the SNR
for different fractile values ϕ.

Fig. 5. Performance in terms of STGI as a function of the input SNR
for speech and noise signals from HC-1. The left column shows the
performance in SSN, the right column in CS.

4.2. Performance evaluation - Hurricane Challenge 1

In this experiment, we evaluate the performance of the proposed al-
gorithm for speech and noise signals used in HC-1. Fig. 5 shows
the results in terms of STGI for different input SNRs. We see that
the proposed algorithm yields intelligibility improvements similar to
optimalASII in SSN and similar to SEO, but much better than op-
timalASII, in CS. Secondly, in line with the listening experiments
reported in the HC-1 [2], optimalASII and SEO exhibit similar per-
formance in SSN, while SEO greatly outperforms optimalASII in
CS. ESTOI scores are omitted for the same reasons as above.

4.3. Performance evaluation outside HC-1

The data used in HC-1 is limited, and only consists of a single male
speaker uttering sentences from the Harvard corpus [32] and a single
female speaker used to produce both SSN and CS.

The aim of this experiment is to evaluate the proposed algo-
rithm for different speakers and noise conditions. To do so, we
use a larger number of speakers drawn from three speech datasets,
namely Dantale II [33], the American English Matrix Sentence test
[34], and DARPA TIMIT [35]. As noise sources, we used SSN,
whose long-term spectrum matches the average long-term spectrum
of Dantale II, and competing speakers randomly drawn from the
three speech datasets mentioned above.

Table 1 reports STGI scores for the three datasets, the two noise
types, and 4 SNR conditions. The results show that the proposed
algorithm can effectively deal with both non-fluctuating and fluc-

SSN CS
Speech Method -15 dB -10 dB -5 dB 0 dB -20 dB -15 dB -10 dB -5 dB

D
an

ta
le Unprocessed 0.153 0.316 0.603 0.846 0.457 0.555 0.679 0.771

SEO [9] 0.508 0.725 0.857 0.925 0.618 0.710 0.808 0.868
optimalASII [7] 0.677 0.822 0.902 0.953 0.574 0.687 0.802 0.876

proposed 0.684 0.825 0.908 0.956 0.649 0.735 0.833 0.891

A
E

M
ST

Unprocessed 0.286 0.526 0.772 0.919 0.537 0.649 0.758 0.828
SEO 0.546 0.733 0.854 0.921 0.616 0.719 0.810 0.865

optimalASII 0.687 0.831 0.910 0.959 0.576 0.701 0.818 0.885
proposed 0.697 0.834 0.916 0.962 0.660 0.764 0.853 0.902

T
IM

IT

Unprocessed 0.267 0.473 0.707 0.875 0.475 0.598 0.722 0.817
SEO 0.516 0.726 0.857 0.918 0.591 0.702 0.803 0.869

optimalASII 0.655 0.816 0.902 0.946 0.520 0.663 0.790 0.876
proposed 0.676 0.828 0.908 0.951 0.668 0.770 0.860 0.915

Table 1. Performance in terms of STGI in SSN and CS at different
SNRs for three speech datasets: Dantale II, American English Ma-
trix Sentence test (AEMST), DARPA TIMIT.

Fig. 6. STGI scores for clean speakers from Dantale II and the ten
classes of noise in UrbanSound8K at four different SNRs.

tuating maskers, outperforming both baselines in every condition.
ESTOI scores are omitted for the same reasons as above.

In an additional experiment, we used environmental noise from
the UrbanSound8K dataset [36]. The purpose of this experiment
is to evaluate the algorithms when the long-term spectrum of the
noise is not speech-like. The results of this experiment are reported
in Fig. 6, which shows the STGI scores for each of the ten noise
classes present in UrbanSound8K at four different SNRs. We see
that the proposed method achieves higher STGI scores than the two
baselines in every noise condition and SNR.

5. CONCLUSION

In this paper, we presented a novel near-end listening enhancement
algorithm. The proposed algorithm is inspired by optimalASII [7]
which aims at maximizing an approximation of the Speech Intel-
ligibility Index under an energy constraint. However, unlike opti-
malASII, which relies on the long-term power of the background
noise, we propose to use the long-term fractile noise power to ac-
commodate the effect of “glimpsing” in fluctuating noises.

The proposed algorithm can discriminate between continuous
and fluctuating noise maskers by using only long-term statistics
of speech and noise. Despite its simplicity, the proposed method
yielded speech intelligibility improvements, in terms of ESTOI and
STGI, in every noise condition of the Hurricane Challenge 1 as well
as for a wide range of speech and real-world environmental noise
sources. Also, it performed similar to or better than relevant baseline
algorithms for the tested acoustic scenarios.

Future studies will assess the proposed algorithm through sub-
jective tests for speech intelligibility and listening effort.
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