Triclosan removal in wastewater treatment processes

Chen, Xijuan

Publication date: 2012

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Preface and acknowledgements

This dissertation is submitted in partial fulfillment of the requirements for obtaining the degree of Doctor of Philosophy (PhD). The dissertation consists of an introduction, a summary of project results with related literature and 8 supporting papers.

This PhD project was carried out at the Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University during the period December 2008 to November 2012, partly at the xenobiotic group, Department of analytical chemistry, University of Duisburg-Essen and partly at the Department of Environmental Science, Aarhus University. This PhD project has been financially supported by Danish Research Council for Technology and Production (FTP) which is gratefully acknowledged. The ozonation study was supported by German Federal Ministry of Economics and Technology within the agenda for the promotion of industrial cooperative research and development (IGF) based on a decision of the German Bundestag. The sludge reed bed study was supported by ProInno/AIF.

I want to heartily thank my supervisors, Jeppe Lund Nielsen and Kai Bester, for their patient guidance, supports and helps for these four years. They have supervised, taught, inspired and motivated me through hundreds of meetings and intensive discussions. This work would not have been succeeded without the help from many people in Denmark, Germany and China. I would like to thank Mr. Stefen Rehfus and Udo Pauly from Eko-Plant GmbH for their collaboration and support as well as Thomas Groß and E. Pieper for sampling in the reed bed sludge treatment study. Great thanks to Elke Dopp, Jochen Tuerk and Jessica Richard for their collaboration and valuable scientific inputs in the triclosan ozonation study. I acknowledge my colleagues in xenobiotic group of
University Duisburg-Essen for their support, discussion and cooperation. A special thanks to everybody in the Environmental Biotechnology group at Aalborg University and in the Department of environmental science of Aarhus University for the warm atmosphere and encouragement. All contributions and help are greatly appreciated. Finally, thanks with all my heart to my family – their supports, advice and love always make me enjoy studying here in the far away country and give me motivations to bring success home.

November 2012

Xijuan Chen
Table of Contents

Preface and acknowledgements .. 1
Table of Contents .. 3
Abstract... 4
Resumé (Abstract in Danish) ... 5
List of supporting papers ... 6
Introduction .. 7
1. Triclosan: Usage and characterization ... 7
2. Fate of triclosan in wastewater treatment plants .. 10
3. Occurrence of triclosan in the environment ... 12
4. Risks of triclosan in the environment ... 13
5. Transformation of triclosan in the environment .. 14
6. Objectives of the study ... 17
7. Technologies to remove triclosan after classical activated sludge treatment process .. 18
7.1 Ozonation treatment process (for wastewater) .. 18
7.2 Sludge reed bed treatment process (for sludge) .. 20
Project conclusions .. 23
Future perspectives .. 29
References ... 30
Abstract

Triclosan is an antimicrobial agent which is widely used in household and personal care products. Widespread use of this compound has led to the elevated concentrations of triclosan in wastewater, wastewater treatment plants (WWTPs) and receiving waters. To investigate the occurrence and fate of triclosan in the environment, analytical methods for the quantification of triclosan in wastewater, sludge and deposit were developed.

The fate of triclosan in a wastewater treatment plant (biological degradation, 19%; sorption to sludge, 61%; input into the receiving surface water, 20%) was detected during a field study. From the laboratory-scaled experiment biodegradation products such as 2,4-dichlorophenol, 4-chlorocatechol, triclosan-methyl, monohydroxy-triclosan, dihydroxy-triclosan and triclosan O-sulfate have been identified. In an enrichment culture originated from activated sludge, *Methylobacillus* was identified as one of the active triclosan degraders.

Furthermore, two technologies have been studied for further removal of triclosan in wastewater and sludge. Complete removal of triclosan from wastewater could be achieved by using ozone and more than 95% removal of triclosan from sludge could be found by using reed bed sludge treatment process.
Resumé (Abstract in Danish)

Triclosan er et bakteriehæmmende middel, som ofte anvendes i husholdningsprodukter og produkter til personlig pleje. Den store anvendelse af stoffet har ført til forhøjede koncentrationer af triclosan i spildevand, rensningsanlæg og vandmiljøet nær udløb fra rensningsanlæg. For at undersøge triclosans forekomst og skæbne i naturen, blev der udviklet analytiske metoder til kvantificering af triclosan i spildevand, slam og sedimenter. Triclosans skæbne i et spildevandsanlæg (biologisk nedbrydning, 19%, absorbtion i slam, 61%, udledning til det modtagende vandmiljø, 20%) blev målt som en del af et feltstudie. I laboratorie eksperimenter er nedbrydningsprodukter såsom 2,4-dichlorphenol, 4-chlorocatechol, triclosan-methyl, monohydroxy-triclosan, dihydroxy-triclosan og triclosan O-sulfat efter biologisk nedbrydning blevet identificeret. I en beriget kultur, der stammede fra aktivt slam, blev *Methylobacillus* identificeret som en af de, der aktivt nedbryder triclosan.

Desuden er to efterbehandlings-teknologier til at fjerne yderligere triclosan fra spildevand og slam blevet undersøgt. Fuldstændig fjernelse af triclosan fra spildevand kunne opnås ved hjælp af ozon og mere end 95% fjernelse af triclosan fra slammet kan undersøges ved anvendelse af en rodzone slam behandlingsproces.
List of supporting papers

Paper 1: Chen XJ., Pauly U., Rehfus S. and Bester K. Personal care compounds in a reed bed sludge treatment system, Chemosphere 76 (2009) 1094–1101

Paper 3: Chen XJ. and Bester K. Determination of organic micro-pollutants such as personal care products, plasticizer and flame retardants in sludge, Anal Bioanal Chem (2009) 395:1877–1884

Introduction

1. Triclosan: Usage and characterization

Triclosan (2,4,4’-trichloro-2’hydroxydiphenylether) is a synthetic, lipid-soluble, broad spectrum antimicrobial agent which was first introduced in the health care industry in 1972 and since 1985 as a compound added to toothpaste in Europe (Joens et al., 2000). It is also referred as Irgasan, DP300, FAT 80’023, CH 3565, and GP 41-353 in a number of toxicology studies. It is a chlorinated organic compound with functional groups representative of both ethers and phenols (Table 1). At normal room temperature, triclosan appears as a white to off-white crystalline powdered solid with a slight aromatic odor and is slightly soluble in water but readily soluble in most organic solvents due to its physicochemical properties which are shown in Table 1.

Triclosan has a specific mechanism to inhibit bacteria activity, i.e. by inhibiting the enoyl-acyl carrier reductase enzyme to block the lipid synthesis, which is necessary for cell reproduction, and therefore prevents the bacteria from synthesizing new fatty acids and thereby stop building cell membranes as well as reproducing (McMurry et al., 1998; Heath et al., 1999).
Table 1. Physico-chemical parameters of triclosan (MS Search v2.0; EPI Suit 4.0).

| Molecular structure | \[
\begin{array}{c}
\text{Cl} \\
\text{O} \\
\text{Cl} \\
\end{array}
\]
Chemical name	2,4,4’-trichloro, 2’-hydroxy-diphenylether
Chemical abstracts service registry (CAS) number	3380-34-5
Synonyms	5-chloro-2-(2,4-dichlorophenoxy)phenol
Molecular formula	\(\text{C}_{12}\text{H}_7\text{Cl}_3\text{O}_2 \)
Molecular weight	290 g/mol
Vapour pressure	0.00062 Pa
Water solubility	4621 \(\mu \text{g}/\text{L} \)
Boiling point	373.62 °C
\(\log \text{Kow} \)	4.2-4.76
\(\log \text{Koc} \)	4.265
pKa	7.9

It is known that triclosan in lower concentrations is recognized as bacteriostatic (Champlin et al., 2005), while it becomes bactericidal in higher concentrations (Suller and Russell, 2000; Russell, 2004). According to the results from Jones et al. (2000),
personal care products which contain 1% of triclosan offers the ideal balance of antimicrobial effectiveness and mildness for use in high-risk, high-frequency handwashing health care settings. It has shown to be highly active against some microorganisms, such as *Staphylococcus*, *Streptococcus* and *Mycobacterium* (Levy et al., 1999), as well as some fungi and protozoa (i.e. *Plasmodium falciparum*, *Toxoplasma gondii*) (Yazdankhah et al., 2006). Effectiveness of triclosan is also based on the fact that it can stay on the skin for 12 hours after applied and continues killing bacteria (Glaser, 2004).

In 1965, triclosan was produced by the specialty chemical company “Ciba” in Switzerland (Levy et al., 1999) and then was introduced into personal care products in the USA as an ingredient in deodorants and hand soaps. Due to the bactericidal property and the chemical stability, triclosan became popular as an antimicrobial substance in a wide range of applications and the demand of it has been growing rapidly in the last 40 years (Fiss et al., 2007).

Nowadays, triclosan is used in 140 different types of consumer products including liquid hand soap, shower gels, hand lotions, toothpaste, mouthwashes, deodorants, as well as in the treatment of textiles and in plastic manufacture such as towels, mattresses, toothbrushes, phones, kitchenware and plastic food containers, shoes, clothing and children’s toys (Levy et al., 1999; Fiss et al., 2007). Triclosan has also been used in hospitals and medical products to control bacteria and the spread of disease (Bhargava et al., 1996; Singer et al., 2002).

In the European Union (EU), about 85% of the total amount of triclosan is used in personal care products, compared to 5% in textiles and 10% in plastics and food...
contact materials (SCCP/1192/08, 2009). The quantity used within the EU reached approximately 450 tons (as 100% active) in the year 2006 (SCCP/1192/08, 2009).

2. Fate of triclosan in wastewater treatment plants

Widespread use of triclosan provides a number of pathways to enter the wastewater and finally reach the wastewater treatment plants (WWTPs). Triclosan has been detected in the influent of WWTPs in concentrations from ng/L to μg/L (Table 2). In WWTPs using activated sludge as secondary treatment process, about 42-99% removal was detected. The ways of elimination of triclosan in WWTPs include mineralization, transformation by oxidation or reduction and sorption to sludge (Latch, 2003; Bester, 2003, 2005; Yu et al., 2006). In fact, both biodegradation and sorption to activated sludge may explain the removal fate of triclosan in WWTPs.

Although triclosan is an bactericidal compound to many bacteria or fungi, some microorganisms are resistant to triclosan and even able to use it as a sole carbon source. In a continuous activated sludge system study in which the influent level of triclosan was increased from 40 μg/L to 2000 μg/L, removal of triclosan exceeded 98.5% (Federle et al., 2002). Similarly, Stasinakis et al. (2007) have reported that more than 90% removal of triclosan was detected in two continuous-flow activated sludge systems with received triclosan concentration in 500-2000 μg/L. Increasing levels of triclosan concentration had no major adverse on wastewater treatment process, including chemical oxygen demand, biological oxygen demand and ammonia removal (Federle et al., 2002).
Table 2. Fate of triclosan in different WWTPs.

<table>
<thead>
<tr>
<th>Country</th>
<th>Inflow concentration (ng/L)</th>
<th>Effluent concentration (ng/L)</th>
<th>Sludge concentration (ng/g DW)</th>
<th>Removal rate</th>
<th>Literature/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>670-5115 4700-1600 3800-16600</td>
<td>40-1117 70±60 200-2700</td>
<td>79-97%</td>
<td>Thompson et al., 2005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18850 13703 86161</td>
<td>1036 180 5370</td>
<td>96%</td>
<td>Heidler and Halden, 2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32639 453-4530</td>
<td>274 36-212</td>
<td>>95%</td>
<td>McAvoy et al., 2002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>142±16.5</td>
<td>22.5±1.4</td>
<td>94%</td>
<td>Kumar et al., 2010</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>1200±80 7300</td>
<td>51±8 1500</td>
<td>-</td>
<td>Bester, 2003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4800</td>
<td>550 620</td>
<td>-</td>
<td>Bester, 2005</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>600-1300 500-1300</td>
<td>11-98 70-650</td>
<td>-</td>
<td>Nakada et al., 2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2680 11890</td>
<td>262 269</td>
<td>98%</td>
<td>Nakada et al., 2010</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Singer et al., 2002</td>
</tr>
<tr>
<td>Australia</td>
<td>586-605</td>
<td>23-434</td>
<td>90-16790</td>
<td>72-93%</td>
<td>Ying and Kookana, 2007</td>
</tr>
</tbody>
</table>

In WWTPs about 30-50% of the triclosan could be recovered in sludge as triclosan is relatively lipophilic with log K_{ow} of 4.2-4.8 and log K_{oc} of 4.3 (Bester, 2003, 2005; Coogan et al., 2007; Heidler and Halden, 2007; Kumar et al., 2010; Nakada et al., 2010).
On the other hand, this means that most removal occurs due to biodegradation processes (Heidler and Halden, 2007; Kumar et al., 2010; Nakada et al., 2010). Due to the incomplete removal triclosan has also been found in the effluent of WWTPs in concentrations of 11-1117 ng/L, whereas typical concentrations of triclosan in sludge were 0.5-30 ng/g dry weight (DW) (Table 2).

3. Occurrence of triclosan in the environment

The widespread use and incomplete removal of triclosan in WWTPs provides a number of pathways to enter the environment. Previous reports described triclosan as one of the most commonly encountered substances in solid and water environmental compartments (Lindström et al., 2002; Singer et al., 2002; Wilson et al., 2003). The chemical properties of triclosan indicate that it may also bioaccumulate and persist in the environment, and laboratory tests have shown it to be toxic to aquatic species, with algae being one of the most sensitive species (Chlamydomonas, Scenedesmus, Navicula, Synedra) (Wilson et al., 2003).

Lindström et al. (2002) has detected that the concentrations for triclosan in lakes and a river in Switzerland were up to 70 ng/L. Whereas the concentrations of triclosan in the river Ruhr in Germany was ranged from <3 to 10 ng/L (Bester, 2005). Andresen et al. (2007) has reported that the concentration of triclosan were around 20 ng/L in Hamilton Harbor and approximately 1 ng/L in Lake Ontario. Wilson et al. (2009) have found an average water column concentration of 3 ± 2 ng/L in the lower Hudson River Estuary. Urban wastewater discharge and industrial activities are identified as the main source
for triclosan as high values up to 11-98 ng/L were found in the rivers receiving WWTPs effluents (Bester, 2005).

Triclosan can partition to sewage sludge during wastewater treatment and subsequently transfer to soil when applied to land. High concentrations of triclosan were found in a field receiving biosolid in land application (Langdon et al., 2012). Furthermore, triclosan has also been detected at concentrations of 5-27 ng/g in marine sediments of Barker Inlet, South Australia (Fernandes et al., 2011).

In addition, several studies report that triclosan have been detected with 25-2444 ng/g in the indoor air, which is supposed to be associated with volatilization of liquid personal care products and diffusion from textiles and other materials treated with triclosan as bactericide (Canosa et al., 2007; Fan et al., 2010).

4. Risks of triclosan in the environment

Considering triclosan has been detected in environment compartments discussed in last subchapter, there is a potential risk of adverse effects in aquatic, terrestrial environment and humans.

Ricart et al. (2010) has reported that triclosan affect both bacterial and algal communities, indicating that the potential environment risk of triclosan is high especially in rivers where water scarcity results in low dilution. Delorenzo et al. (2007) has suggested that triclosan shows low toxicity risk but high potential for chronic and sublethal effects to estuarine organisms. Lin et al. (2012) has reported that triclosan may have potential biochemical and genetic toxicity toward earthworms (*Eisenia fetida*). Considering the PNEC (Predicted No-Effect Concentration, 7ng/L) and NOEC (No Observed Effect Concentration, 700 ng/L) values of triclosan (Thompson et al., 2005),
the risk should be more related to chronic effect (due to the bioaccumulation) than acute impact.

In soils, triclosan has been shown to increase dehydrogenase activity (Ying et al., 2007), and to affect microbial respiration rates (Waller and Kookana, 2009; Butler et al., 2011). The study of Butler et al. (2011) suggests that triclosan inhibits soil respiration but a subsequent acclimation of the microbial community occurs.

Due to the widespread use of triclosan, there is potential for humans to receive exposure, and in fact, triclosan has been detected in human milk (Adolfsson-Eric et al., 2002; Toms et al., 2011), urine (Sandborgh-Englund et al., 2006; Queckenberg et al., 2010) and plasma (Hovander et al., 2002; Sandborgh-Englund et al., 2006), indicating that the human body can be influenced by an individual use of triclosan containing products. It is known that triclosan in lower concentrations may disrupt thyroid function and therefore be recognized as bacteriostatic (Champlin et al. 2005). Guo et al. (2012) has reported that triclosan inhibits adipocyte differentiation of human mesenchyme stem cells under concentrations that are not cytotoxic and in the range (0.1-8.1 μg/L, Sandborgh-Englund et al., 2006) observed in human blood. Additionally, triclosan has also been linked to a range of health effects, such as skin irritation, allergy susceptibility, liver and inhalation toxicity (Coogan et al., 2007).

5. Transformation of triclosan in the environment

Triclosan have triggered an increasing concern for several decades all over the world. It is toxic, last for a long time in the environment, and may travel long distances far from their sources of usage, release and emission. Under the aerobic condition normally present in the sub-surface layers of water, triclosan is expected to undergo primarily
photodegradation and biodegradation (Tixier et al., 2002, Bester, 2005). Triclosan can
give derivatives which can be more persistent and more toxic than the parent compound.
Furthermore, triclosan and its transformation products can accumulate in fatty tissues of
living organism leading to undesirable effect to ecosystem and the human body.
Photodegradation is the dominant degradation pathway for triclosan in surface waters.
Tixier et al. (2002) found that direct phototransformation accounted for 80% of the
observed total elimination of triclosan from the lake within two months. Degradation
products such as chlorophenol, dichlorophenol and dioxin derivatives have been
identified (Tixier et al., 2002; Ferrer et al., 2004; Aranami and Readman, 2007; Wong-
Wah-Chung et al., 2007; Chen et al., 2008; Son et al., 2009). The degradation products
were formed also under environmental conditions in wastewater matrices, thus
suggesting their presence in real wastewater treatment process and environmental
aquatic systems (Ferrer et al., 2004). Half-life of triclosan photodegradation in the air is
about 1 day (Halden and Paull, 2005).
Biodegradation of triclosan has also been described by several investigators. Its half-life
is calculated as 11 days in surface water (Bester, 2005), 18-107 days in sludge
amended soil (Lozano et al., 2010; Ying et al., 2007; Wu et al., 2009; Waria et al., 2011),
18-78 days in the silty clay loam (Waria et al., 2011; Kookana et al., 2011) and 421 days
in the fine sand (Waria et al., 2011) depending on the initial concentration and the
environmental factors (Stasinakis et al., 2007). Under these conditions, triclosan-methyl
has been reported as the most often occurring transformation product, which presents a
greater potential for bioaccumulation than triclosan due to its log kow 5.0 (Balmer et al.,
2004; Waria et al., 2011).
Triclosan-methyl was detected in various aquatic environments such as WWTPs, lakes and rivers (McAvoy et al. 2002; Lindström et al. 2002). Although the concentrations of triclosan-methyl were very low in surface waters with less than 1 ng/L (Balmer et al. 2004), it is bio-accumulating to a high extent, and causes currently the dominating peak when analyzing lipophilic pollutants in fish from urban waters. The concentrations of triclosan-methyl were up to 35 ng/g (wet weight) and up to 365 ng/g on a lipid basis in the fish collected in Switzerland (Balmer et al., 2004). Additionally, occurrence of triclosan-methyl was detected at concentrations <11 ng/g in marine sediments of Barket Inlet, South Australia, which was linked to both wastewater discharges and biological methylation of triclosan (Fernandes et al., 2011).

Biodegradation products such as hydroxylcompounds (monohydroxy-triclosan and dihydroxy-triclosan) and the ether bond cleavage products (4-chlorophenol and 2,4-dichlorophenol) have been reported by Kim et al., (2010) and Wu et al. (2010). Veetil et al. (2012) have found that triclosan could be biodegraded under aerobic, anaerobic and anoxic conditions and phenol, catechol and 2,4-dichlorophenol were among the products.

Sonochemical degradation of triclosan in urban runoff and wastewater influent has been investigated by Sanchez-Prado et al. (2008) and suggesting a fast and complete conversion of triclosan without accompanied toxic by-products. Levy et al. (1999) found that under exposure to ozone the antibacterial activity of triclosan is derived primarily from its phenol ring, via van der Waals and hydrogen-bonding interactions with the bacterial enoyl-acyl carrier reductase enzyme.
Furthermore, there are reports that suggest incineration of textile products containing triclosan may result in the formation of dioxin-like substances (NICNAS, 2009).

6. Objectives of the study

Considering there is a severe lack of knowledge on the fate of triclosan in the environment, i.e. 1) by which process and in which part of the treatment plants is triclosan removed and 2) by which process is triclosan-methyl generated, 3) to what compounds is triclosan biodegraded and 4) are there some treatment technologies which can prevent the emission of triclosan to the environment. The primary goal for this project was to address these issues.

1) The fate of triclosan in WWTPs was investigated through establishing a complete mass balance of triclosan in single process step analysis in a selected wastewater treatment plant.

2) The formation as well as the mass balance of triclosan-methyl was measured in the same wastewater treatment plant.

3) The biodegradation of triclosan was analysed through laboratory-scale experiments by using activated sludge bioreactors under aerobic, anaerobic and anoxic conditions.

4) Two treatment technologies were involved in this study.

The incomplete removal of triclosan in WWTPs leading to undesirable discharges of triclosan residuals to surface water. Thus experiment on ozonisation of triclosan was carried out to determine the removal rate and transformation products, as well as to assessing the potential of ozonisation as a post-treatment technology in elimination of triclosan in full-scale treatment plant.
Moreover, due to the high partition rate of triclosan to sewage sludge during wastewater treatment and high concentrations of triclosan in the field receiving sludge in land application, removal of triclosan in reed bed sludge treatment technology has been investigated. The goal of the study was to investigate how triclosan and other personal care products (PCPs) were removed and how the different conditions such as temperature, oxygen concentration, macrophytes may affect the triclosan removal in sludge reed beds.

7. Technologies to remove triclosan after classical activated sludge treatment process

7.1 Ozonation treatment process (for wastewater)

As conventional wastewater treatment processes are unable to act as a reliable barrier concerning triclosan, it is discussed to introduce additional advanced treatment technologies in the areas where a persistent pollution problem has been recognized or anticipated. Ternes et al. (2003) and Ikehata et al. (2008) have evaluated different technologies including ozonation and advanced oxidation processes, membrane bioreactor, membrane filtration and activated carbon adsorption, suggesting that chemical oxidation using ozone is a highly effective treatment process for a wide spectrum of emerging organic pollutants, including pesticides, pharmaceuticals, personal care products, surfacants, microbial toxins and natural fatty acids.

Ozone (O₃) is a very powerful disinfecting and deodorizing gas. The ability of ozone to disinfect polluted water was recognized in 1886 by de Meritens (Laurie and Gilmore, 2008). However, the widespread introduction of ozone in drinking water treatment
started in the 1960s (Landlais et al., 1991). For a long time ozone has been used in removal of bacteria, virus, algae and fungi as well as sulfur, thus also in eliminating taste and odor problems, as well as in oxidizing and mineralizing organic chemicals (Landlais et al., 1991). Nowadays ozonation followed by granular activated carbon filtration is already a standard method for the treatment of raw surface water to produce drinking water.

However, the experience gained in the drinking water area can also be used in applying the method to wastewater treatment. Ozonation has recently emerged as an important technology for the oxidation and destruction of a wide range of organic pollutants in wastewater (Ikehata et al., 2006). It has been proven to be an effective post-treatment technique for pharmaceuticals and personal care products (Carballa et al., 2007; Ikhata et al., 2008; Wert et al., 2009). Figure 1 show an ozone reactor connected to a sand filter installed after the biological treatment step at the Wüeri WWTP in Regensdorf, Switzerland. Substances reacting fast with ozone, i.e. most of the micropollutants were brought to concentrations below the detection limit by an ozone dose of 0.47 g O₃/g DOC (dissolved organic carbon) (Hollender et al., 2009; Zimmermann et al., 2011).
Figure 1. Configuration of the Wüeri WWTP in Regensdorf, Switzerland which has implemented an ozone treatment process. Ozone was produced from liquid oxygen and injected into the existing, but modified flocculation reactor between secondary clarifier and sandfiltration.

Moreover, Suarez et al. (2007) reported that nearly 100% of triclosan depletion was achieved for a 4 mg/L O_3 dose applied to a wastewater containing 7.5 mg/L of DOC, while Wert et al. (2009) reported that >95% triclosan removal was independent of water quality when the O_3 exposure ($\int O_3 \, dt$) was measurable (0-0.8 mg min/L).

7.2 Sludge reed bed treatment process (for sludge)

Sewage sludge (also referred to biosolids) has been used as fertilizer on agricultural land because of its high content of phosphorous and nitrogen (Fytili and Zabaniotou, 2008). This usage of sludge is controversial because of its high content of xenobiotics and heavy metals (Fytili and Zabaniotou, 2008). In 2005 ca. 10 million tons (dry matter) of sludge were produced by sewage treatment plants in Europe, of which approximately 37% of that was used in agriculture (Fytili and Zabaniotou, 2008). Currently sludge in
urban regions is usually stabilised for 10-40 days in anaerobic digesters. However, for rural regions another method of sludge stabilisation has been developed, in which the sludge is treated for about ten years by reed beds to dewater and detoxify the sludge. The reed bed treatment plant is different to conventional dry beds and sludge polders with a new type technology, as

A) The reed beds are equipped with *Phragmites australis* reeds, which influence the dewatering, and further stabilisation and the sanitizing of the sewage sludge.

B) The treatment process takes place in dedicated beds, which are separated from the soil and the ground water by polyethylene foil (PE) to prevent the contamination of the soil and groundwater (Pauly et al., 2006).

Reed beds facilities typically consist of several (often 7-10) beds (Figure 2). Each reed bed is lined with a drainage system to enhance the dewatering of the sludge. The leached water is then pumped back into the wastewater treatment plant. The sludge is pumped straight onto the beds throughout the year in pre-determined quantities and at preset intervals. Depending on plant design, the capacity of the beds is exhausted after 6-12 years (Nielsen, 2003). After a resting phase of approximately one year, the individual beds are cleared and are then available again for a fresh loading cycle. Reed beds for sludge dewatering and mineralization offer an economically attractive alternative to pressure dewatering and centrifugation. Their primary advantages is that they are simple in design and operation, require low manpower (Cooper et al., 2004) and suitable for field or forest application as fertilizer as processed sludge residue complies with agriculture standards (Nielsen and Willoughby, 2007). Nowadays reed beds have been built in many European countries (Haber et al., 1995; Cooper et al.,
2004) and in the USA (Kim and Cardenas, 1990). They have been considered as a low cost and low contamination method considering suspended solids and BOD₅ removal in treating wastewater (Cooper et al., 1999, Wood et al., 2007, Zhao et al., 2008). For the treatment of sludge, true reed beds have been applied in respect of reducing volume, breaking down organic matter and increasing the density of sludge (Nielsen, 2003, 2005, Gustavsson et al., 2007).

Figure 2. Reed bed facility located in Kalkar-Hönnepel, Germany. It is consisting 7 reed beds covering 20,400 m² (outlined in red).
Project conclusions

This study was carried out to fill the gap in knowledge concerning the biodegradation and emission of triclosan in WWTPs and further removal of triclosan after the WWTPs.

Full scale study (unpublished): In the case study of Aabybro WWTP, 77% of triclosan was removed by the WWTP, which is relatively low due to the low influent concentration. The WWTP was chosen because it has separated denitrification and nitrification process, to detect the removal of triclosan and formation of triclosan-methyl under different conditions. During the treatment process, approximate 23% of the triclosan was emitted to the environment by effluent water; 57% of the triclosan was adsorbed to sludge particles and approximate 20% was biodegraded, in which approximate 5% triclosan transformed into triclosan-methyl as shown in Figure 3. Most of the transformation process (triclosan to triclosan-methyl) occurred in the nitrification process under aerobic conditions. The sorption on sludge contributed significantly to triclosan removal.
Laboratory mechanistic study (published in paper 5 and 7): In static unfed laboratory-scale activated sludge reactors under aerobic conditions within 7 days, the removal rates (pure biodegradation) of triclosan were relatively lower (75-86%) when the starting concentration was low (≤0.5 mg L⁻¹), and reached higher values (>99%) when the starting concentration was high (≥1 mg L⁻¹), while less removal was observed under anaerobic and anoxic conditions. The tentative half-life of triclosan degradation in sludge reactor under aerobic conditions was estimated to be 54-86 hours. One percent of the triclosan was converted to triclosan-methyl under aerobic conditions, less under anoxic (nitrate reducing) and none under anaerobic conditions. Under aerobic conditions, 10% of triclosan could be recovered in sludge (paper 5) and 7% was transformed into 2,4-dichlorophenol (paper 8). More transformation products such as 4-
chlorocatechol, monohydroxy-triclosan, dihydroxy-triclosan and triclosan O-sulfate have been identified (Figure 4) (paper 8). In an enrichment culture originated from activated sludge, *Methylobacillus* was identified as one of the active triclosan degraders by using DNA based stable isotope probing (DNA-SIP) combined with microautoradiography-fluorescence in situ hybridization (MAR-FISH) (paper 7).

![Proposed biodegradation pathway of triclosan](image)

Figure 4. Proposed biodegradation pathway of triclosan.

Ozonisation study (published in paper 6): Contamination of surface water and ground water with triclosan is an emerging issue in environment due to the incomplete removal of triclosan in WWTPs. Additional ozonation treatment technology could be used for triclosan removal in drinking water, wastewater and surface water. The treatment process can remove triclosan completely and convert it into the products: 2,4-dichlorophenol, chlorocatechol, monohydroxy-triclosan and dihydroxy-triclosan (paper
6. Increasing the ozone amounts in the reactions leads to decreased concentration of triclosan as well as its oxidation by-products, proving ability to remove triclosan by ozone treatment technology (Figure 5). The transformation product 2,4-dichlorophenol shows lower genotoxic effects than triclosan at the tested concentrations, but this compound is classified to be toxic to aquatic organisms. The other transformation products cannot be assessed up to now.

![Figure 5. Chromatograms of samples by adding ozone into triclosan solution for 2, 4, 5 and 10 minutes measured by GC/MS.](image)

Reed bed study (published in paper 1, 2, 3, 4). The reed bed sludge treatment study showed that the reed bed sludge treatment technology is able to reduce persistent organic pollutant such as bis(2-ethylhexyl) phthalate (DEHP), triclosan, and 1-(2,3,8,8-tetramethyl-1,2,3,4,5,6,7,8-octahydro-naphthalen-2-yl) ethan-1-one (OTNE) significantly. In thirteen months of reed bed sludge treatment process, the concentrations of some
compounds such as OTNE, triclosan, and DEHP in this sludge reed bed treatment were decreased. However, concentrations of other compounds such as polycyclic musk compounds 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6 hexamethyl-1,2,3,4 tetrahydronaphthalene (AHTN) did not change during this experiment. OTNE and triclosan degraded faster in the bottom layer while DEHP degraded faster in the top layer, which indicates different regimes in the different layers and different degradation processes in the respective layers (Figure 6) (paper 1, 2 and 4).

![Figure 6. Concentration of triclosan during the experiment period in top layer (0-20 cm from surface), middle layer (20-40 cm from surface) and bottom layer (40-60 cm from surface) of the reed beds. Error bars are from the stated uncertainty from the method development.](image-url)
Considering half-lives of 300 to 900 days, this sludge reed bed can remove more than 95% of triclosan in its 10 years production cycle. If the sludge is to be used as fertilizer in agriculture the use of reed bed treatments can help considerably to decrease the contamination of sludge. An accounting of material flows in addition showed that only a small fraction (<1%) of the target substances was washed out (leached) with the effluent and the uptake of personal care products into the biomass of the macrophytes can also be neglected.
Future perspectives

In WWTPs using activated sludge as secondary treatment process, most of the removal occurred due to the adsorption and biodegradation in the activated sludge treatment process. In this study biodegradation of triclosan and formation of metabolites have been investigated in laboratory-scaled experiment. However, identification of the metabolites in real WWTPs is strongly needed. Further studies to address bioaccumulation and toxicity of the metabolites will also be required.

Based on the available data, a significant part of triclosan in wastewater is expected to be removed by WWTPs, the residues could be removed by additional ozonation technology. Further research could be focused on assessment of the oxidation capacity of a full-scale ozonation step after the secondary wastewater effluent. Investigation on oxidation of micropollutant as well as formation and removal of byproducts will be necessary.

Regarding the results from the reed bed sludge treatment process, more than 95% of triclosan is expected to be removed after 10 years life cycle. Further research could also be conducted to determine the effectiveness of reed bed technology on other organic micropollutants and the byproducts.
References

analyses for the elucidation of the photodegradation products of triclosan in wastewater samples. Rapid Commun. Mass Spectrom. 18, 443-450

Kumar KS., Priya SM., Peck AM. and Sajwan KS. (2010) Mass Loadings of Triclosan and Triclocarbon from Four Wastewater Treatment Plants to Three Rivers and Landfill in Savannah, Georgia, USA. Arch. Environ. Contam. Toxicol. 58, 275-285

Laurie A. and Gilmore PE. (2008) OzonationOverview for Operators. GAWP 2008 Fall Conference & Laboratory Symposium

Scientific Committee on Consumer Products (SCCP) (2009) Opinion on triclosan. SCCP/1192/08

Tixier C., Singer HP., Canonica S. and Muller SR. (2002) Phototransformation of triclosan in surface waters: A relevant elimination process for this widely used
biocide - Laboratory studies, field measurements, and modeling. Environ. Sci. Technol. 36, 3482-3489

Ying GG., Yu XY. and Kookana RS. (2007) Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environ.Pollut. 150, 300-305

Research paper 1:

Chen XJ., Pauly U., Rehfus S. and Bester K. Personal care compounds in a reed bed sludge treatment system, Chemosphere 76 (2009) 1094–1101
1. Introduction

Sludge (also referred to as biosolids) has long been used as fertilizer on agricultural land. The usage of sludge as fertilizer is controversial because of possible high concentration of xenobiotic compounds, heavy metals as well as pathogens. In this study, the fate of the xenobiotic compounds triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol), OTNE (1-(2,3,8-tetramethyl-1,2,3,4,6,7,8-octahydro-4,6,6,7,8-pentamethyltricyclo[6.3.1.0 3,7]dodec-2-yl)ethan-1-one), HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8-hexamethylcyclopenta(g)-2-benzopyran), AHTN (7-acetyl-1,1,3,4,4,6 hexamethyl-1,2,3,4 tetracyclonaphthalene), and DEHP (bis(2-ethylhexyl)phthalate) in advanced biological treatment of sludge was determined.

During 13 months of field-incubation of the sludge in reed beds, the xenobiotic compounds were analysed. The bactericide triclosan was reduced to 60%, 45%, and 32% of its original concentration in the top, middle, and bottom layer. The fragrance OTNE was decreased to 42% in the top layer, 53% in the middle layer, and 73% in the bottom layer, respectively. For DEHP a reduction of 70%, 71%, and 40% was observed in the top, middle, and bottom layer, respectively. The polycyclic musk compounds HHCB, AHTN, and the primary metabolite of HHCB, i.e., HHCB-lactone showed no degradation in 13 months during the experimental period in this installation. Tentative half-lives of degradation of triclosan, OTNE and DEHP were estimated to be 315–770 d, 237–630 d, and 289–578 d, respectively.

Each reed bed is lined with a drainage system to enhance the dewatering of the sludge. The leached water is then pumped back into the wastewater treatment plant. The leached water is pumped straight onto the beds throughout the year in pre-determined quantities and at preset intervals. Depending on plant design, the capacity of the beds is exhausted after 6–12 years (Nielson, 2003). After a resting phase of approximately one year, the individual beds are cleared and are then available again for a fresh loading cycle.

1.1. Compounds included in this study

Musk fragrances such as HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8-pentamethyltricyclo[6.3.1.0 3,7]dodec-2-yl)ethan-1-one), AHTN (7-acetyl-1,1,3,4,4,6 hexamethyl-1,2,3,4 tetracyclonaphthalene), which is
mainly used in domestic purpose as well as OTNE (1-(2,3,8,8-tetramethyl-1,2,3,4,5,6,7,8-octahydro-naphthalen-2-yl)ethan-1-one), triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol), DEHP (bis(2-ethylhexyl)phthalate) have recently been identified as major anthropogenic organic contaminants in sewage sludge (Simonić et al., 2002; Kinney et al., 2006).

Triclosan is currently used as an antimicrobial agent in toothpaste, mouthwash, and in functional clothing such as sport shoes and underwear and as a stabilizing agent in a multitude of detergents and cosmetics (Adolfsson-Erici et al., 2002). Additionally, it is used as an antimicrobial agent in polymeric food cutting boards. Approximately 1500 tonnes are produced annually worldwide, and approximately 350 tonnes of these are applied in Europe (Singer et al., 2002). Triclosan has a low water solubility and very high potential of bio-accumulation (Coogan et al., 2007). Studies have increasingly linked triclosan to a range of health and environmental effects, skin irritation, allergy susceptibility, and ecological toxicity to the aquatic and terrestrial environment (Coogan et al., 2007). In sludge from North Rhine-Westphalia, triclosan is widespread and the concentration is in the range of more than 2000–8000 ng g⁻¹ (dry mass) (Bester, 2005a). In Table 1 the structural formulas and other details on the compounds are presented.

Polycyclic musk compounds such as HHCB and AHTN are used frequently as fragrances in washing softeners, shampoos, and other consumer products. More than 2000 tonnes are used annually in Europe (Balk and Ford, 1999). The structural formulas of both

Fig. 1: Sludge treatment process in reed bed treatment plant (Pauly et al., 2006)
compounds are given in Table 1. After application, most of these materials are released to the sewer. Thus, they have been identified in sewage treatment plants (Eschke et al., 1994, 1995) and in the sewage sludge (Reiner and Kannan, 2006). Both of them have very low water solubility and high potential of bio-accumulation, thus they can cause ecological toxicity to the aquatic and terrestrial environment (Brunn and Rimkus, 1997). The musk compounds are not mineralized in sewage treatment processes and sorption is their main elimination path in waste water treatment plants, although transformation to other compounds may occur (Bester, 2005b). Elimination rates of fragrance compounds in 17 different plants in US and Europe were compared by Simonich et al. (2002). Removal rates of 50%–90% were determined for HHCB and AHTN. Concentration of HHCB for 3100 ± 240 ng g⁻¹ and AHTN for 1500 ± 150 ng g⁻¹ in digested, dewatered sludge was determined from one STP in North Rhine-Westphalia (Bester, 2004).

HHCB-lactone is the primary metabolite of HHCB, which is an oxidation product as shown in Table 1. The ratio of HHCB: HHCB-lactone has been used to detect transformation processes of this fragrance. During the sewage treatment process about 10% of HHCB is transformed to HHCB-lactone which has been reported for balance assessment for polycyclic mask fragrances in German treatment plant by Bester (2004). The relation HHCB:HHCB-lactone varies from 3 to 130 in surface waters. This indicates that degradation processes, especially degradation/transformation efficiency, in the respective sewage treatment plants differ considerably (Bester, 2005b). Concentrations of HHCB-lactone from sludge of 20 sewage treatment plants were determined from 30 ng g⁻¹ to 36,000 ng g⁻¹ (Bester, 2005b).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Molecular formula</th>
<th>Molecular weight</th>
<th>CAS</th>
<th>Vapour pressure (Pa)</th>
<th>Water solubility (mg L⁻¹)</th>
<th>log Kₗw</th>
<th>log Kₗoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTNE (Gautschi et al., 2001; Bester et al., 2008)</td>
<td>C₁₆H₂₆O</td>
<td>234 g mol⁻¹</td>
<td>54464-57-2</td>
<td>0.2 Pa</td>
<td>2.68 mg L⁻¹</td>
<td>5.7</td>
<td>4.64</td>
</tr>
<tr>
<td>HHCB (Balk and Ford, 1999)</td>
<td>C₁₈H₂₆O</td>
<td>258 g mol⁻¹</td>
<td>1222-05-5</td>
<td>0.0682 Pa</td>
<td>1.25 mg L⁻¹</td>
<td>5.7</td>
<td>4.80</td>
</tr>
<tr>
<td>AHTN (Balk and Ford, 1999)</td>
<td>C₁₈H₂₆O</td>
<td>258 g mol⁻¹</td>
<td>1500-02-1</td>
<td>0.0727 Pa</td>
<td>1.75 mg L⁻¹</td>
<td>5.8</td>
<td>4.86</td>
</tr>
<tr>
<td>Trifonox (Bester, 2005a; Ying et al., 2007)</td>
<td>C₁₆H₁₇Cl₃O₂</td>
<td>290 g mol⁻¹</td>
<td>3380-34-5</td>
<td>0.00062 Pa</td>
<td>4.621 mg L⁻¹</td>
<td>4.2–4.76</td>
<td>4.265</td>
</tr>
<tr>
<td>DEHP (Cheng et al., 2008)</td>
<td>C₂₄H₃₈O₄</td>
<td>391 g mol⁻¹</td>
<td>117-81-7</td>
<td>0.000003 Pa</td>
<td>0.003 mg L⁻¹</td>
<td>7.3</td>
<td>5.2</td>
</tr>
<tr>
<td>HHCB-lactone (Bester, 2005b)</td>
<td>C₁₈H₂₄O₂</td>
<td>272 g mol⁻¹</td>
<td>507442-53-7</td>
<td></td>
<td></td>
<td>4.7</td>
<td></td>
</tr>
</tbody>
</table>
OTNE is widely used in consumer products (in Table 1). It has been among the most popular compounds in fragrances in the last few years. It is marketed as Iso E Super, with 2500–3000 tonnes annually being sold (Gautschi et al., 2001). Concentrations of 7000–30,000 ng g\(^{-1}\) OTNE in dry sludge were determined in sludge from the U.S. (Difranco et al., 2004), while European data indicate concentrations of 2000–4000 ng g\(^{-1}\) (Dester et al., 2008).

DEHP is widely used as plasticizer in PVC construction materials, and also in varnish, paint, and cosmetics products. DEHP is used as a plasticizer because of its stability, fluidity, and low volatility (Trites et al., 1984). This plasticizer is eluted into wastewater by washing and cleaning processes, it is assumed to at least have a strong ecotoxic effect to the aquatic organisms (Rob et al., 2007). Because of the relatively high lipophilicity of the compounds, sorption is the major process relevant for elimination in sewage treatment plants. Beauchene et al. (2008) investigated that sludge can represent significant sources of plasticizers in the environment.

Two hundred grams of these homogenates were immediately frozen in refrigerating room at −27 °C overnight. Frozen sub-samples of 50 g wet weight were lyophilised at 2 mbar and −46 °C. Duplicates of the lyophilised sludge samples were extracted by means of accelerated solvent extraction (ASE) with ethyl acetate at 90 °C and 150 bar. The resulting extracts were then cleaned up with 1 g silica (5% SPE) solid-phase extraction cartridges (silica 60 obtained from Merck, Darmstadt, Germany) by elution with ethyl acetate after adding an aliquot of 100 μl internal standard solution 15% (containing 100 ng D\(_\text{O}_\text{15}\), musk xylene and 100 ng TPP D\(_\text{O}_\text{15}\)). These resulting solutions were concentrated to 1 ml by a Buchi multispot concentrator at 80 °C and 70 mbar (Buchi, Essen, Germany). The resulting extracts were injected to a GC-column (LC-tec, Darmstadt, Germany, equipped withBoxax SX-3) ID: 2.5 cm, length 30 cm, flow 5.0 ml min\(^{-1}\) cyclohexane: ethyl acetate 1:1. The solvent eluting in the first 30.30 min was drained to waste, while the fraction 19.30–30.30 min was collected. Thus, macromolecules were separated as they elute in the first fraction, while sulphur, etc. are separated from the target compounds as they are eluted after the analyte fraction. The samples were finally transferred into toluene. The resulting extracts were finally fractionated on silica using 2-Methyl-tert-butyl ether (MTBE) in n-hexane and ethyl acetate successively as eluents. These fractions were condensed and finally analyzed by gas chromatography with mass spectrometric detection (GC–MS) equipped with a programmable temperature vapourizer (FTV) injector. The FTV (1 μl injection volume) was operated in FTV splitless mode. The injection temperature of 115 °C was held for 1 min, it was successively ramped with 12 °C min\(^{-1}\) to 280 °C for the transfer of the analytes. This temperature was held for 1.3 min. The injector was then ramped with 1 °C min\(^{-1}\) to 300 °C which was held for 7 min in a cleaning phase.

The GC separation was performed with a DB-5MS column (J&W Scientific) L: 30 m; ID: 0.25 mm; film: 0.25 μm and a temperature programme of: 100 °C (hold: 1 min) ramped with 30 °C min\(^{-1}\) to 130 °C and with 8 °C min\(^{-1}\) successively to 220 °C. Finally, the baking temperature was reached by ramping the column with 30 °C min\(^{-1}\) to 280 °C which was held for 7 min.

The detector of the mass spectrometer (DSQ, Thermo Finningan, Dreieich, Germany) was operated with 1281 V on the secondary electron multiplier and about 40 μA electron beam in selected ion mode (SIM) mode. The transfer line was held at 250 °C, which is sufficient to transfer all compounds from the GC into the MS as the vacuum builds up in the transfer line. The ion source was operated at 230 °C. Helium was used as carrier gas with a flow rate of 1.3 ml min\(^{-1}\).

The rain water passes through the sludge layer: some compounds can be dissolved, which can also lead to the concentration reduction of compounds. Thus, liquid samples were collected as manual grab samples in two litre glass bottles from the drainage water of the drainage canal of the sludge bed during the treatment process. Two samples for out-flowing water were taken as duplicates. One litre samples were extracted for 20 min with 20 ml toluene by means of vigorous stirring with a teflonized magnetic stir bar after adding an aliquot of 100 μl internal standard solution. The organic phase was separated from the aqueous one and the residual water was removed from the organic phase by freezing the samples overnight at −20 °C. The resulting extracts were then concentrated with a rotary evaporator at 80 °C and 70 mbar to 1 ml. Resulting extracts were quantified by using GC–MS.
3.1. Water content

The water content of the sludge ranged from 85% to 73% during the experiment period. The lowest water content in the top layer, 53% in the middle layer, and 70% in the bottom layer, respectively. Considering their generally low volatility (Table 1), the tendency of these compounds to volatilize is low. Therefore it is expected that only a small fraction of these compounds was volatilized into the atmosphere, where they can photolyze (Achmann et al., 2001; Difrancesco et al., 2004; Chen et al., 2008). To quantify the uptake of xenobiotic compounds by plants, reed samples were analysed by using the same procedure as sludge. In these samples none of the compounds were detected, except small amounts of DEHP (13,000 ± 2000 ng g\(^{-1}\)). As less than 1 kg reeds were growing in

Table 2
Quality assurance data including the MS data (analytical and verifier ions) as well as recovery rate standard deviation and limit of quantification of the recovery rate experiments.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Analytical ion (amu)</th>
<th>Verifier ion (amu)</th>
<th>Recovery (%)</th>
<th>RSD (%)</th>
<th>LOQ (ng g(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTNE</td>
<td>191</td>
<td>210</td>
<td>60</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>HHCB</td>
<td>245</td>
<td>258</td>
<td>77</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>AHTN</td>
<td>245</td>
<td>258</td>
<td>60</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Tritolan</td>
<td>288</td>
<td>290</td>
<td>131</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>HHCB-lactone</td>
<td>257</td>
<td>272</td>
<td>65</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>DEHP</td>
<td>279</td>
<td>367</td>
<td>87</td>
<td>21</td>
<td>10</td>
</tr>
</tbody>
</table>

3.2. Personal care compounds

Xenobiotic compounds triclosan, HHCB, AHTN, HHCB-lactone, OTNE, and DEHP were identified by their retention times and mass spectral data in sludge samples (Table 2). The concentration of triclosan (Fig. 2) in the beginning of the project was measured as 1400, 1900, and 2000 ng g\(^{-1}\) (dry mass) in the top, middle, and bottom layer, comparable results were obtained by Bester (2005a) in sewage sludge samples from 20 WWTPs in Germany with triclosan concentration ranging from 400 to 8800 ng g\(^{-1}\). After 13 months triclosan was reduced to less than 60% and the concentration was 800, 900 and 600 ng g\(^{-1}\) (dry mass) in the top, middle, and bottom layer, respectively (Fig. 2). Considering a standard deviation of 12% from the method validation this change is significant.

The concentrations of the polycyclic musk compounds HHCB, AHTN, and the primary metabolite of HHCB, i.e. HHCB-lactone showed no reduction in 13 months during the experimental period. The concentration varied from 8000 to 12,000 ng g\(^{-1}\) (dry mass) for HHCB, from 1500 to 2300 ng g\(^{-1}\) (dry mass) for AHTN and from 1400 to 2100 ng g\(^{-1}\) (dry mass) for HHCB-lactone. These are corresponding to the results obtained by Reiner and Kannan (2006) who found concentrations ranging from 7230 to 100,000 ng g\(^{-1}\) (dry mass) for HHCB, 809 to 16,800 ng g\(^{-1}\) (dry mass) for AHTN and from 1400 to 2100 ng g\(^{-1}\) (dry mass) for HHCB-lactone.

During the 13 months field-incubation of the organic compounds in technical reed bed sludge treatment the water content (May 2006–July 2007) was 1130 L m\(^{-3}\) for this sludge treatment) contained about 99% water. The rainfall pounds in a technical reed bed sludge treatment the water content 76%, was found in September 2006, because of the low amount of rainfall and high temperature (and enhanced transpiration by reed plants) at that time.

The processes that contributed to the dissipation of the studied compounds in sludge may include volatilization, plants uptake, leaching, and biological transformation (aerobic and anaerobic). Considering their generally low volatility (Table 1), the tendency of these compounds to volatilize is low. Therefore it is expected that only a small fraction of these compounds was volatilized into the atmosphere, where they can photolyze (Achmann et al., 2001; Difrancesco et al., 2004; Chen et al., 2008).
1 m² sludge reed bed, it can be assumed that less than 0.01% of DEHP was ingested by reeds. This is in agreement with the results of Litz et al. (2007) who studied uptake of HHCB and AHTN by lettuce and carrots and found HHCB and AHTN were taken up only by the carrot roots to some small extent. Phytoremediation (considering only plant uptake) is thus not relevant for this system.

3.3. Mass balance studies

The amount of compounds in leachate can be calculated based on the concentration of effluent and amount of rainfall (water flow through the system). The concentration of xenobiotics in the effluent from this reed bed in November 2006 is shown in Table 3. The rainfall during the experimental period (from June 2006 to July 2007) was 1130 mm (Table 3) (1 mm = 1 L m⁻²). Table 3 shows mass fraction of compounds which were leached by drainage water in comparison to the mass fraction in sludge in 1 m² reed bed. Since 0.010–0.048% of the mass fraction of the xenobiotics contained in the sludge is leached by drainage water during the experimental period, it seems that biological transformation was the main dissipation mechanism for these compounds.

3.4. Kinetic analysis of dissipation data

Biological degradation of organic compounds at low concentrations usually follows first-order kinetics, thus an elimination rate constant (k) for sludge removal in reed beds can be calculated from the concentrations from a log c / c₀ plot (Fig. 3) using Eq. (1). For the triclosan degradation process the respective k values are 0.0099, 0.0021 and 0.0022 in the top, middle, and bottom layer. The amount of compounds in leachate can be calculated based on Eq. (2).

\[k = \frac{\ln \frac{c}{c_0}}{t} \]
\[T_{1/2} = \frac{\ln 2}{k} \]

Table 4 shows tentative half-lives of the compounds during the experimental period in a sludge reed bed. The R² refers to the regression line in the log plots to gain the half-life values.

Table 4

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Tentoative half-lives (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTNE</td>
<td>770 bottom, 330 middle, 15 days top</td>
</tr>
<tr>
<td>HHCB</td>
<td>239 bottom, 77 days middle, 19 days top</td>
</tr>
<tr>
<td>AHTN</td>
<td>315 bottom, 131 days middle, 40 days top</td>
</tr>
<tr>
<td>DEHP</td>
<td>239 bottom, 100 days middle, 38 days top</td>
</tr>
<tr>
<td>Triclosan</td>
<td>770 bottom, 330 middle, 20 days top</td>
</tr>
<tr>
<td>OTNE-lactone</td>
<td>770 bottom, 330 middle, 20 days top</td>
</tr>
<tr>
<td>HHCB-lactone</td>
<td>315 bottom, 131 days middle, 40 days top</td>
</tr>
</tbody>
</table>

Fig. 2. Triclosan and OTNE concentration from the bottom layer (40-60 cm from surface) as a function of time. Error bars are from the stated uncertainty from the method development.

Fig. 3. Kinetics of triclosan degradation in log form in the bottom layer of a sludge reed bed.

<table>
<thead>
<tr>
<th>Table 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compounds</td>
</tr>
<tr>
<td>OTNE</td>
</tr>
<tr>
<td>HHCB</td>
</tr>
<tr>
<td>AHTN</td>
</tr>
<tr>
<td>DEHP</td>
</tr>
<tr>
<td>Triclosan</td>
</tr>
<tr>
<td>OTNE-lactone</td>
</tr>
<tr>
<td>HHCB-lactone</td>
</tr>
</tbody>
</table>

Fig. 2. Triclosan and OTNE concentration from the bottom layer (40-60 cm from surface) as a function of time. Error bars are from the stated uncertainty from the method development.

Fig. 3. Kinetics of triclosan degradation in log form in the bottom layer of a sludge reed bed.
DEHP was eliminated with half-lives as 315, 289, and 578 d in the top, middle, and bottom layer, respectively. These can be compared with results obtained by MadSEN et al. (1999) who found that more than 41% of DEHP in a sludge-amended soil was still not mineralized after 1 year incubation and in this study a half-life for DEHP in soils with sludge aggregates was estimated to be higher than 3 years.

3.5. Comparison of layering

Triclosan and OTNE degraded very similar concerning the layers of sludge, i.e., faster in bottom layer than in the top layer. This might be influenced by different age, compactness or oxygen supply in the different layers. The oxygen regime in the different layers that can be quite diverse, as rich is known to pump oxygen from the leaves to the rhizome into the surrounding medium (sludge) [Armstrong et al., 2000]. However the surrounding sludge can consume the oxygen rapidly especially if it is partially aerobiologically stabilized sludge as in this experiment. During the experiment, the reed bed was monitored in intervals for aerobic and anaerobic areas. The reed bed was usually patchy, thus aerobic areas occurred as well as anaerobic ones. Additionally air could have entered from the drainage basin. The main result at this moment is, there is indeed an effect of the different layers future research will show what might be the reason for that.

The way of contrast DEHP degraded faster in the top layer, which suggesting the highest reduction of DEHP was achieved at the highest temperature (Cheng et al., 2008). Possibly the degradation of the different compounds is preferred at different oxygen levels (aerobic and anaerobic processes).

4. Conclusions

In the 13 months of this experiment, the concentrations of some compounds such as OTNE, triclosan, and DEHP in this sludge reed bed treatment were decreased. However, the concentrations of other compounds such as polycyclic musk compounds HHCB, AHTN, and HHCB-lactone did not change during this experiment. OTNE and triclosan degraded faster in the top layer, which is indicating different regimes in the different layers and different degradation processes in the respective layers. Considering half-lives of 300–900 d, this sludge reed bed can eliminate considerable amounts of some of the pollutants in its 10 years production cycle. If the sludge is to be used as fertilizer in agriculture the use of reed bed treatments can help considerably to decrease the contamination of sludge.

Acknowledgements

The authors acknowledge the support of Profumo/AF and xeromorphic groups of university of Duisburg-Essen as well as Thomas Groß and Enzo Perper for sampling. Additionally the authors are indebted to the water board Stadtwerke Meppen for the possibility to sample their sludge reed plant.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.chemosphere.2009.04.023.

References

Research paper 2:

Removal of personal care compounds from sewage sludge in reed bed container (lysimeter) studies – Effects of macrophytes

Xijuan Chen a, Udo Pauly b, Stefan Rehfus b, Kai Bester a,c,⁎

a Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, 9000 Aalborg, Denmark.

b EKO-PLANT GmbH, Karlsbrunnenstraße 11, D-37249 Neu-Eichenberg, Germany.

c Institute of Environmental Analytical Chemistry, University Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany.

ABSTRACT

Sludge reed beds have been used for dewatering (draining and evaporisation) and mineralisation of sludge in Europe since 1988. Although reed beds are considered as a low-cost and low-contamination method in reducing volume, breaking down organic matter and increasing the density of sludge, it is not yet clear whether this enhanced biological treatment is suitable for degradation of organic micro-pollutants such as personal care products. Within this project the effect of biological sludge treatment in a reed bed on reducing the concentrations of the fragrances HHCB, AHTN, OTNE was studied as on the bactericide Triclosan. Additionally, the capacity of different macrophytes species to affect the treatment process was examined. Three different macrophyte species were compared: bulrush (Typha latifolia), reed (Phragmites australis) and reed canary grass (Phalaris arundinacea). They were planted into containers (lysimeters) with a size of 1 m × 1 m × 1 m which were filled with 20 cm gravel at the bottom and 50 cm sludge on top, into which the macrophytes were planted. During the twelve months experiment reduction of 20–30% for HHCB and AHTN, 70% for Triclosan and 70% for OTNE were determined under environmental conditions. The reduction is most likely due to degradation, since volatilisation, uptake into plants and leaching are insignificant. No difference between the containers with different macrophyte species or the unplanted containers was observed. Considering the usual operation time of 50 years for reed beds, an assessment was made for the whole life time. © 2009 Elsevier B.V. All rights reserved.

1. Introduction

Reed beds have been used for dewatering and mineralisation of sludge in Europe since 1988 (Nielsen et al., 1992). In comparison to the other technologies (incineration, land filling, land application etc.) the reed bed has a number of advantages. It is relatively inexpensive to build, operate and maintain. It consumes less energy, and discharges a minimum of CO₂ into the atmosphere in comparison to the other technologies of sludge disposal (Davison et al., 2005).

It has been widely accepted that reed beds have the ability to dewater and stabilise sludge (Edwards et al., 2001; Nielsen, 2003, 2005a; Nassar et al., 2006) and to reduce BOD and COD content (Gschlößl and Stuible, 2000; Davison et al., 2005; Kayser and Kunst, 2005). Additionally, removal using reed bed to be 0.34 US$ m⁻³ for treatment using conventional drying beds in the Gaza Strip. Therefore, reed beds are used especially in rural areas where space is relatively inexpensive for treating sludge before final disposal or use in agriculture.

Macrophytes (plants) play a critical part in the reed bed sludge treatment process, with their rhizomes creating the necessary environment for the bacterial and physical–chemical processes (Pauly et al., 2000, 2005a). The plant rhizomes provide surfaces for bacterial growth as well as for filtration of solids. Furthermore, their oxygen supply (Armstrong et al., 1990) creates oxidised micro-environments, stimulating both the decomposition of organic matter and the growth of nitrifying bacteria. The roots are also thought to stabilise the hydraulic conductivity at a desired level (Gumbrecht, 1992). Common reed (Phragmites australis), which is widely used in reed bed treatment technologies, is an aquatic grass with a distribution extending from cold temperate regions to the tropics (Karunaratne et al., 2003). It is a robust plant which can tolerate a fairly wide range of pH and salinity. However, the other aquatic grasses, bulrush (Typha latifolia) and reed canary grass (Phalaris arundinacea) are also frequently used in the reed bed systems (Vymazal, 1998, 2001). The first of the two aims of this paper is to assess the role of macrophytes in the sludge reed bed treatment technologies concerning different effects on removal of persistent organic compounds.

The second aim of this paper is to investigate dissipation kinetics as well as removal mechanisms of organic micro-pollutants during the
sludge reed bed treatment process. In contrast to an earlier study, that was conducted on a technical open sludge reed bed (Chen et al., 2009), in this study more controlled enclosed environments (container lysimeters) are being used.

Personal care product ingredients were used as marker compounds as they are among the most abundant in sludge (Kinney et al., 2006), and they are presumably emitted continuously in contrast to most other pollutants. Personal care compounds are among the most commonly detected compounds in waste water for the last 40 years (Xia et al., 2005; Köppling et al., 2002). They are released after use via sewer system into sewage treatment plants. Because of the relatively high lipophilicity of the compounds, sorption is the main process relevant for elimination in sewage treatment plants. Previous investigations have indicated that land application of sludge may be a potentially important route through which personal care products enter the environment (Xia et al., 2005). As a matter of fact, musk fragrances such as HHCB and AHTN which are mainly used in domestic purpose as well as Triclosan and OTNE have recently been identified as important anthropogenic organic contaminants in sewage sludge (Kinney et al., 2006; Simonich et al., 2002; Rester et al., 2008a,b).

HHCB, AHTN and OTNE are currently among the most frequently used fragrances in cosmetic, cleaning and personal care products, while Triclosan is an antimicrobial agent which is widely used in toothpaste, soaps, deodorants, cosmetics and skin care lotions as well as other consumer goods (Adolfsson-Erici et al., 2002; Rester, 2005, 2007). In Table 1 the structural formulas and other details on the compounds are presented. The annual production of the respective compounds is: 350 tons Triclosan (Singer et al., 2002), over 2000 tons HHCB and AHTN (Balk and Ford, 1999; Dukkowich et al., 2002) and 2500–3000 tons OTNE (Gautschi et al., 2001). The primary emission route for these compounds after usage is through waste water. These are very lipophilic, persistent substances, thus they are transferred to a high extent from waste water into sludge during waste water treatment. Thus they were chosen as marker substances for elimination/degradation studies in sludge reed beds.

2. Materials and methods

2.1. Chemicals

AHTN and Triclosan were purchased from Ehrenstorfer (Augsburg, Germany) as pure compounds with purity being ≥99% according to the supplier. OTNE and pure standards of HHCB-lactone as well as HHCB were obtained in pure form (>99%) from International Flavours and Fragrances (IFF, Hilversum, Netherlands).

Table 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Formula name</th>
<th>CAS</th>
<th>Structure</th>
<th>M.W.</th>
<th>Log kow</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHCB</td>
<td>1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran</td>
<td>1222-05-5</td>
<td></td>
<td>258 g mol⁻¹</td>
<td>5.7</td>
</tr>
<tr>
<td>AHTN</td>
<td>7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene</td>
<td>1506-02-1</td>
<td></td>
<td>258 g mol⁻¹</td>
<td>5.9</td>
</tr>
<tr>
<td>HHCB-lactone</td>
<td>HHCB-lactone</td>
<td>507442-53-7</td>
<td></td>
<td>272 g mol⁻¹</td>
<td>4.7</td>
</tr>
<tr>
<td>Triclosan</td>
<td>2,4,4′-trichloro-2′-hydroxy-diphenylether</td>
<td>3380-34-5</td>
<td></td>
<td>265 g mol⁻¹</td>
<td>4.2–4.76</td>
</tr>
<tr>
<td>OTNE</td>
<td>7-acetyl,1,2,4,5,6,7,8-octahydronaphthalene-1,1,6,7-tetramethyl-5-lactone</td>
<td>54494-57-2</td>
<td></td>
<td>214 g mol⁻¹</td>
<td>5.7</td>
</tr>
</tbody>
</table>
Osterode am Harz, Germany). The lyophilised sludge samples were
−
weight were lyophilised at 2 mbar and
(Fig. 1). The containers were placed outdoors on a test facility. Four
treated sludge, from which plants and roots had been removed to
conducted under ambient temperature, water content and plant density.
samples were taken from a depth of 5
(ca. 27 l) per week to support the growing of the plants. The sludge
very dry period, each container was watered by a water faucet for 2 min
refrigerating room at
−
27 °C overnight. Frozen sub-samples of 50 g wet
After sampling, 200 g samples were immediately frozen in a
stock solutions for analysis of personal care products. In the
performance of the containers for the degradation of the target
unplanted in order to distinguish the impact of the root system on the
degradation process of organic pollutants. Four containers were left
from 2D6 phenol and phosphoroxychloride (Andersen and Bestic, 2006). These internal standards were chosen as they give undisturbed
signal, and also not undergo any reaction themselves.

2.2. Experimental setup and sampling

In this project pre-treated sludge from a reed bed sludge treatment
facility in Meppen, Germany was used. This pre-treated sludge was
chosen because it is plant-compatible and capable of dewatering
(Nielsen, 2003; Nassar et al., 2006).

16 containers with a size of 1 m × 1 m × 1 m were built from stainless
steel and filled with a 20 cm layer of gravel (16–32 mm) and 50 cm pre-
treated sludge, from which plants and roots had been removed to
prevent reed from growing in the experiments with the other species (Fig. 1). The containers were placed outdoors on a test facility. Four
containers were planted with reed canary grass (P. australis), four with bulrush (P. australis), and another four with reed (P. australis) at a density of 12 plants m
−2.

2.3. Preparation and clean-up of sludge

After sampling, 200 g samples were immediately frozen in a
refrigerating room at −27 °C overnight. Frozen sub-samples of 50 g wet
weight were lyophilised at 2 mbar and −46 °C (ALPHA 1–2/1D, Christ,
Ostfrode am Harz, Germany). The lyophilised sludge samples were
extracted by means of accelerated solvent extraction (ASE200, Dionex,
Sunnyvale, USA) with ethyl acetate at 90 °C and 150 bar. After adding an
aliquot of 100 μl internal standard solution (IS) (containing 100 ng 2D15
musk xylene and 100 ng TPP 2D15), the resulting extracts were
concentrated by a Büchi Synchore multiport concentrator at 80 °C and
were successively cleaned up with 1 g silica SPE solid-phase extraction cartridges (silica 60 obtained from Merck, Darmstadt, Germany), by elution with ethyl acetate.
The resulting solutions were condensed again and injected into a
GC-column (Biorad SX-3): ID: 2.5 cm, length: 30 cm, flow: 5.0 ml min
−1 and cyclohexane:ethyl acetate 1:1. The solvent eluting in the first
19.30 min was drained to waste, while the fraction 10.30–30.00 min was
collected. Thus, macromolecules were separated as they elute in the first
fraction, while sulphur, etc. are separated from the target compounds as
they are eluted after the analyte fraction. The samples were finally
transferred into toluene as shown above. The resulting extracts were
finally fractionated on silica using 5% Methyl-tert-butyl ether MTBE in
toluene and ethyl acetate successively as eluents (2 fractions).

2.4. Instrumental analysis

The resulting fractions were condensed and finally analysed by gas
cromatography with mass spectrometric detection (GC–MS) equipped with a programmable temperature vapouriser (PTV) injector. The PTV injector was operated in PTV splitless mode. The injection temperature of 215 °C was held for 3 s; it was
successively ramped with 12 °C s
−1 to 280 °C for the transfer of the analytes. This temperature was held for 1.3 min. The injector was then ramped with 1 °C s
−1 to 300 °C which was held for 7 min with 20 ml min
−1 as a cleaning phase.

The GC separation was performed with a DB-5MS column (J&W Scientific), L: 30 m; ID: 0.25 mm; film: 0.25 μm and a temperature programme of: 100 °C (hold: 1 min) ramped with 30 °C min
−1 to 130 °C and with 8 °C min
−1 successively to 220 °C. Finally, the baking temperature was reached by ramping the column with 30 °C min
−1 to 280 °C which was held for 7 min. The detector of the mass spectrometer
(DSQ, Thermo Finnigan, Dreieich, Germany) was operated with 280 V,
230 °C ion source temperature and 250 °C interface temperature.

2.5. Leachate

When rain water passes through the sludge layer, some compounds
can be dissolved (mobilised from the sludge), which could also lead to a
decreased concentration of compounds in the sludge. Thus two samples for out-flowing water were taken as duplicates from each container. 11 samples were extracted for 20 min with 20 ml isooctane by means of vigorous stirring with a refluxed magnetic stir bar after adding an aliquot of 100 μl internal standard solution. The organic phase was separated from the aqueous one and the residual water was removed from the organic phase by freezing the samples overnight at −20 °C. The resulting extracts were then concentrated with a Büchi Synchore at 80 °C and 70 mbar to 1 ml. The resulting extracts were quantified by using GC-MS.

The compounds were detected by means of their mass spectral data and retention times. For quantitative measurements the method was validated (Simonsick and Prokai, 1995; Peck, 2006; Bester, 2004, 2007, 2009). Calibrations were performed as a multi-step internal standard calibration. Recovery rates were determined by spiking sludge with respective standard concentrations at 5000 ng g⁻¹ standard calibration. Recovery rates were determined by spiking sludge with respective standard concentrations at 5000 ng g⁻¹ internal standard solution. The organic phase was separated from the organic phase by freezing the samples overnight at −20 °C. The resulting extracts were then concentrated with a Büchi Synchore at 80 °C and 70 mbar to 1 ml. The resulting extracts were quantified by using GC-MS.

3. Results

3.1. Method quality assurance

The recovery rates were 68–133%, and the relative standard deviations were 5–12%. Limits of quantification (LOQ) were calculated from the analysis of standard solutions, which gave signal to noise ratios (S/N) of at least 10 as well as from the lowest concentration for the respective substance that was detectable from the recovery studies. Full data are given in Chen et al. (2009) and Chen and Bester (submitted for publication).

3.2. Water content

Water content increased from 52% (in May 2007) to 61% (in Sep 2007) due to the 27 l of watering every week, and stayed constant after Sep 2007 since the rainfall and evaporation were equal. No significant difference of water content was detected between planted and unplanted containers as well as containers within different plants.

3.3. Mineral content

The mineral content of sludge increased during the experimental period, which indicates occurrence of degradation of organic material. The mineral content ranged from 40% to 52% in the reed canary grass planted containers, from 40% to 45% in the bulrush planted containers, from 40% to 50% in the reed planted containers as well as unplanted containers. No significant difference of mineral content was detected between planted and unplanted containers as well as containers with different plants.

3.4. Personal care products

The highest concentrations of the polycyclic musk compounds HHCB, AHTN were determined in the beginning of the project, which is 11,000 ng g⁻¹ (dry weight) HHCB and 2250 ng g⁻¹ (dry weight) AHTN. Triclosan concentrations were reduced by 70%, 73%, 72% and 73% in the reed canary grass, bulrush, reed and unplanted containers. Considering the increasing concentration of HHCB-lactone, it can be calculated that about 4%, 3%, 5% and 5% of the starting concentrations of HHCB were oxidised to HHCB-lactone in the reed canary grass, bulrush, reed and unplanted containers, respectively. However, all of the missing HHCB turns up as HHCB-lactone. It is most probable, that the oxidation and transformation went on to form secondary metabolites. The first step is in agreement with Bester (2004), Berset et al. (2004) and Berset and Kannan (2006) who found oxidation of HHCB to HHCB-lactone in the aeration tank of waste water sewage treatment plant. Fig. 2a and b show the log CC₀ plot for OTNE concentration as a function of time. The highest amount 1600 ng g⁻¹ (dry mass) was determined in the beginning of the project. After thirteen months the OTNE concentrations were reduced by 78%, 75%, 72% and 73% in the reed canary grass, bulrush, reed and unplanted containers, respectively. The concentrations of Triclosan (log CC₀ plot, Fig. 3a) in the beginning of the experiment were 800 ng g⁻¹ (dry mass). After thirteen months the Triclosan concentrations were reduced to less than 50% and the concentrations were 360, 310, 390 and 360 ng g⁻¹ (dry mass) in the reed canary grass, bulrush, reed and unplanted containers. Considering a standard deviation of 12% from the method validation this difference to the starting concentration is significant.

Fig. 2 a and b show the log CC₀ plot for OTNE concentration as a function of time. The highest amount 1600 ng g⁻¹ (dry mass) was determined in the beginning of the project. After thirteen months the OTNE concentrations were reduced by 78%, 75%, 72% and 73% in the reed canary grass, bulrush, reed and unplanted containers, respectively. The concentrations of Triclosan (log CC₀ plot, Fig. 3a) in the beginning of the experiment were 800 ng g⁻¹ (dry mass). After thirteen months the Triclosan concentrations were reduced to less than 50% and the concentrations were 360, 310, 390 and 360 ng g⁻¹ (dry mass) in the reed canary grass, bulrush, reed and unplanted containers. Considering a standard deviation of 12% from the method validation this difference to the starting concentration is significant.
also be photolyzed (Aschmann et al., 2001; Difrancesco et al., 2004; Chen et al., 2009). To identify the relevant processes the dissipation data were analysed to determine the respective elimination rate constant (k). Considering no significant volatilization, plants uptake and leaching occurred; biological degradation is thus dominant in the experiment process.

Biological degradation of organic compounds at low concentrations usually follows first-order kinetics, if the temperature and other critical parameters are constant. As temperature was not constant, first-order kinetics are only an approximation of the real degradation kinetics. However, this approach, with working with big installations under real conditions was assessed to give more realistic results than experiments under temperature controlled laboratory experiments. An elimination rate constant (k) for compound removal in the reed bed containers was calculated from the concentrations during the experiment using Eq. (1). For the HHCB degradation process the respective k values are between 0.0005 and 0.0007 in the diverse experiments (canary grass, bulrush, reed and unplanted containers).

\[k = \frac{\ln C_0}{t} \]

K = elimination rate constant, \(C_0 \) = starting concentration, \(t \) = time.

With Eq. (2), the half-life can be assessed:

\[t_{1/2} = \frac{\ln 2}{k} \]

Tentative half-lives were calculated for OTNE. The respective graphs are displayed in Fig. 2b. For the experiment with bulrush the results are calculated with a confidence interval as an example (Fig. 2b). OTNE was eliminated with half-lives of 204, 187, 198 and 187 days in the reed canary grass, bulrush, reed and unplanted containers, respectively (Table 2). These data are consistent with data from full scale for which half-lives of 230-277 d were found in the middle and bottom layers (Chen et al., 2009). Comparable half-lives were also observed by Difrancesco et al. (2004) with OTNE dissipation half-lives of 30–100 days in sludge-amended soils. No significant difference was detected for the respective
This behaviour could be induced by oxygen supply during spiking Triclosan into loamy soil with a concentration of 1 mg kg⁻¹. Order kinetics (Fig. 3a) were also found in a full scale study for the respective plants was not significant for these experiments. This is contrary to the results which were gained by Ying et al. (2007) by spiking Triclosan into loamy soil with a concentration of 1 mg kg⁻¹. 18 days half-life was calculated under aerobic conditions within this 70 days experiment. Laboratory studies showed significant biodegradation of Triclosan in activated sludge, and indicating that adaptation was a critical factor determining the rate and extent of biodegradation (Fedorle et al., 2002).

Triclosan half-lives for HHCB were calculated as 1160, 1090, 1390, 1770, 2090, 1680, 1670, 1980, 1970, 1370, 2050, 2040, 1870, 1860, 1850, 1870, 1870 days in the reed canary grass, bulrush, reed and unplanted containers, respectively (Table 2). These values should be viewed as tentatively, as the experimental period (twelve months) is too short to reveal such a slow degradation process. This also was consistent with full scale studies, in which HHCB proved to be persistent with half-lives over three years (Chen et al., 2009). No significant difference was detected for the respective setups. Obviously the support of the microbial activity by the respective plants was not significant for these experiments. After a twelve month experiment, only 73%–78% of HHCB, 76%–80% of AHTN, 28%–48% of Triclosan and less than 30% of OTNE were left in the containers. The decrease of pollutants during the full life time (10 years) of reed beds would be much higher than, that, obviously. It is most likely that microbial degradation processes are the dominating ones in this setup, since most of the corresponding degradation products (metabolites) could be identified (HHCB/HHC-lactone). An accounting of material flows in addition would be required.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Plants</th>
<th>Tentative half-life (days)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHCB</td>
<td>Reed canary grass</td>
<td>1160</td>
<td>1155–1160</td>
</tr>
<tr>
<td></td>
<td>Bulrush</td>
<td>1090</td>
<td>1085–1095</td>
</tr>
<tr>
<td></td>
<td>Reed</td>
<td>1390</td>
<td>1385–1400</td>
</tr>
<tr>
<td></td>
<td>Unplanted</td>
<td>1770</td>
<td>1765–1775</td>
</tr>
<tr>
<td></td>
<td>Triclosan</td>
<td>1680</td>
<td>1675–1685</td>
</tr>
<tr>
<td></td>
<td>Bulrush</td>
<td>1670</td>
<td>1665–1675</td>
</tr>
<tr>
<td></td>
<td>Reed</td>
<td>1980</td>
<td>1975–1985</td>
</tr>
<tr>
<td></td>
<td>Unplanted</td>
<td>2040</td>
<td>2035–2045</td>
</tr>
<tr>
<td></td>
<td>OTNE</td>
<td>1870</td>
<td>1865–1875</td>
</tr>
<tr>
<td></td>
<td>Bulrush</td>
<td>1860</td>
<td>1855–1865</td>
</tr>
<tr>
<td></td>
<td>Reed</td>
<td>1870</td>
<td>1865–1875</td>
</tr>
</tbody>
</table>

4.4. Effects of macrophytes

Microbial processes play a significant role for the proper functioning of reed beds. The major role of macrophytes is probably in the dewatering of sludge. The dewatering capacity of a reed bed is maintained or improved by the mechanical activity of the reeds in the sludge layer. The mechanical activity includes shoots and rhizomes, which move through the sludge, as well as the above ground movement of the plants due to wind (Nielson, 2003, 2005a). Also, plants provide oxygen to the sludge in the reed beds. With slow percolation of oxygen into the sludge layer, both via the reed plants and their root zone, and by diffusion through the air–sludge interface, the sludge gradually becomes oxidised and stabilised (de Manncere, 1997). In our experiment no significant effect of the different macrophytes on mineralisation and biodegradation of organic micro-pollutants in sludge was detected, however some other research did find positive results (Zaura and Oshika-Pempkowiak, 2000; Pempkowiak and Oshika-Pempkowiak, 2002; Nielsen, 2003, 2005a), this may be due to the low amount of sludge in the small-scale (1 m³ box) containers, so that the influence of boundary effects and weather gain more influence on the processes than they do in full scale.

5. Conclusion

The sludge reed bed container study showed that the reed bed sludge treatment technology is able to reduce persistent organic pollutant (such as HHCB, AHTN, Triclosan, and OTNE) significantly. After a twelve month experiment, only 73%–78% of HHCB, 76%–80% of AHTN, 28%–48% of Triclosan and less than 30% of OTNE were left in the containers. The decrease of pollutants during the full life time (10 years) of reed beds would be much higher than, that, obviously. The authors acknowledge the support of ProInno/AIF and xenobiotic groups of university of Duisburg–Essen as well as Thomas Groff and EmhoPieper for sampling.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.scitotenv.2009.07.023.

References

Research paper 3:

Chen XJ. and Bester K. Determination of organic micro-pollutants such as personal care products, plasticizer and flame retardants in sludge, Anal Bioanal Chem (2009) 395:1877–1884
Determination of organic micro-pollutants such as personal care products, plasticizers and flame retardants in sludge

Xijuan Chen · Kai Bester

Received: 18 August 2009 / Accepted: 7 September 2009 / Published online: 25 September 2009 © Springer-Verlag 2009

Abstract In this study, a method for the determination of organic micro-pollutants, i.e. personal care products such as synthetic musk fragrances, household bactericides, organophosphate flame retardants and plasticizers, as well as phthalates in sludge, has been developed. This method is based on lyophilisation and accelerated solvent extraction followed by clean-up steps, i.e. solid phase extraction and size exclusion chromatography. The determination is performed by gas chromatography coupled to mass spectrometry. Stable isotope-labelled compounds such as musk xylene (MX D15), tri-n-butylphosphate (TnBP D27) and triphenylphosphate (TPP D15) were used as internal standards. Recovery rates were determined to be 36–114% (with typical relative standard deviation of 5% to 23%) for the target compounds. The limit of detection was 3–30 ng g⁻¹, and the limit of quantification was 10–100 ng g⁻¹ dry matter.

Keywords Personal care products · Musk fragrances · Triclosan · Household bactericides · Organophosphates · Phthalates

Introduction

Sewage sludge is produced in waste water treatment while removing compounds causing oxygen demand (BOD₅) from the waste water. Thus sludge contains high concentrations of organic matter, nutrients (nitrogen and phosphorous) and lipophilic organic micro-pollutants from the waste water. Some countries such as the Nordic countries prefer to use the nutrients in agriculture (re-cycling of sludge), while some others (e.g. Switzerland) have decided to incinerate all sludges as they prioritised to destroy all micro-pollutants. The majority of countries do a case by case decision depending on the concentrations of organic micro-pollutants and heavy metals. Thus a sound basis for analysing organic micro-pollutants in sludge is necessary to make sure that only sludge with low contaminations is used for re-cycling in agriculture. Established methods are usually single or group specific such as the methods used to analyse PAHs or PCBs [1, 2]. Often the analytical protocols are similar to those established for sediments with a high load of TOC.

The compounds included in this study were synthetic musk fragrances (musk xylene, musk ketone, HHCB, AHTN, HHCB-lactone), an antimicrobial and its metabolite (triclosan, triclosan-methyl), organophosphate flame retardants and standing for organophosphate-plasticizers (tri-i-butylphosphate (TIBP), tri-i-butylphosphate (ToBP), tris-(2-chloroethyl) phosphate (TCEP), tris-(2-chloro-i-propyl) phosphate (TCP), tris-(dichloro-i-propyl) phosphate (TDCP) and triphenylphosphate (TPP)) and the phthalate (di(2-ethylhexyl) phthalate (DEHP); Table S1). Some of these compounds have been discussed in national as well as developing EU laws on sludge as maker compounds for the re-use of this material [3, 4].

Synthetic musk fragrances are compounds used as low cost fragrances in soaps, perfumes, air fresheners, deter-

Electronic supplementary material The online version of this article (doi:10.1007/s00216-009-3138-5) contains supplementary material, which is available to authorized users.

X. Chen · K. Bester
Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 75, 9000 Aalborg, Denmark
E-mail: kb@bio.aau.dk

K. Bester Institute of Environmental Analytical Chemistry, University Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany
gents, fabric softeners and other household cleaning products. There are four synthetic musk fragrances accounting for 95% of the used musk. These are two poly cyclic compounds (HHCB and AHTN) as well as the nitro-musks (musk xylene and musk ketone). These compounds have been detected in indoor air as well as in indoor dust by Sanchez et al. [28]. Additionally, these organophosphates have been detected in surface water [5, 6], in waste water [7–9] and in sewage sludge [10–12]. HHCB-lactone is the primary metabolite of HHCB (Table S1). The ratio HHCB versus its metabolite HHCB-lactone has been used to detect transformation processes of this fragrance. During the sewage treatment process, about 10% of HHCB is transformed to HHCB-lactone, which has been reported for polycyclic musk fragrances in a German treatment plant by Bester [8]. Reviews of several analytical strategies for the analysis of musks in sludge have been described by using accelerated solvent extraction (ASE), supercritical fluid extraction, Soxhlet extraction and liquid–liquid extraction, all of them in combination with gas chromatography–mass spectrometry (GC–MS) [13–15].

Triclosan (Table S1) is an antimicrobial agent, which is widely used in personal care products such as toothpaste, soaps, deodorants, cosmetics and skin care lotions as well as other consumer goods. Approximately 1,500 t is produced annually worldwide, and approximately 350 t of it is applied in Europe [16]. Triclosan-methyl (Table S1) is a transformation product of triclosan. These two compounds have been identified in the environment by several investigators [16–21], whereas bioaccumulation and toxicity have been studied by Ornvo et al. [22], Coogan et al. [23] and De Lorenzo et al. [24]. Analytical methods for analysing antimicrobials in sludge by using GC–MS and liquid chromatography–MS have been reviewed by Peck [13].

The organophosphates included in this study were chlorinated alkylphosphates such as TCPP, TCEP and TDCP, which are mostly used as flame retardants in polyurethane. Additionally, non-derivatised alkyl phosphates such as the two isomers of tri-butyl phosphate (T iBP and TnBP) and TPP, which are used as plasticisers, were studied as well. Because of their relatively low cost, organophosphates especially TCPP have become the most widely used class of flame retardants [25]. These compounds are washed off from the equipped items during cleaning; the cleaning water will be discharged to the sewer and thus reach waste water treatment plants, as discussed by Fries and Puttmann [26] as well as by Meyer and Bester [27]. Additionally, these organophosphates have been detected in indoor air as well as in indoor dust by Sanchez et al. [28] and Garcia et al. [29]. Only a few analytical procedures to determine organophosphates in sludge or sediment with high TOC content have been described [30, 31].

DEHP is one of the most widely used plasticizers. It is used mainly for making PVC soft and pliable. This plasticizer is eluted into waste water by washing and cleaning processes of the respective materials; it is assumed to have ecotoxic (endocrine disrupting) effects to aquatic organisms [32]. Because of the relatively high lipophilicity of this phthalate, sorption is the main process relevant for elimination in sewage treatment plants. Typical concentration of DEHP in sludge was found to be ranging from 10 to 100 μg L⁻¹ by Fromme et al. [33]. Extraction methods in combination with GC–MS have been described by Sablayrolles et al. [34] and Aparicio et al. [35].

The main objective of the research presented in this paper was to develop and validate an analytical multi-method to determine different classes of organic micro-pollutants such as personal care products, plasticizers and flame retardants and phthalates in sludge.

Experimental section

Materials

AHTN, triclosan, musk xylene, musk ketone and DEHP were purchased from Ehrenstorfer (Augsburg, Germany) as pure compounds with purities being ≥99% according to the supplier. Pure standards of HHCB-lactone as well as HHCB were obtained from International Flavours and Fragrances (IFF, Hilversum, Netherlands). Triclosan-methyl was synthesised from triclosan by methylation with trimethylsulfonium hydroxide solution (Macherey-Nagel, Düren, Germany) at 40°C [20].

TCPP and TDCP were obtained from Akzo Nobel (Amersfoort, the Netherlands). These compounds were used without further purification. The technical TCPP gives three peaks in the ratio 9:3:1. In this study, only the main (first eluting) isomer was used for determination. TnBP, TIBP, TCEP and TCPP were purchased from Sigma-Aldrich (Steinheim, Germany). Ethyl acetate, acetone, cyclohexane and methanol were used in analytical grade (p.a.) quality, while toluene and n-hexane were used in residue grade (z.R.) quality. All solvents were purchased from Merck (Darmstadt, Germany).

Internal standards

The internal standard musk xylene D₁₅ was used to quantify the musk fragrances musk xylene, musk ketone, HHCB, AHTN, triclosan- methyl and DEHP as it elutes in the same fraction as these compounds, while TnBP D₂₇ was used to quantify TIBP, TnBP, TCEP and TCPP, and TBP D₁₅ was used in this experiment to quantify triclosan, HHCB-lactone, TDCP and TPP. Musk xylene D₁₅ and TnBP D₂₇ were obtained from Ehrenstorfer (Augsburg,
Germany); TPP D15 was synthesised from D6 phenol and phosphoroxychloride. These internal standards were chosen as they give undisturbed signal and also do not undergo any reaction themselves [36].

Analytical method

The sample preparation scheme is shown in Fig. 1: After sampling, the sludge samples were immediately frozen at −27°C overnight. “Dried sludge” such as produced at waste water treatment plants contains about 70% water; thus drying is essential to provide good wettability of the sludge with organic solvents. The frozen sub-samples of 40 g wet weight were then lyophilised overnight at 2 mbar and −46°C using an ALPHA 1-2/LD (Christ, Osterode am Harz, Germany). The 4–6 g lyophilised sludge samples was blended with about 10 g diatomaceous earth (acid-washed obtained from MP Biomedicals, Solon, OH, USA) and homogenised in a mill (IKA A11 BASIC, Staufen, Germany) to a fine powder. The homogenates were then transferred into a 33-mL stainless steel ASE cell and extracted successively with ethyl acetate (ASE 200, Dionex, Sunnyvale, USA). After adding an aliquot of 500 μl internal standard solution (IS; containing 500 ng D15 musk xylene, 500 ng TPP D15 and 500 ng TnBP D27), the extract was concentrated to 1 mL by a Büchi Synchore multiport concentrator (Büchi, Essen, Germany) at 80°C and 70 mbar.

The resulting extracts were cleaned up with silica solid phase extraction (SPE) cartridges. This step is primarily protecting the next step (size exclusion chromatography (SEC)) from too many particles as well as very polar compounds. It was performed by packing 1 g of silica (silica 60 obtained from Merck, Darmstadt, Germany, pre-dried at 105°C) into a glass column (60 mm long, 12 mm ID) with two PTFE frits on the top and bottom of silica. The silica column was conditioned with 12 mL n-hexane before use and eluted with 12 mL ethyl acetate after loading the samples.

The resulting extracts were again concentrated by a Büchi Synchore multiport concentrator and successively injected into an SEC system (GPC-Basis, purchased from LC-Tech, Dorfen, Germany) equipped with a glass column ID: 2.5 cm, length 30 cm, packed with 50 g SX-3 (Bio-Rad, Hercules, CA, USA). The mobile phase was cyclohexane and ethyl acetate (1:1, V/V) and the flow rate was 5.0 mL min⁻¹. The solvent eluting in the first 19.30 min (97.5 mL) containing macro-molecules was drained to waste, while the fraction 19.30–30.00 min (52.5 mL) containing the analytes was collected [37]. The samples were finally transferred into toluene by adding 10 mL toluene and condensing to 1 mL. Thus, macro-molecules were separated as they are eluted in the first fraction, while sulphur, etc. are separated from the target compounds as they are eluted after the analyte fraction.

The resulting extracts were then fractionated for polarity on silica 60 using 12 mL 5% methyl-tert-butylether in n-hexane (first fraction) and 12 mL ethyl acetate (second fraction) successively as eluents. The musks, triclosan–methyl and DEHP were eluted in the first fraction, while TBP, TnBP, TCEP, TCPP, TDCP and TPP as well as triclosan and HHCB-lactone were eluted in the second fraction according to their polarity. These fractions were transferred into toluene as described above and finally analysed by GC–MS detection.

The GC–MS system was a DSQ purchased from Thermo, Waltham, USA. The GC was equipped with a programmable temperature vapouriser (PTV) injector. The
PTV (1 μl injection volume) was operated in PTV splitless mode. The injection temperature of 115°C was held for 3 s; it was successively ramped with 12 to 280°C s$^{-1}$ for the transfer of the analytes into the column. This temperature was held for 1.3 min. The injector was then ramped with 1 to 300°C s$^{-1}$ (open split), which was held for 7 min as a cleaning phase.

The GC separation was performed with a DB-5MS column (J&W Scientific), L was 15 m, ID was 0.25 mm, and film thickness was 0.25 μm. The oven temperature programme started at 100°C (hold, 1 min) and was then ramped with 30 to 130°C min$^{-1}$ and successively with 8 to 220°C min$^{-1}$. Finally, the baking temperature was reached by ramping the oven with 30 to 280°C min$^{-1}$, which was held for 7 min.

The transfer line was held at 250°C, which is sufficient to transfer all compounds from the GC into the MS as the vacuum builds up in the transfer line. The ion source was operated at 230°C. Helium (4.0) was used as carrier gas with a flow rate of 1.3 mL min$^{-1}$. All compounds were detected by means of their mass spectral data and retention times as shown in Table 1.

Calibrations were performed as a multi-step internal standard calibration. A stock solution was produced by dissolving 20 mg of the target compounds into 100 mL acetone. This stock solution was stored at 4°C in the dark. The weight of this flask was controlled before and after each operation. Calibration standards (3, 10, 30, 100, 300, 1,000, 3,000 and 10,000 ng mL$^{-1}$ in toluene) were made by serial dilution of the stock solution. The calibration standards contained the internal standards with a concentration of 100 ng mL$^{-1}$. The calibration curve was calculated by using a weighted (1/X) linear regression.

Results and discussions

Extracting organic compounds from sludge is optimised between extracting as much as possible of the target compound and as little as possible of the organic matter of the sludge, as the latter will be corrupting the GC or either one of the following steps.

Three experiments were performed to determine the optimal conditions for the accelerated solvent extraction in the method development and method validation after it had been decided to focus on ethyl acetate as an extractant:

1. A temperature optimisation, which was compared to total and destructive extractions
2. Validation from an artificial blank material to determine potential concentration dependency of the recovery rate as well as blank problems
3. Validation from a spiked sludge to determine recovery rates by different means as well as gain insight on realistic precision

Optimisation of extraction temperature

Temperature is the most important parameter used in ASE extraction, ASE operates at temperatures above the normal boiling point of most solvents, using pressure to keep the solvents in the liquid phase during the extraction process. As the temperature is increased, the viscosity of the solvent is reduced, thereby increasing its ability to wet the matrix and solubilise the target analytes. However thermal degradation of the solvent or the sample might occur at higher temperatures [38, 39]. In this study a temperature range from 50 to 150°C was tested for the optimisation of

<table>
<thead>
<tr>
<th>Compound</th>
<th>RT (min)</th>
<th>Quantifier mass (amu)</th>
<th>Verifier mass (amu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTNE</td>
<td>5.96</td>
<td>191</td>
<td>219</td>
</tr>
<tr>
<td>Musk xylene</td>
<td>8.12</td>
<td>282</td>
<td>297</td>
</tr>
<tr>
<td>Musk ketone</td>
<td>9.50</td>
<td>279</td>
<td>294</td>
</tr>
<tr>
<td>HHCB</td>
<td>8.03</td>
<td>243</td>
<td>258</td>
</tr>
<tr>
<td>AHTN</td>
<td>8.14</td>
<td>243</td>
<td>258</td>
</tr>
<tr>
<td>HHCB—lactone</td>
<td>11.73</td>
<td>257</td>
<td>272</td>
</tr>
<tr>
<td>Triclosan</td>
<td>11.07</td>
<td>288</td>
<td>290</td>
</tr>
<tr>
<td>Triclosan—methyl</td>
<td>11.30</td>
<td>302</td>
<td>304</td>
</tr>
<tr>
<td>TBP</td>
<td>4.37</td>
<td>155</td>
<td>211</td>
</tr>
<tr>
<td>TaBP</td>
<td>5.80</td>
<td>155</td>
<td>211</td>
</tr>
<tr>
<td>TCEP</td>
<td>7.19</td>
<td>249</td>
<td>251</td>
</tr>
<tr>
<td>TCPP</td>
<td>7.46</td>
<td>277</td>
<td>279</td>
</tr>
<tr>
<td>TDCP</td>
<td>13.35</td>
<td>379</td>
<td>381</td>
</tr>
<tr>
<td>TFP</td>
<td>13.88</td>
<td>325</td>
<td>326</td>
</tr>
<tr>
<td>DEHP</td>
<td>14.60</td>
<td>149</td>
<td>167</td>
</tr>
</tbody>
</table>

Table 1 Retention times and selected mass fragments for the determination of the respective compounds using a DB-5 column
extraction. For the extraction of organic micro-pollutants, one sub-sample of homogenised dried sludge was extracted by ASE with temperatures of 50, 70, 90, 110, 130 and 150°C, each followed by first clean up, SEC and the second clean up as described above. In the end the samples were measured by GC–MS. The highest concentration of HHCB, AHTN, triclosan and HHCB-lactone was found from the 70 and 90°C extractions, which is shown in Fig. 2. The increased concentration of HHCB-lactone found at 130°C was interpreted as result of an oxidation of HHCB under these conditions. Therefore, 90°C was selected as the extraction temperature because of the better extraction efficiency proved here and suggested references [38, 39]. As a control, total extractions with acetone and acidified methanol at 150°C were performed. These did not give higher concentrations than those with ethyl acetate at 90°C and 150 bar.

Method validation from artificial blank material (manure/soil) recovery rates and working range

These experiments were performed to determine whether the recovery rate was dependent on the concentration or not. The working range was considered to range from the lowest to the highest concentrations for which the same recovery rates were obtained. A blank material, which contains similar TOC and ammonia content as sludge but no analytes, was produced by mixing manure from organic farming with soil (1:1). Various concentrations of the standard were spiked into the dried homogenized material. The spiked sub-samples were transferred into ASE cells, which were extracted with the method described above. Table 2 shows the recovery rate and its working range determined from the spiked artificial blank material. Figure S1 shows the recovery rate of triclosan as the function of concentration. The recovery rates for all compounds are independent on the concentrations (Table 2). It was also demonstrated that no other peaks (e.g. from decomposition/pyrolysis) of biogenic material that could be mistaken for the analytes occurred from such matrices.

Method validation from spiked sludge samples (LOQ)

These recovery experiments were carried out by providing six homogeneous sub-samples from one sludge sample and each was spiked with 125 μl of the stock solution (200 μg mL⁻¹). Two other sub-samples were left unspiked as comparison. They were lyophilised and then extracted at 90°C and 150 bar. The following sample preparation, extraction and clean up were identical to the procedures described above. For this study, dewatered digested sludge of an urban waste water treatment plant with 450,000 population equivalents, operating BOD, nitrogen and phosphorous removal was used. The sludge had a water content of 90% before lyophilisation. The mineral content of the total solid content was 33%. The concentrations of the target compounds in this sludge before and after spiking are shown in Table 3. Figure 3 shows the chromatographic characterisation of TCPP in one unspiked sludge sample (18,400 ng g⁻¹).

Since the standard deviation from this six spiked samples was low and no outlier was identified, all results were averaged. The mean recovery rates were 36–114%, and the relative standard deviations were 5–23% (Table 3), depending on the respective compounds. The lower recovery rates of musk xylene and musk ketone were possibly due to the occurrence of biotransformation of the nitro-musks during the sample preparation process [40, 41]. The limit of detection was taken as signal-to-noise ratio 3:1, and the limit of quantification (LOQ) was defined as signal-to-noise ratio 10:1, which was calculated by the Xcalibur software (Thermo, Waltham, USA) for the respective SIM chromatograms of the standard calibration (Table 3). The thus obtained LOQs are in the same range as the lower end of the working range (see above, Table 2). Comparable results were obtained by Bester [30] who used a similar procedure.

Fig. 2 Relative concentrations of HHCB, AHTN, HHCB-lactone and triclosan obtained by ASE: extractions of sludge homogenates at different temperatures

0 50 100 150 2000 4000 8000 12000 16000 20000
50°C 70°C 90°C 110°C 130°C 150°C
HHCB AHTN Triclosan HHCB-lactone
but utilised a Soxhlet extraction to determine polycyclic musk fragrances and TCPP in waste water treatment plant.

Stereoisomer separation

Stereoisomer-specific determination often gives in-depth insights into ongoing processes; however, this analytical technique is more vulnerable to matrix than conventional analysis, as the respective columns have lower temperature limits. Thus, stereoisomer-specific determination requires better sample clean ups. In this study, it was tested whether the developed sample clean up is suitable also for stereoisomer determination. The gained extracts were used for stereoisomer separation of OTNE. OTNE has two chiral centres; thus enantiomers and diastereomers may occur. The synthesis of this compound is not stereoselective; thus both kinds of stereoisomers are expected in the product [42]. Stereoisomer separation was performed on a heptakis-(2,3-di-O-methyl-6-O-t-butyldimethyl-silyl)-β-cyclodextrin (Hydrosol 6-TBDMS) column (Macherey-Nagel, Düren, Germany). This column is able to separate enantiomers as well as diastereomers of compounds such as polycyclic musks [15], but for OTNE only two major peaks were observed (Fig. 4). Thorough temperature programme and gas flow optimisation were performed and resulted in a temperature programme of 90°C [1 min] → 10 °C min⁻¹ → 115 °C [70 min] → 10 °C min⁻¹ → 200 °C [30 min] at a constant flow of 1.2 mL min⁻¹ helium gave the best separation from the production impurities. However, only two main stereoisomers could be separated. It is thus currently unknown whether the achieved separation separates the enantiomers or diastereomers of OTNE. However, in this study, it could be demonstrated that the extracts were clean enough to give reliable stereoseparation. A multitude of standards and sludge samples were analysed in one sequence with no change of chromatographic performance. Thus this multi-method is capable to perform sample clean up for stereoseparations as well as conventional analysis.

Table 2 Recovery rate and working range determined by the artificial blank material

<table>
<thead>
<tr>
<th>Compound</th>
<th>Working range (ng g⁻¹)</th>
<th>RR (%)</th>
<th>RSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTNE</td>
<td>30-10,000</td>
<td>73</td>
<td>26</td>
</tr>
<tr>
<td>HHCB</td>
<td>300-10,000</td>
<td>87</td>
<td>13</td>
</tr>
<tr>
<td>Triclosan</td>
<td>30-10,000</td>
<td>88</td>
<td>9</td>
</tr>
<tr>
<td>TiBP</td>
<td>30-10,000</td>
<td>77</td>
<td>6</td>
</tr>
<tr>
<td>TCEP</td>
<td>10-10,000</td>
<td>70</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 3 Typical concentration of compounds in sludge samples, mean recovery, relative standard deviation (RSD), limit of detection (LOD) and limit of quantification (LOQ)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration in unspiked sludge (ng g⁻¹)</th>
<th>Calculated concentration in spiked sludge (ng g⁻¹)</th>
<th>Determined concentration (ng g⁻¹)</th>
<th>Mean recovery rate (%)</th>
<th>RSD (%)</th>
<th>LOD (ng g⁻¹)</th>
<th>LOQ (ng g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTNE</td>
<td>3,000</td>
<td>10,927</td>
<td>6,513</td>
<td>60</td>
<td>6</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>MX</td>
<td>80</td>
<td>9,200</td>
<td>4,300</td>
<td>47</td>
<td>19</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>MK</td>
<td>40</td>
<td>7,600</td>
<td>2,700</td>
<td>36</td>
<td>23</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>HHCB</td>
<td>11,800</td>
<td>20,300</td>
<td>15,700</td>
<td>77</td>
<td>6</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>AHTN</td>
<td>1,600</td>
<td>8,900</td>
<td>6,100</td>
<td>69</td>
<td>5</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>HHCB–lactone</td>
<td>800</td>
<td>7,900</td>
<td>5,200</td>
<td>66</td>
<td>10</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Triclosan–Me</td>
<td>4,400</td>
<td>11,700</td>
<td>15,600</td>
<td>114</td>
<td>12</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>Triclosan</td>
<td>70</td>
<td>7,300</td>
<td>4,000</td>
<td>55</td>
<td>10</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>TiBP</td>
<td>100</td>
<td>8,100</td>
<td>6,200</td>
<td>77</td>
<td>10</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>TiBP</td>
<td>90</td>
<td>7,700</td>
<td>4,900</td>
<td>64</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>TCEP</td>
<td>70</td>
<td>11,900</td>
<td>7,000</td>
<td>59</td>
<td>9</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>TCEP</td>
<td>18,400</td>
<td>28,000</td>
<td>27,000</td>
<td>96</td>
<td>8</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>TDCP</td>
<td>90</td>
<td>8,500</td>
<td>4,400</td>
<td>52</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>TPP</td>
<td>400</td>
<td>7,600</td>
<td>4,300</td>
<td>57</td>
<td>5</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>DEHP</td>
<td>8,700</td>
<td>17,200</td>
<td>13,000</td>
<td>87</td>
<td>21</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

The LOD was taken as signal-to-noise ratio 3:1, and LOQ was defined as signal-to-noise ratio 10:1, which was calculated by the Xcalibur software (Thermo, Waltham, USA) for the respective SIM chromatograms of the standard calibration. Mean recovery rates were calculated by the ratio of determined concentration and calculated concentration in spiked sludge.
Conclusion

A precise multi-method has been developed to analyse musk fragrances, bactericides as well as organophosphates and flame retardants and phthalate by using lyophilisation, ASE in combination with the clean-up steps of SPE, SEC and the detection of GC–MS. The recovery rates obtained from two different recovery experiments performed by two different operators were comparable. In diverse projects, this method has been used to analyse several hundred sludge samples especially in degradation and process studies, for which precision as well as stability of the system were crucial. Though the DSQ-MS needs regular cleaning of the curved prefilter quadrupole after injecting about 100 extracts in duplicate plus calibration standards, the method performed well in routine operations. It is a multi-method that in lots of cases is open to including new analytes. Also the extracts were clean enough to perform stereoseparation. Thus a method was validated, which can be the backbone of future research on organic micro-pollutants in sludge.

Fig. 3 Chromatographic characterisation of the organophosphate flame retardant TCPP. The third isomer was not detected as the respective SIM function was aborted before elution of this compound.

Fig. 4 Separation of stereoisomers of OTNE on a heptakis-(2,3-di-O-methyl-6-O-t-butyldimethyl-silyl)-β-cyclodextrin (Hydrodex 6-TBDM®) column. The main stereoisomers were detected at 58.50 and 62.27 min. Temperature programme: 90 °C [1 min] → 10 °C min−1 → 115 °C [70 min] → 10 °C min−1 → 200 °C [30 min] at a constant flow 1.2 mL min−1.
Acknowledgements The authors acknowledge the support of the Environmental Protection Agency of Northrhine Westphalia through the project “BASPIK”, of the Ministry for Economics through the ProInno/AIF project “Abbau von organischen Schadstoffen im Rahmen der Klärschlammveredlung” and xenobiotic groups of University of Duisburg-Essen as well as the skilled technical laboratory help of Jennifer Hardes for cooperation. Additionally the authors are indebted to the co-operating waste water treatment plant for the possibility to sample their sludge for method development. The authors also acknowledge the support from the project “In situ characterization of microbial degraders of triclosan and methyl-triclosan from wastewater treatment plants” from the Danish research council FTP.

References

3. Pawelezyk A (2005) ISAH. Warsaw, Poland
Research paper 4:

Bester K., Chen XJ., Pauly U. and Rehfus S. Abbau von organischen Schadstoffen bei der Kläschlammbehandlung in Pflanzenbeeten, Korrespondenz Abwasser, Abfall 58 (2011) 1050-1157
Abbau von organischen Schadstoffen bei der Klärschlammbehandlung in Pflanzenbeeten

Kai Bester (Roskilde/Dänemark), Xijuan Chen (Aalborg/Dänemark), Udo Pauly und Stefan Rehfus (Neu-Eichenberg)

Zusammenfassung
Im Beitrag werden die Versuchsdurchführung und die Ergebnisse einer Untersuchung zur Abbaubarkeit von organischen Schadstoffen, die in Klärschlämmen enthalten sind, mittels bepflanzter Beete dargestellt. Die durchgeführten Containerversuche wie auch die parallel durchgeführten Untersuchungen an den großen Klärschlammvererdungsanlagen Kalkar-Rees in Nordrhein-Westfalen zeigen, dass bepflanzte Beete in der Lage sind, die Konzentrationen und Frachten, auch schwer abbaubare organische Schadstoffe wie den Weichmacher DEHP, das Bakterizid Triclosan sowie die Duftstoffe OTNE, HHCB, HHCB-Lacton und AHTN zu reduzieren und eine Verminderung der über den Klärschlamm in die Umwelt gelangenden Fracht von 50 % (HHCB, AHTN) bis 93 % (OTNE) zu erreichen.

Schlüsselwörter: Klärschlamm, Spurenstoff, anthropogen, Schadstoff, organisch, Abbaubarkeit, Elimination, Versuch, Pflanzenbeet, Fracht, Reduzierung

DOI: 10.3242/kae2011.09.004

1 Einleitung

Abstract
Degradation of Organic Pollutants in Sewage Sludge Treatment in Reed Beds
The paper describes the performance of a test and the results of a study on the degradability of organic pollutants, which are contained in sewage sludge, in reed beds. The container tests undertaken as well as the parallel tests in large-scale plants for the conversion of sewage sludge into humus, such as Meppen in Lower Saxony and Kalkar-Rees in North Rhine Westphalia, show that reed beds are able to reduce pollution levels and loads even of difficult to degrade organic pollutants such as DEHP, a surfactant, triclosan, a bactericide, as well as fragrances such as OTNE, HHCB, HHCB-lactone and AHTN and that the pollution loads that enter the environment via the sewage sludge can be reduced by between 50% (HHCB, AHTN) and 91% (OTNE).

Key words: sewage sludge, trace element, anthropogenic, pollutant, organic, degradability, removal, test, reed bed, load, reduction

09.28.indd – Dienstag, 2. 8. 2011, 11:30 Uhr
Korrespondenz: Abwasser, Abfall 2011 (56) – Nr. 9
www.dwa.de/KA
Im Rahmen des von der Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke e. V.“ (AiF) geförderten zweijährigen Forschungsvorhabens „Abbau von organischen Schadstoffen im Rahmen der Klärschlammverordnung“ wurden zwei großtechnische Klärschlammveredlungsanlagen in Meppen (Niedersachsen) und Kalkar-Rees (Nordrhein-Westfalen, Abbildung 1) untersucht und mit 16 eigens angefertigten, unterschiedlich bepflanzten Modellanlagen verglichen.

Folgende Substanzen wurden untersucht:

OTNE (7-Acetyl-1,2,3,4,5,6,7,8-octahydro-1,1,6,7-tetramethylpyrphathalen; Handelsname Iso-E-super) hat derzeit eine weite Verbreitung in Verbraucherprodukten gefunden. 2500–3000 t dieses Duftstoffs werden jährlich verkauft [3]. Konzentrationen von 7000–30 000 ng OTNE je g Trockensubstanz (TS) Klärschlamm wurden in den USA gefunden [4], während in Europa die Konzentrationen zwischen 2000 und 4000 ng g–1 liegen [5].

Polycyclische Moschus-Duftstoffe wie HHCB (1,3,4,6,7,8-Hezahydro-4,6,6,7,8,8-hexamethylcyclopenta-[g]-2-benzopyran, Handelsname zum Beispiel Galasolid) und AHTN (7-Acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalen, Handelsname zum Beispiel Tonalid) werden häufig als Duftstoffe in Shampoos, Waschmitteln, Weichspülern und anderen Consumer-Produkten benutzt. [5, 6]. Beide Polycyclen haben eine geringe Wasserlöslichkeit und hohes Bioakkumulationspotenzial [7]. Die Konzentrationen dieser Substanzen in Klärschlämmen aus Nordrhein-Westfalen betrugen 3100 ± 240 ng g–1 (HHCB) und 1500 ±150 ng g–1 (AHTN) [8].

DEHP [Bis(2-ethylhexyl)phthalat] wird als Weichmacher in PVC, in Baumaterialien, aber auch in Farben und Kosmetika eingesetzt [13]. Die jährliche weltweite Produktion von DEHP liegt bei 106 t [14]. Die Weichmacher werden während der Lebensdauer der entsprechenden Produkte ausgewaschen und gelangen so ins Abwasser. DEHP ist eine der prioritären Substanzen der Wasserrahmenrichtlinie. Die Konzentrationen von DEHP liegen bei 1740 bis 182000 ng l–1 in Kläranlagenabläufen. In Klärschlämmen wurden 27900 bis 154000 ng g–1 Trockensubstanz.
ckenmasse und in Sedimenten 210 bis 84 400 ng g⁻¹ gefunden [15].

2 Material und Methoden

2.1 Versuchsdurchführung

Die Untersuchung und Auswertung der entnommenen Proben erfolgte durch das Fachgebiet Siedlungswasser- und Abfallwirtschaft der Universität Duisburg-Essen.

Die Container waren folgendermaßen ausgestattet:

Containermaße jeweils 1,0 × 1,0 × 0,95 m, unbehandeltes Stahlblech, außen mit Rostschutzlackierung versehen. An der Behältersohle wurde jeweils seitlich ein Kugelhahn aus Messing (vernickelt) zur Entnahme von Filtratproben angebracht.

In jeden Container wurden zunächst ca. 600 l maschinell entwässertes Klärschlamm mit ca. 20 % TS aus der Kläranlage Meppen eingebracht und anschließend wie folgt bepflanzt:

- **Variante I**: Container 1–4, bepflanzt mit Schilf (*Phragmites australis*),
- **Variante II**: Container 1–4, bepflanzt mit Rohrglanzgras (*Phalaris arundinacea*),
- **Variante III**: Container 1–4, bepflanzt mit Rohrkolben (*Typha latifolia*),
- **Variante IV**: Container 1–4, ohne Bewuchs.

Um den Verbleib der im Klärschlamm enthaltenen organischen Stoffe bilanziell bewerten zu können, wurden – neben Untersuchungen des Klärschlamm – Proben aus dem Filtratwasser und dem Pflanzenmaterial entnommen und auf organische Schadstoffe untersucht.

Aufgrund von Problemen mit Entwässerungsfähigkeit und Pflanzenverträglichkeit des maschinell entwässerten Klärschlamm wurde im weiteren Projektverlauf die Container entleert, mit Klärschlamm aus der Anlage Vererdungsanlage in Meppen befüllt und erneut bepflanzt. Alle Untersuchungsergebnisse beziehen sich im Folgenden auf diesen Versuchsaufbau.

2.2 Probenahme und Aufbereitung

Die Proben wurden mittels eines Stahlstechrohrs in drei Tiefenprofilen (0–20 cm, 20–40 cm, 40–60 cm) genommen. Zehn Teilproben aus den jeweiligen Schichten wurden vereinigt und in einem Stahleimer homogenisiert. Von diesen Homogenaten wurden 200 g in Glasflaschen für die Analytik versendet.
2.3 Durchführung der Analysen

Die instrumentelle Analyse wurde mittels GC-MS (Gas-Chromatographie mit massenspektrometrischer Detektion) durchgeführt. Hierzu wurde ein Thermo Finnigan DSQ mit einem PTV-Injektor und einem Trace Autosampler eingesetzt. Die gaschromatographische Trennung wurde mithilfe einer DB5-MS-Säule (J&W Scientific), L: 15 m, ID: 0,25 mm, film: 0,25 μm, und eines Temperaturprogramms durchgeführt. Die verschiedenen Verbindungen wurden über ihre massenspektrometrischen Daten und Retentionszeiten identifiziert.

2.4 Halbwertszeiten

Da die Experimente bei wechselnden Temperaturen und Feuchtgehalten durchgeführt wurden, sind die kinetischen Daten nicht so belastbar wie zum Beispiel die aus Laborversuchen unter kontrollierten Bedingungen gewonnenen Daten. Dennoch soll im Rahmen dieses Projekts nur von einer „Abschätzung“ und nicht von einer „Bestimmung“ von Halbwertszeiten berichtet werden. Es bleibt aber hinzuzufügen, dass diese Abschätzung unter realen Bedingungen natürlich realitätsnäher ist als die unter kontrollierten Bedingungen gewonnenen Daten. Im Rahmen dieser Arbeit wird von einem Abbau erster Ordnung ausgegangen:

\[\ln \left(\frac{c_0}{c(t)} \right) = -kt \]

Hierbei ist \(c_0 \) die Startkonzentration zum Zeitpunkt \(t = 0 \) und \(c \) die Konzentration zum Zeitpunkt \(t \). Die Formel für die Halbwertszeit wird durch Umformen gewonnen:

\[t_{1/2} = \frac{\ln 2}{k} \]

3 Auswertung der Versuche

3.1 Konzentrationen der Zielsubstanzen

Die höchsten OTNE-Konzentrationen wurden zu Anfang des Experimentes mit 1600 ng g⁻¹ (TS) gefunden. Nach 13 Monaten waren die Konzentrationen bei allen Experimenten um 70 % der ursprünglichen Konzentration reduziert. Hierbei wurde kein signifikanter Unterschied der verschiedenen Bewuchsformen festgestellt (Abbildung 3).

Etwa 20 % des HHCB wurden während des Versuchs eliminiert. Die Differenz zwischen Startkonzentration und Endkonzentration beträgt etwa 3000 ng g⁻¹ (TS). Im Gegensatz dazu stieg die Konzentration des Metaboliten HHCB-Lacton um 35 % in dem Container mit Rohrglanzgras, während der Zuwachs bei dem Versuch mit Rohrkolben 32 % und bei dem mit Schilf 45 % und ohne Bewuchs 44 % (etwa 500 ng g⁻¹ (TS)) betrug. Da die Konzentrationen des Primärmetaboliten stiegen, kann davon ausgegangen werden, dass es sich bei den Eliminierungsprozessen tatsächlich um oxidative Abbauprozesse durch Mikroorganismen handelt. Es muss aber ebenfalls festgehalten werden, dass wiederum auch ein Abbau des HHCB-Lactons erfolgt, da der Verlust des HHCB insgesamt größer ist als die Zunahme des Metaboliten.
Die Konzentrationen von AHTN waren erwartungsgemäß deutlich niedriger als die des HHCB, was etwa dem derzeitigen Einsatzspektrum entspricht. Sie nahmen unabhängig von der Bewuchsform ebenfalls leicht ab, wobei für diese Substanz derzeit kein Metabolit eines Bioabbauprozesses bekannt.

Die Triclosan-Konzentrationen nahmen innerhalb des Versuchs deutlich ab (Abbildung 4). Die Startkonzentrationen (800 ng g⁻¹ (TS)) waren ausgesprochen niedrig, was nur durch die vorherige Lagerungsdauer im schliefpflanzenen Beet in Meppen unterzogen war. Ähnlich wie bei OTNE und Triclosan wurde auch für DEHP eine bedeutende Abnahme der Konzentrationen während der Versuche gefunden. Etwa 40 % Abnahme erfolgte bei der Be- pflanzung mit Rohrglanzgras, während die Werte 44 % für Rohrkolben, 41 % für Schilf und 25 % für die Versuche ohne Bewuchs waren. In Bezug auf DEHP deuten sich also deutlich bessere Eliminierungen mit Pflanzenbewuchs an.

3.2 Massenbilanzen

Zur Sicherstellung der Messergebnisse wurde eine Massenbilanz aufgestellt (Tabelle 1), für die die Konzentrationen c_1 der Zielsubstanzen im Ablaufwasser der Container bestimmt wurden. Den Konzentrationen wurden Wassermengen aus Nieder- schlag (900 mm bzw. 900 l je Container) und Bewässerung (432 l je Container) gegenübergestellt und als Ablaufmenge betrachtet. Dies ist sicherlich eine Überschätzung der Ablaufmenge (Wasser), da die Betrachtung die Verdunstung des Wassers nicht berücksichtigt.

Aus diesen Ablaufmengen (Wasser) und der Konzentration in dem Ablaufwasser kann eine eluierte Menge (M₁) der jeweiligen Substanz als die maximale Menge errechnet werden, die während des Versuchszzeitraums mit dem Drainagewasser aus dem Container abliefen wurde. Aus den Konzentrationen im Schlamm c_2 kann bei Berücksichtigung der Füllhöhe und der Grundfläche der Container die Menge der im Schlamm enthaltenen Substanz (M₂) errechnet werden. Hieraus lässt sich der relative, im Drainagewasser enthalte- ne Massanteil der jeweiligen Substanz errechnen (M₁/M₂). Er beträgt im Falle von OTNE 0,52 % des Ausgangsgehalts und ist damit vernachlässigbar. Vergleichbare Aussagen gelten für alle hier untersuchten Substanzen. Der Anstieg lag zwischen 0,01 und 0,63 %. Das Auswaschen spielt infolgedessen für kei- ne der Substanzen eine signifikante Rolle bei den Massenbilan- zen oder Eliminierungen.

Zusätzlich wurde auch die grüne Blattmasse im Rahmen der Massenbilanzierung qualitativ berücksichtigt. Ein Einfluss der grünen Blattmasse auf die Reduktion der Xenobiotica (durch Aufnahme derselben in die Biomasse) kann ebenfalls ausge- schlossen werden (< 1 %), da sowohl die gemessenen Konzen- trationen in der Blattmasse sehr gering waren als auch die Blattmasse selbst gegenüber der Masse des Klärschlammms nur eine untergeordnete Rolle spielt (wenige kg/m² gegenüber mehreren Hundert kg Klärschlammmasse/m²).
4 Diskussion der Ergebnisse

Die durchgeführten Containerversuche wie auch die parallel durchgeführten Untersuchungen an den großtechnischen Veredlungsanlagen Meppen in Niedersachsen und Kalkar-Rees in Nordrhein-Westfalen zeigen deutlich, dass die vegetative Klärschlammbehandlung in der Lage ist, auch schwer abbaubare organische Schadstoffe zu reduzieren. Dabei handelt es sich höchstwahrscheinlich um echte Abbauprozesse, da entsprechende Abbauprodukte (Metabolite) nachgewiesen werden konnten. Eine Bilanzierung der Stoffströme zeigte ergänzend, dass nur ein Bruchteil (<1 %) der Zielsubstanzen mit dem Filtratwasser ausgewaschen wird. Auch die Aufnahme durch die Pflanzen kann mit <1 % vernachlässigt werden. Dass die Art der Bepflanzung zudem eine untergeordnete Rolle bei den Abbauprozessen gespielt hat, kann als ein weiterer Beweis gesehen werden, dass es sich maßgeblich um substratspezifische mikrobielle Abbauprozesse handelt.

Für die Gesamtbilanzierung in Hinblick auf die Umweltrelevanz ist daher eine Input-Output-Betrachtung bezüglich der Frachten hilfreich. Dazu wird die ins Beet geleitete Klärschlammmasse (in t TM) mit den in ihr enthaltenen Zielsubstanzen (in ng/g TM) im Nassschlamm ins Verhältnis zur Masse und den Konzentrationen gesetzt, die am Ende des Behandlungszyklus zur Verwertung in die Umwelt gelangen würden. Nachfolgend ist dies am Beispiel Kalkar dargestellt (Tabelle 2), da nur hier hilfweise die Konzentration im Nassschlamm vorlag. Die Angaben stehen unter dem Vorbehalt dieser einmaligen Stichprobe, zeigen in ihrer Tendenz aber den deutlichen Einfluss der bepflanzten Beete auf die Einfrachtung der umweltrelevanten Zielsubstanzen.

Beispiel Klärschlammveredlungsanlage Kalkar-Rees

Gegenüber der Input-Trockensubstanzmenge von 489 t TM befinden sich nach Abschluss der Trockenphase nur noch rund 331 t TM im Beet. Ein Großteil dieser Massenreduktion ist auf den Abbau organischer Substanz zurückzuführen. Gleichzeitig nimmt die Konzentration von der Startkonzentration \(c_0 \) hin zur Endkonzentration \(c \) während des Behandlungsprozesses laufend ab. Unter Berücksichtigung einer Klärschlammmenge von 489 t TM Input und 331 t TM Output am Ende der Trockenphase ergeben sich die in Tabelle 3 genannten Frachten.
5 Fazit

In den Modellanlagen kommt es während des Versuchszeitraums zu einer deutlichen Abnahme der Konzentrationen der untersuchten Xenobiotica zwischen 20 % (HHCB) und 70 % (OTNE). Aus den gewonnenen Daten wurden näherungsweise Halbwertszeiten für die Zielsubstanzen ermittelt. Die Konzentrationsabnahmen und Halbwertszeiten aus den Modellanlagen konnten für die großtechnischen Anlagen weitgehend bestätigt oder übertroffen werden (Kalkar). Da bei großtechnischen Anlagen in der Regel Trockenphasen von zwölf Monaten eingehalten werden, können die Reduktionsraten der Zielsubstanzkonzentrationen für diesen Zeitraum bei der Anlage in Kalkar wie in Tabelle 4 dargestellt angenommen werden.

Betrachtet man neben den reinen Veränderungen der Konzentrationen in der Trockenphase auch die Massenveränderungen, die durch Abbau von Klärschlammstockmassen eintreten, ergeben sich weitere Entlastungen der Umwelt. Am Beispiel Kalkar konnte eine Frachtverringerung der untersuchten Xenobiotica zwischen rund 50 und 93 % gegenüber der direkten Nassschlammausbringung abgeschätzt werden.

Bei den Containerversuchen zeigte sich ein untergeordneter Einfluss der eingesetzten Pflanzenarten auf die Versuchsergebnisse. Hierbei ist zu berücksichtigen, dass im Untersuchungszeitraum lediglich die Verhältnisse während Trockenphasen, ohne regelmäßige Beschlammmung, untersucht wurden. Durch ihre Verdunstungsleistung und ihre Rolle bei der Sauerstoffversorgung der Mikroorganismen sind die Pflanzen allerdings eine wichtige Voraussetzung für eine optimale Entwässerungs- und Mineralisierungsleistung großtechnischer Anlagen und so mit wichtiger, unverzichtbarer Systembestandteil bei der Klärschlammbehandlung in Pflanzenbeeten. Besonders Schilfpflanzen tragen durch ihre Durchwurzelungsfähigkeit auch tieferer Schlammsschichten dazu bei, das Gesamtsystem hydraulisch durchlässig und damit funktionsfähig zu halten.

Dank

Literatur

Autoren

Priv.-Doz. Dr. Kai Bester
Aarhus University
National Environmental Research Institute
Department of Environmental Chemistry and Microbiology
Frederiksborgvej 399
4000 Roskilde, Dänemark

Xijuan Chen, M. Sc.
Aalborg University
Department for Biotechnology, Chemistry and Environmental Engineering
Sohngaardsholmsvej 49
9000 Aalborg, Dänemark

Dr.-Ing. Udo Pauly
Dipl.-Ing. Stefan Rehfus
EKO-Plant Entwicklungs- und Betriebsgesellschaft für ökotechnische Anlagen mbH
Karlbrunnenstraße 11
37249 Neu Eichenberg

E-Mail: udo.pauly@eko-plant.de
Begriffsbestimmung

<table>
<thead>
<tr>
<th>Substanz</th>
<th>(c_1) Ablaufwasser</th>
<th>Nieder-</th>
<th>Bewäs-</th>
<th>(M_1) Ablaufwasser</th>
<th>(c_2) Schlamm</th>
<th>Tiefe des Schlammbeetes</th>
<th>(M_2) Schlamm</th>
<th>(M_1/M_2) relater Massenanteil im Ablaufwasser im Vergleich zur Menge im Schlamm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[ng L⁻¹]</td>
<td>[L m⁻²]</td>
<td>[L]</td>
<td>[mg]</td>
<td>[ng g⁻¹]</td>
<td>[m]</td>
<td>[mg]</td>
<td>[mg]</td>
</tr>
<tr>
<td>OTNE</td>
<td>2450</td>
<td>900</td>
<td>432</td>
<td>3,26</td>
<td>1570</td>
<td>0,5</td>
<td>630</td>
<td>0,520</td>
</tr>
<tr>
<td>HHCB</td>
<td>5430</td>
<td>900</td>
<td>432</td>
<td>7,23</td>
<td>10 100</td>
<td>0,5</td>
<td>4040</td>
<td>0,179</td>
</tr>
<tr>
<td>AHTN</td>
<td>1350</td>
<td>900</td>
<td>432</td>
<td>1,80</td>
<td>2250</td>
<td>0,5</td>
<td>900</td>
<td>0,200</td>
</tr>
<tr>
<td>Trichlo</td>
<td>1240</td>
<td>900</td>
<td>432</td>
<td>1,65</td>
<td>800</td>
<td>0,5</td>
<td>520</td>
<td>0,516</td>
</tr>
<tr>
<td>HHCB-</td>
<td>2280</td>
<td>900</td>
<td>432</td>
<td>3,04</td>
<td>1200</td>
<td>0,5</td>
<td>480</td>
<td>0,633</td>
</tr>
<tr>
<td>DEHP</td>
<td>480</td>
<td>900</td>
<td>432</td>
<td>6,39</td>
<td>11 130</td>
<td>0,5</td>
<td>4450</td>
<td>0,014</td>
</tr>
</tbody>
</table>

\(c_1\) = Konzentration im Ablaufwasser, \(M_1\) = Masse der im Ablaufwasser enthaltenen Substanz, \(c_2\) = Konzentration im Schlamm, \(M_2\) = Menge der im Schlamm enthaltenen Substanz, \(M_1/M_2\) = relater Massenanteil der Substanzmenge im Ablaufwasser. Die Material-Dichte wird mit 0,8 t/m³ angenommen, was großtechnischen Erfahrungen mit diesem Material entspricht.

Tabelle 1: Massenbilanzen bei den Containerversuchen
Tabelle 2: Abbau der Zielsubstanzen in der Vererdungsanlage Kalkar während eines Behandlungszyklus

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Input-Fracht [kg]</th>
<th>Output-Fracht (bei Verwertung) [kg]</th>
<th>Entfrachtung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTNE</td>
<td>8,8</td>
<td>0,6</td>
<td>93</td>
</tr>
<tr>
<td>HHCB</td>
<td>6,4</td>
<td>3,2</td>
<td>50</td>
</tr>
<tr>
<td>AHTN</td>
<td>1,0</td>
<td>0,5</td>
<td>50</td>
</tr>
<tr>
<td>Triclosan</td>
<td>1,2</td>
<td>0,2</td>
<td>83</td>
</tr>
<tr>
<td>DEHP</td>
<td>14</td>
<td>3,0</td>
<td>79</td>
</tr>
</tbody>
</table>

Tabelle 3: Entfrachtung der Klärschlämmerde Kalkar

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Abgeschätzte Halbwertszeit [Tage]</th>
<th>Konzentrationsbezogene Eliminationsrate in zwölf Monaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTNE</td>
<td>136</td>
<td>77 %</td>
</tr>
<tr>
<td>HHCB</td>
<td>924</td>
<td>24 %</td>
</tr>
<tr>
<td>AHTN</td>
<td>492</td>
<td>35 %</td>
</tr>
<tr>
<td>Triclosan</td>
<td>205</td>
<td>65 %</td>
</tr>
<tr>
<td>DEHP</td>
<td>250</td>
<td>55 %</td>
</tr>
</tbody>
</table>

Tabelle 4: Abgeschätzte Halbwertszeiten und rechnerisch ermittelte konzentrationsbezogene Eliminationsraten der untersuchten Xenobiotica in 12-monatiger Trockenphase (Kalkar)

![Abb. 1: Klärschlammvererdungsanlage Hönnepe (acht Beete, 540 t TS) (Foto: EKO-Plant)](image)
Abb. 2: Die 16 Versuchscontainer auf dem Testgelände (Foto: EKO-Plant)

Abb. 3: Konzentrationen von OTNE im Containerversuch zur Schlammvererdung (ng g\(^{-1}\) TS); RG: Rohrglanzgras, RK: Rohrkolben, S: Schilf, OB: ohne Bewuchs

Abb. 4: Konzentrationen von Triclosan im Containerversuch zur Schlammvererdung (ng g\(^{-1}\) TS); RG: Rohrglanzgras, RK: Rohrkolben, S: Schilf, OB: ohne Bewuchs
Research paper 5:

Chen XJ., Nielsen JL., Furgal K., Liu YL., Lolas IB. and Bester K. Elimination of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions, Chemosphere 84 (2011) 452–456
Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions

Xijuan Chen a, Jeppe Lund Nielsen a, Karolina Furgal a, Yaling Liu a, Ihab Bishara Lola a, Kai Bester b,⇑

a Department of Biochemistry, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, 9000 Aalborg, Denmark
b National Environmental Research Institute, Aarhus University, Frederiksholmsgade 239, 4000 Roskilde, Denmark

ARTICLE INFO

Article info

Article history:
Received 18 October 2010
Received in revised form 20 March 2011
Accepted 22 March 2011
Available online 10 April 2011

Keywords:
Triclosan
Triclosan methyl
Waste water treatment
Aerobic transformation

ABSTRACT

Triclosan is an antimicrobial agent which is widely used in household and personal care products such as toothpaste, shampoos, and soaps. It is additionally used as a stabilizing agent in a multitude of detergents and cosmetics (Adolfsson-Erici et al., 2002). Triclosan inhibits bacterial growth by blocking lipid biosynthesis (Schweizer, 2001). Microalgal communities are particularly sensitive to triclosan with effective concentrations around 10 ng L−1 (Wilson et al., 2009). A mechanism responsible for this effect has been proposed (Franz et al., 2008). Additionally, triclosan has also been linked to a range of health and environmental effects, such as skin irritation, allergy susceptibility, and also other ecological toxicity to the aquatic and terrestrial environment (Coogan et al., 2007); e.g. it has an effect on earth worms (Eisenia fetida) (Lin et al., 2010) and on Japanese medaka fish (Naceef et al., 2010).

After use triclosan ends up in the wastewater with typical concentrations of 1–10 µg L−1 (Adolfsson-Erici et al., 2002; Lindström et al., 2002; Singer et al., 2002; Bester, 2003, 2005). Removal of about 90% was measured in wastewater treatment plants (WWTP) employing conventional activated sludge process of which 40–60% was due to biodegradation while the remainder was due to sorption to the sludge (Singer et al., 2002; Bester, 2003, 2005; Coogan et al., 2007; Heidler and Halden, 2007; Ying et al., 2007).

The structural formulas and basic physico-chemical parameters of triclosan and triclosan-methyl are compared in Table 1. Another 5% of triclosan is transformed to bound residues (Bester, 2003) while triclosan-methyl was only detected with concentrations of 0.004–0.311 mg kg−1 dry matter in Germany (Bester, 2003) while triclosan-methyl was only detected with concentrations of 0.004–0.311 mg kg−1 (dry weight) in sewage sludge samples from municipal wastewater treatment plants in Spain (Sánchez-Brunete et al., 2010).

On the other hand, this means that most removal occurs due to biodegradation processes (Singer et al., 2002; Bester, 2003). Heidler and Halden, 2007). However, only little is known about the reaction pathways and conditions (Federe et al., 2002). About 5% of triclosan is biomethylated to triclosan-methyl (2,4,4-trichloro-2-methoxy-diphenylether) (Bester, 2003, 2005; Heidler and Halden, 2007). The structural formulas and basic physico-chemical parameters of triclosan and triclosan-methyl are largely unknown up to now, as most studies focused on the mass flow of triclosan-methyl in the WWTP treatment process (Bester, 2003), its formation in estuarine systems (DeLorenzo et al., 2007) as well as bioaccumulation of triclosan-methyl in fish samples (Lindström et al., 2002; Balmer et al., 2004). It is known, though, that triclosan-methyl is more persistent, lipophilic, bio-accumulative and less sensitive towards photo-degradation in the environment than its parent compound (Lindström et al., 2002; Balmer et al., 2004). Typical concentrations of triclosan in sludge were 2–8 mg kg−1 dry matter in Germany (Bester, 2003), while triclosan-methyl was only detected with concentrations of 0.004–0.311 mg kg−1 dry weight in sewage sludge samples from municipal wastewater treatment plants in Spain (Sánchez-Brunete et al., 2010).

To maximize the biodegradation of compounds like triclosan and triclosan-methyl it is crucial to understand by which process and in which part of the treatment plants triclosan is eliminated and by which process triclosan-methyl is generated. There are
which processes 6 sample from Aalborg East wastewater treatment plant (WWTP),

2.1. Activated sludge sampling

2. Materials and methods

2.2. Degradation experiments

Table 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Water solubility</th>
<th>Log Kow</th>
<th>Log Koc</th>
<th>Vapor pressure</th>
<th>pKa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclosan (Bester, 2005;</td>
<td>4.623 mg L⁻¹</td>
<td>5</td>
<td>4.2</td>
<td>0.00062 Pa</td>
<td>7.8</td>
</tr>
<tr>
<td>Balmer et al., 2004, EPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suite 4.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triclosan-methyl (Bester</td>
<td>0.4 mg L⁻¹</td>
<td></td>
<td>5</td>
<td>0.0001 Pa</td>
<td></td>
</tr>
<tr>
<td>et al., 2008, EPI Suite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Structural formula and other environmental parameters of triclosan and triclosan-methyl.

The incubation conditions were established as:

1. Aerobic conditions by supplying air through a diffuser stone with a flow rate of 1.3 L h⁻¹.
2. Anaerobic conditions were maintained by constantly flushing the respective bioreactor with nitrogen gas.
3. Anoxic (nitrate reducing) conditions were maintained by constant addition of potassium nitrate (KNO₃) (44 g N d⁻¹ L⁻¹).

The preliminary experiments were incubated for 80 h under aerobic, anaerobic and anoxic conditions with starting concentrations of 0.1 mg L⁻¹ triclosan, which is exceeding typical wastewater concentrations by a factor of 10 but is in the same range as expected in activated sludge in municipal WWTPs (Bester, 2005).

Detailed aerobic experiments were performed for 10 d at five different initial triclosan concentrations to determine the rate of triclosan-methyl formed from triclosan under aerobic conditions. Triclosan concentrations of 0.02, 0.5, 1.0, 2.0 and 3.0 mg L⁻¹ were used in order to investigate whether the degradation of triclosan and formation of triclosan-methyl were concentration related. The 3 mg L⁻¹ is towards the very high end of the concentration that can still be found in rare cases in sludge (Stasinakis et al., 2007).

The high concentrations were chosen, to be able to discriminate between triclosan an triclosan-methyl already present in the sludge and those freshly spiked for the experiments. In these experiments oxygen concentrations were measured and continuously kept above 4.0 mg L⁻¹.

2.3. Extraction and instrumental analysis

2.3.1. Liquid sludge

Ten milliliter sludge samples from the experiments were diluted by tap water to 1 L and extracted successively for 20 min with 10 ml toluene by means of vigorous stirring with a teflonized magnetic stir bar after adding an aliquot of 100 µl of internal standard solution (musk xylene D₃). The organic phase was separated from the aqueous one and the residual water was removed from
The organic phase by freezing the samples overnight at -20°C. The organic extracts were concentrated to 1 mL with a nitrogen flow condensator at 55°C.

2.3.2. Solid sludge

To determine sorption of triclosan into the solid phase, another 10 mL sludge samples were taken every day from each reactor. The samples were filtered through GC-50 glass fiber filters (Advantec, Tokyo, Japan) with pore size of 0.2 µm. Filter residues (sludge solid matter) were immediately stored in a refrigerating room at -27°C overnight and then lyophilized at 2 mbar and -40°C. The lyophilized samples were extracted by means of accelerated solvent extraction (ASE) with ethyl acetate at 90°C and 150 bar (Chen and Bester, 2009). The resulting extracts were then concentrated by using a Buchi multiport concentrator at 80°C and 70 mbar (Büchi, Essen, Germany) after adding 10 mL toluene and 100 µl internal standard solution.

2.3.3. Instrumental analysis

Triclosan extracts from the liquid and solid sludge samples were both finally analysed by gas chromatography with mass spectrometric detection (GC-MS; Thermo-Trace GC-MS) equipped with a splitless injector and A200S autosampler. Samples (1 µL) were injected into the injector in splitless (1.5 min) mode held at a temperature of 240°C. The GC separation was performed with a Rxi-5Sil MS column (Restek, Bellefonte, USA), L: 10 m; ID: 0.18 mm; film: 0.18 µm and a temperature programme of: 90°C (hold: 1 min) ramped with 50°C·min⁻¹ to 135°C and then with 10°C·min⁻¹ to 220°C. Finally, the baking temperature was reached by ramping the column with 40°C·min⁻¹ to 260°C which was held for 6 min. Helium (5.0) was used as carrier gas with a flow rate of 1.3 mL·min⁻¹. The transfer line of the mass spectrometer (Trace MS, Thermo Finnigan, Darmstadt, Germany) was held at 250°C. The ion source was operated at 160°C. The mass spectrometer was operated in selected ion monitoring (SIM) utilizing 31–61 ms dwell time. The detector of the mass spectrometer was operated at 450 V. Table 2 lists the retention times of triclosan and triclosan-methyl and the mass fragments used for the detection.

2.3.4. Data treatment

The average of the duplicate extractions measured by duplicate injections was used for further data processing. The calibrations were performed as a multi-step internal standard calibration (10–10,000 ng·mL⁻¹). The full method and validation data for triclosan and triclosan-methyl for liquid samples were described in Bester (2005), while those for the solids were described by Chen and Bester (2009). Both are shown in Table 2. To additionally validate this method for recovery of triclosan from liquid sludge, it was tested by extracting several activated sludge samples spiked with this isotope. Five different concentrations (between 20 µg·g⁻¹ and 3000 µg·g⁻¹) were dosed and for each concentration two samples were extracted; thus 10 extractions were performed. The recovery rate of triclosan was 82% with 10% relative standard deviation, which is consistent with previous measurements (Bester, 2005).

Triclosan was purchased from Ehrenstorfer (Augsburg, Germany) with a purity of >99% according to the supplier. Triclosan-methyl was synthesized from triclosan by methylation with trimethylsulfonium hydroxide solution (Macherey-Nagel, Duren, Germany) at 40°C (Bester, 2003). Toluene was used in residue grade (2.5% quality) and purchased from Merck (Darmstadt, Germany). The internal standard musk xylene D₁₅ (Ehrenstorfer, Augsburg, Germany) was used to quantify triclosan and triclosan-methyl (Andreasen and Bester, 2006).

Table 2

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Analytical ion (amu)</th>
<th>Verifier ion (amu)</th>
<th>Retention time (min)</th>
<th>LOQ (ng·L⁻¹)</th>
<th>RR (%)</th>
<th>LOQ (%)</th>
<th>RR (%)</th>
<th>RR (%)</th>
<th>RR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclosan</td>
<td>288</td>
<td>290</td>
<td>0.11</td>
<td>10</td>
<td>88</td>
<td>11</td>
<td>114</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Triclosan-methyl</td>
<td>102</td>
<td>104</td>
<td>0.04</td>
<td>0.3</td>
<td>102</td>
<td>11</td>
<td>55</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

In this experiment the fate of triclosan was investigated in reactor experiments under aerobic, anaerobic and anoxic conditions with sludge from Alborg East WWTP. After 80 h the concentration of the parent compound was reduced from 30 to 15 µg·L⁻¹ (49%), i.e. significantly) under aerobic conditions, but only from 32 to 28 µg·L⁻¹ (11%) and from 32 to 29 µg·L⁻¹ (16%) under anaerobic and anoxic conditions, respectively, which is very close to the method standard deviation, i.e., 11% (Bester, 2005).

Opposite to the triclosan concentrations, those of triclosan-methyl concordantly increased from 4.2 to 5.0 µg·L⁻¹ (16%) during the aerobic incubation and from 4.1 to 4.8 µg·L⁻¹ (17%) during the anoxic incubation. Considering the analytical standard deviation, this increase is significant. Additionally, no change of concentrations was detected under anaerobic condition.

In summary, the fastest removal triclosan removal and its highest transformation rate to triclosan-methyl were determined under aerobic conditions. Therefore, the more detailed experiments on

Fig. 1. Concentrations of triclosan and triclosan-methyl in reactor reactors. Starting concentrations 20 µg·L⁻¹ triclosan (sampled). Error bars indicate standard error of 11% (Bester, 2005).
3.2. Detailed aerobic kinetic experiments

To make sure the elevated concentrations of triclosan-methyl at the end of the experiment really originated from the freshly added triclosan and not from an old and eventually unknown pool of triclosan in the sludge, several experiments were performed with different triclosan concentrations in aerobic experiments. Triclosan concentrations were rapidly reduced in all reactors while the degradation and methylation of triclosan were carried out in activated sludge under the aerobic conditions.

The production of triclosan-methyl occurred in all experiments. The concentrations of triclosan-methyl increased according to the starting concentration of triclosan as shown in Fig. 1 (spiked), the production of triclosan-methyl was mostly obscured by the background concentrations (from the sludge from the waste water treatment plant). In the reactors fed with 1 and 2 mg L\(^{-1}\) triclosan, the concentrations of triclosan-methyl increased (Fig. 2), reaching the highest concentrations after 120 h, at which they remained until the end of the experiment. The concentration increase of the metabolite coincided with the concentration decrease of the parent compound. Though no strict mathematical equations could be established, it is clear, that the higher the starting concentration of triclosan was, the higher was the metabolite concentration at the end of the experiment, thus proving the triclosan-methyl was really formed from the added triclosan. The experiment thus indicates that the biomethylation of triclosan can occur in aerobic reactors. As the concentrations of triclosan-methyl are unchanged even after more than 100 h after the main pool of triclosan is consumed, it is obvious that the metabolite cannot be degraded within timeframes relevant for wastewater treatment.

To quantify the possible sorption of triclosan, solid samples were analyzed. Consistently 10% of the triclosan found in the experiment medium (liquid sludge) was sorbed to the solids throughout the experiment. The triclosan concentrations in the solid phase thus decrease in parallel to those in the liquid phase. The partitioning of triclosan between the solid and liquid phase remains constant, thus exchange processes are quick in comparison to the degradation. Additionally, the pH value of the sludge was measured as triclosan adsorption and extraction are pH dependent (Lindström et al., 2002). The pH value remained constant (6.9 ± 0.5) during the experiment indicating that the concentration changes measured are not influenced by pH.

At low concentrations (normal WWTP levels, up to 20 μg L\(^{-1}\)) the biological degradation of triclosan followed the first-order kinetics (Fig. 1), while the reaction kinetics is more complex at higher concentrations (>500 μg L\(^{-1}\)). Thus, the pseudo-first-order rates and half-lives from reactors were calculated to give an overview of the performance of the system (Table 3). The estimated half-lives for triclosan were found to be 54–86 h, and the elimination rates considering a 10-d period were 75% and 86% for the reactors with initial triclosan concentration of 0.02 and 0.5 mg L\(^{-1}\), and 95% for reactors with the initial triclosan concentration of 1, 2 and 3 mg L\(^{-1}\).

The half-life of triclosan in this experiment was not dependent on the concentration. However, the elimination rates were relatively lower when the starting concentration was low (0.02 mg L\(^{-1}\)), and reached higher values (>95%) when the starting concentration was high (>1 mg L\(^{-1}\)). These data are from steady state lab scale experiment, thus should be extrapolated to full-scale WWTPs (which are flow through systems) with caution, as external carbon sources, temperature, interference of other organic compounds etc. may lead to different rates.

The rate constants of triclosan-methyl generation increased concordantly with the starting concentrations of triclosan as shown in Table 3. With the initial triclosan concentrations of 0.5, 1, 2 and...
3 mg L$^{-1}$, the rate constants were 0.0054, 0.0103, 0.0127 and 0.0129 s$^{-1}$, respectively.

Biomethylation of triclosan under aerobic conditions was surprising as methylation of pollutants such as mercury (Gray et al., 2004, 2006; Barring and Sablo, 2005), antimony, arsenic (Duster et al., 2008), bisnuth (Michalke et al., 2002) and phenols (Pfeifer et al., 2001) is usually associated with anaerobic, anoxic (no oxygen but nitrate present), methanogenic or sulfate reducing regimes. However, biomethylation, e.g., by cobalamin (Vitamin B12) (Wehmeier et al., 2004) is not restricted to anaerobic conditions. Old literature reported the conditions that induced methylation processes were rather “organic-rich” (Compau and Bartha, 1985), while others have reported that polychlorinated phenyl oxenes (PCPP) were biotransformed in contaminated soil and in several pure and mixed bacterial cultures under aerobic conditions (Volo and Salinjo-Salominen, 1988). Additionally, biomethylation of chlorinated phenolic compounds (Häßglom et al., 1988) and tetrabromophenol (A. George and Häßglom, 2008) has been detected under aerobic conditions.

4. Conclusions
Triclosan-methyl was formed concomitantly with the removal of triclosan in activated sludge under aerobic conditions. Triclosan-methyl was also formed under anaerobic (nitrate reducing) conditions although at lower rates but was not formed under anaerobic conditions in laboratory experiments. According to these laboratory experiments, the emissions of triclosan-methyl will thus be mostly affected by the management of the BOD removal and nitification tanks but not during anaerobic digestion.

Acknowledgement
The authors acknowledge the support of FP7 (Danish Research Council for Technology and Production) and Aalborg University as well as the cooperation of xenobiotic group of University Düsseldorf. The authors are gratefully acknowledged the help of the anonymous reviewers for improving the manuscript and the kinetics of the reactions. The authors are especially grateful to the anonymous reviewers that helped considerably to find the right phrasing for this manuscript.

References
Research paper 6:

Ozonation products of triclosan in advanced wastewater treatment

Xijuan Chena, Jessica Richardb, Yaling Liuc, Elke Doppb,d, Jochen Tuerke, Kai Besterf,*

a Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
b Institute of Hygiene and Occupational Medicine, University Hospital Essen, Germany
c University Duisburg-Essen, Department of Chemistry, Essen, Germany
d IWW Rheinisch-Westfälisches Institut für Wasserforschung GmbH, Mülheim, Germany
e Institut für Energie- und Umwelttechnik e. V., IUTA (Institute of Energy and Environmental Technology), Duisburg, Germany
f Environmental Science, Aarhus University, Roskilde, Denmark

Keywords:
Triclosan
Ozone
Ozonation products
2,4-dichlorophenol
Toxicity

Abstract
Triclosan is an antimicrobial agent widely used in many household and personal care products. Widespread use of this compound has led to the elevated concentrations of triclosan in wastewater, wastewater treatment plants and receiving waters. In this study removal of triclosan by aqueous ozone was investigated and the degradation products formed during ozonation of an aqueous solution of triclosan were analyzed by GC-MS and HPLC-MS/MS. The following transformation products have been identified: 2,4-dichlorophenol, chlorocatecol, mono-hydroxy-triclosan and di-hydroxy-triclosan during treatment process. Cytotoxicity and genotoxicity of pure triclosan and 2,4-dichlorophenol have been investigated and the results showed reduced genotoxic effects after ozonation, though the respective chlorophenol is harmful to aquatic organisms.

1. Introduction
Triclosan (3,4,4'-trichloro-2-hydroxydiphenylether, CAS: 3380-34-5) is currently used as an antimicrobial agent in toothpaste, mouthwash, liquid soap and in functional clothing such as functional shoes and underwear (Engelhaupt, 2007). It is also used as a stabilizing agent in a multitude of detergents and cosmetics and as an antimicrobial agent in polymeric food cutting boards (Adolfsson-Erici et al., 2002; Dann and Hontela, 2011). Approximately 1500 t are produced annually worldwide, and approximately 350 t of those are applied in Europe (Singer et al., 2002). The primary emission route for triclosan after usage is through wastewater. In fact, investigators have detected triclosan in numerous municipal wastewater influent samples at concentrations in the range of 0.5-4.5 μg L⁻¹ (Buth et al., 2011; Lindstrom et al., 2002). In wastewater treatment plants (WWTPs) 90% of the incoming triclosan was removed from the water (Bester, 2003, 2005; Heidler and Halden, 2008; Singer et al., 2002), which is a high but not complete removal. As a result, it has been found in some sewage treatment plant effluents as well as in surface water and ground water in many countries (Adolfsson-Erici et al., 2002; Balmer et al., 2004; Bester, 2005). In addition, it has been detected in fish, soil and sediments due to its hydrophobicity (Coogan et al., 2007; Lozano et al., 2010; Xie et al., 2008).
Suarez et al. (2007) investigated that nearly 100% of triclosan the effect and kinetics of triclosan oxidation by aqueous ozone. Algal toxicity was shown at a minimum concentration of 0.15 μg L\(^{-1}\) for up to 13 days of exposure and community changes were visible even at 0.015 μg L\(^{-1}\) (Wilson et al., 2003). The EC\(_0\) of triclosan in fish is between 240 and 410 μg L\(^{-1}\) (Lindström et al., 2002, Orvos et al., 2002). In vitro studies on human gingival cells reported toxic effects at concentrations between 4.3 and 28.96 mg L\(^{-1}\) depending on the test and the exposure time (Zuckerbraun et al., 1998). Acute toxic effects were found to start at 0.28 μg L\(^{-1}\) using the bioluminescent bacteria Vibrio fischeri (Furre et al., 2008). In addition to these toxic effects it was reported that triclosan and its degradation products show endocrine disrupting effects (Foran et al., 2000; Ishibashi et al., 2004; Raut and Angus, 2010). The toxicity of 2,4-dichlorophenol was previ-ously investigated by Enseny et al. (1994) who found EC\(_{50}\) values of 6.5 mg L\(^{-1}\) in Lemma gibba.

As conventional wastewater treatment processes are unable to act as a reliable barrier concerning triclosan, it is discussed to introduce additional advanced treatment technologies in the areas where a pollution problem concerning triclosan and other persistent organic pollutants has been recognized or is anticipated. Ishikawa et al. (2008) and Ternes et al. (2009) have evaluated different technologies including ozonation and advanced oxidation processes, membrane bioreactors, membrane filtration and activated carbon adsorption, suggesting that chemical oxidations using ozone is a highly effective treatment process for a wide spectrum of emerging organic pollutants, including pesticides, pharmaceuticals, personal care products, surfac-tants, microbial toxins and natural fatty acids. Ozone \((O_3)\) is a very powerful disinfecting and deodorizing gas. The ability of ozone to disinfect polluted water was recognized in 1886 by de Meritens (Vismaier, 1915). However, the widespread introduc-tion of ozone to remove pollution from drinking water started in the 1960s (Langlau et al., 1991). Nowadays, ozone is used in removing bacteria, viruses, algae and fungi as well as sulfur, thus also eliminating taste and odor problems, as well as oxidizing and mineralizing organic chemicals concerning drinking water (Langlau et al., 1991).

Ozonation has recently emerged as an important tech-nology for the oxidation and destruction of a wide range of organic pollutants in wastewater as well (Ishikawa et al., 2006). It has been proven to be an effective post-treatment technique for pharmaceuticals and personal care products (Carballa et al., 2007; Ishikawa et al., 2008; Lee and von Gunten, 2010; Wert et al., 2009; Snyder et al., 2006). However, the widespread introduction of ozone to remove pollution from drinking water started in the 1960s (Langlau et al., 1991). Nowadays, ozone is used in removing bacteria, viruses, algae and fungi as well as sulfur, thus also eliminating taste and odor problems, as well as oxidizing and mineralizing organic chemicals concerning drinking water (Langlau et al., 1991).

Triclosan inhibits bacteria growth by blocking biosynthesis of lipids, which is necessary for building cell membranes and reproduction (Levy et al., 1999; Schweizer, 2001). The impact of triclosan on aquatic organisms and the ecosystem in general has been investigated in several in vivo studies. These studies showed that triclosan is toxic to fish (Lindström et al., 2003), algae (Wilson et al., 2003) and other aquatic organisms (Orvos et al., 2002). Algal toxicity was shown at a minimum concen-tration of 0.15 μg L\(^{-1}\) for up to 13 days of exposure and community changes were visible even at 0.015 μg L\(^{-1}\) (Wilson et al., 2003). The EC\(_0\) of triclosan in fish is between 240 and 410 μg L\(^{-1}\) (Lindström et al., 2002, Orvos et al., 2002). In vitro studies on human gingival cells reported toxic effects at concentrations between 4.3 and 28.96 mg L\(^{-1}\) depending on the test and the exposure time (Zuckerbraun et al., 1998). Acute toxic effects were found to start at 0.28 μg L\(^{-1}\) using the bioluminescent bacteria Vibrio fischeri (Furre et al., 2008). In addition to these toxic effects it was reported that triclosan and its degradation products show endocrine disrupting effects (Foran et al., 2000; Ishibashi et al., 2004; Raut and Angus, 2010). The toxicity of 2,4-dichlorophenol was previ-ously investigated by Enseny et al. (1994) who found EC\(_{50}\) values of 6.5 mg L\(^{-1}\) in Lemma gibba.

Triclosan was purchased from Ehrenstorfer (Augsburg, Germany) with purity being ≥99% according to the supplier. Methanol, Toluene, Acetone, Methyl-tert-butyl ether (MTBE) were used in residue grade quality and purchased from Merck, Darmstadt, Germany. Triclosan stock solutions were prepared at a concentration of 10 mg L\(^{-1}\) according to its water solubility by dissolution of the solid compound in water (HPLC grade, Baker, Deventer, The Netherlands). 2,4-Dichlorophenol, 4-chlororesorcinol, and 4-chlorocatechol were purchased from Sigma Aldrich.

Ozone \((O_3)\) stock solutions were prepared by purging an \(O_3\) containing gas stream through HPLC water. The \(O_3\) containing gas stream was produced by passing air through an \(O_3\) generator (Enaly 1008RT-12, Enaly M&T Ltd, Shanghai, China) at constant flow rate of 0.5 L.min\(^{-1}\). According to UV-Vis spectrophotometry (Shimadzu, Duisburg, Germany), the concentration of \(O_3\) stock solution was 2 mg L\(^{-1}\).

In the toxicity tests the Chinese hamster ovary cells (CHO-9) were used and MTT (Sigma, St. Louis, USA) was used in the cytotoxicity test.

2. Materials and methods

2.1. Standards and reagents

Triclosan was purchased from Ehrenstorfer (Augsburg, Germany) with purity being ≥99% according to the supplier. Methanol, Toluene, Acetone, Methyl-tert-butyl ether (MTBE) were used in residue grade quality and purchased from Merck, Darmstadt, Germany. Triclosan stock solutions were prepared at a concentration of 10 mg L\(^{-1}\) according to its water solubility by dissolution of the solid compound in water (HPLC grade, Baker, Deventer, The Netherlands).

2,4-Dichlorophenol, 4-chlororesorcinol, and 4-chlorocatechol were purchased from Sigma Aldrich.

Ozone \((O_3)\) stock solutions were prepared by purging an \(O_3\) containing gas stream through HPLC water. The \(O_3\) containing gas stream was produced by passing air through an \(O_3\) generator (Enaly 1008RT-12, Enaly M&T Ltd, Shanghai, China) at constant flow rate of 0.5 L.min\(^{-1}\). According to UV-Vis spectrophotometry (Shimadzu, Duisburg, Germany), the concentration of \(O_3\) stock solution was 2 mg L\(^{-1}\).

In the toxicity tests the Chinese hamster ovary cells (CHO-9) were used and MTT (Sigma, St. Louis, USA) was used in the cytotoxicity test.

2.2. Ozonation and extractions

Samples were prepared by mixing \(O_3\) stock solutions into triclosan stock solutions in different volume ratios to reach the molar ration of triclosan: \(O_3\) in 1:1, 1:3 and 1:5. All samples were extracted after the reaction performed at room temperature overnight. The pH of the water used was 7 ± 0.5. It was measured at the beginning of the experiments as well as at the end.

Samples were extracted by solid phase extraction (SPE) using polymeric cartridges (Stratta-X, Phenomenex, Aschaf-fenburg Germany). Before the extraction, the SPE cartridges were rinsed with 6 ml methanol and 6 ml HPLC-grade water. After loading the samples to the cartridges, they were eluted by methyl-tert-butyl ether (MTBE) for analysis by gas chromatography-mass spectrometry (GC-MS), whereas duplicate samples were eluted by methanol for analysis by
high performance liquid chromatography-mass spectrometry (HPLC-MS/MS).

2.3. Analytical methods

Samples eluted by MTBE were analyzed by gas chromatography with mass spectrometric detection (GC-MS) equipped with a programmable temperature vaporizer (PTV) injector. The PTV (1 µL injection volume) was operated in PTV splitless mode. The injection temperature of 115 °C was held for 3 s, it was successively ramped with 12 °C s⁻¹ to 280 °C for the transfer of the analytes. This temperature was held for 1.3 min. The injector was then ramped with 1 °C s⁻¹ to 300 °C which was held for 7 min as a cleaning phase.

The GC separation was performed with a DB-5MS column (J&W Scientific, Santa Clara, United States), L: 15 m; ID: 0.25 mm; film: 0.25 µm/C14 (J&W Scientific, Santa Clara, United States), L: 15 m; ID: 0.25 mm using a temperature programme of: 100 °C (hold: 1 min) ramped with 5 °C min⁻¹ to 220 °C and with 30 °C min⁻¹ successively to 280 °C. Finally, the baking temperature 280 °C was held for 7 min. Helium (5.0) was used as a carrier gas with a flow rate of 1.3 mL min⁻¹. The transfer line was held at 250 °C, which is sufficient to transfer all compounds from the GC into the MS as the vacuum builds up in the transfer line. The ion source of the mass-spectrometer (QQQ) Thermo Finnigan, Dreieich, Germany) was operated at 230 °C in electron impact mode. The MS was used in full scan mode from 50 Da to 600 Da and the detector was operated with 1218 V.

The samples eluted by methanol were analyzed by liquid chromatography with tandem mass spectrometric detection (HPLC-MS/MS). The separation was performed using a Phenomenex synergi 4u polar-RP column (150 x 2 mm I.D., particle size 4 µm). The flow rate was 0.25 mL min⁻¹. The LC gradient was established by mixing two mobile phases: phase A, HPLC water and phase B, Methanol. The chromatographic separation was achieved with the following gradient: 0−2 min 100% A, changing to 100% B in 30 min, 32−36 min 100% B. The injection volume was 10 µL.

The LC system consisted of a UltiMate 3000 autosampler (WPS-3000 T SL), a UltiMate 3000 pump (DC-3600 M), an UltiMate 3000 column compartment holder (TCC-3000 RS) on 20 °C (all from Dionex, California, United States). After LC separation, the analytes were determined by an AB-Sciex (California, United States). API 4000 triple quadruple mass spectrometer using the Mann−Whitney test.

2.4. Toxicity tests

2.4.1. Cell culture

The Chinese hamster ovary cells (CHO-H9) were cultured in HAM's F12 medium supplemented with 10% Fetal Calf Serum, 0.5% gentamycin and 0.5% L-glutamine at 37 °C and 5% CO₂ conditions.

2.4.2. Exposure

Triclosan and 2,4-dichlorophenol were tested between 0.5 and 100 µg L⁻¹ for 24 h.

2.4.3. Cytotoxicity: MTT test

To detect cytotoxic effects the MTT test was performed using the 96-well plate format using 100,000 CHO-9 cells in 200 µL of HAM's F12 medium in each well. After 24 h the fresh medium was added and the cells were exposed to the different concentrations of the two substances for another 24 h. After the exposure time the medium was removed and 100 µL fresh medium and 10 µL MTT solution (5 mg MTT dissolved in 1 mL phosphate buffered saline) (EC12.67 mM, KH₂PO₄ 1.47 mM, NaCl 137.93 mM, Na₂HPO₄ 7H₂O 0.86 mM, Innovento) were added to each well and incubated at 37 °C for 2 h. The medium was then replaced with 100 µL of lysis solution (99.4 mL dimethylsulfoxide, 0.6 mL acetic acid (10%) and 10 g sodium dodecyl sulfate) and the absorption was directly measured at 590 nm.

2.4.4. Genotoxicity: alkaline comet assay

The alkaline comet assay was performed as described by Ostling and Johanson (1984) and later on revised by Singh et al. (1988) with some minor modifications. In short: Microcrops were prepared by adding 50 µL of low melting point agarose (L.M.P. agarose) to a chamber. 100,000 CHO-9 cells were exposed to different concentrations of triclosan and 2,4-dichlorophenol for 24 h. 0.1 mg L⁻¹ N-ethyl-N-nitrosourea was used as a positive control and added to the cells 30 min prior to trypsinization. After the exposure time the cells were washed, trypsinized and resuspended. 45 µL of low melting point agarose were mixed with 20 µL of cell suspension containing 8000 cells and added on top of the first layer of agarose. After solidification the slides were covered with freshly prepared and precooled lysis solution overnight at 4 °C. Before electrophoresis the slides were incubated in electrophoresis solution at 4 °C for 20 min. Electrophoresis was then performed for 20 min at 4 °C with 300 mA. After electrophoresis the slides were incubated in neutralization solution for 30 min and afterward dehydrated in ethanol for 2 h. Then the slides were stored overnight to let the gel dry completely. DNA was stained with SYBR Green® and image analysis was performed using the Comet Assay IV Software (Perceptive Instrument, UK) and a CCD (charge coupled device) camera attached to a Leica microscope. All experiments were carried out three times and statistical analysis was performed using the Mann−Whitney test.

3. Results and discussions

3.1. Identification of triclosan oxidation products

In Table 1 it can be seen that triclosan reacts under all used conditions quantitatively with ozone, thus removal rates of 94−99.9% seem realistic.

However, four major peaks were detected in the gas chromatogram of a sample extract of ozonized triclosan sample with molar ratio of triclosan: ozone in 1:2 measured by GC-MS. On the basis of their mass spectra, isomers of dichlorophenol (M1) and chlorocatechol (M2) were identified at the retention time of 5.88 min and 12.7 min, respectively. Peaks at retention time of 24.99 min and 28.94 min were identified as triclosan and its mono-hydroxylated product (M3). By comparing to a true standard, 2,4-dichlorophenol was verified as the major monoaromatic metabolite in GC-MS. The full results of all
transformation products identified by GC-MS are listed in Table 2.

A chromatogram of a sample with the molar ratio of triclosan to ozone: 1:2 measured by HPLC-MS is shown in Fig. 1. Similar to the results from GC-MS, dichlorophenol (M1), chlorocatechol (M2) and mono-hydroxy-triclosan (M3) were identified in the chromatogram. They were detected in different ratios by GC-MS and HPLC-MS because of different extraction and detection methods. Additionally, two isomers of chlorocatechol (M2) and di-hydroxy-triclosan (M4) were detected by the HPLC-MS measurements. The dichlorophenol (M1) was confirmed as 2,4-dichlorophenol by comparison to a standard purchased from Sigma Aldrich (Steinheim, Germany), the two isomers of M2 were confirmed as 4-chlorocatechol (4-chloro-1,2-dihydroxybenzene) (M2a) and 4-chlororesorcinol (4-chloro-1,3-dihydroxybenzene) (M2b) by comparison with standards purchased from Sigma Aldrich (Steinheim, Germany).

Other transformation products did not comply with standards by means of the retention time or were not commercially available. Therefore, collision-induced dissociation (CID) was used to produce product ion scans for further metabolite identification. For this purpose the [M-H]⁻ ion was selected as precursor ion. The HPLC-MS/MS results of the metabolite identification are listed in Table 3.

Table 1: Volumes, molar ratios, and initial concentrations of triclosan and ozone in samples in comparison to final triclosan concentrations and removal rates.

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Volume of triclosan stock solution [mL]</th>
<th>Volume of aqueous ozone [mL]</th>
<th>Molar ratio of triclosan to ozone</th>
<th>Initial concentration</th>
<th>Residual triclosan [mg L⁻¹]</th>
<th>Ozone [mg L⁻¹]</th>
<th>Removal rate [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>40</td>
<td>55</td>
<td>1:1</td>
<td>4.5</td>
<td>1.1</td>
<td>0.26</td>
<td>94</td>
</tr>
<tr>
<td>Sample 2</td>
<td>29</td>
<td>71</td>
<td>1:3</td>
<td>2.9</td>
<td>1.42</td>
<td>0.087</td>
<td>97</td>
</tr>
<tr>
<td>Sample 3</td>
<td>14</td>
<td>86</td>
<td>1:5</td>
<td>1.4</td>
<td>1.72</td>
<td>0.001</td>
<td>99.9</td>
</tr>
</tbody>
</table>

Table 2: GC-MS results of the transformation product identification.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>Retention time [min]</th>
<th>MW [Da]</th>
<th>RT + MS complied standard</th>
<th>RT + MS complied theory</th>
<th>Mass fragments (including the Cl isotope signals) [Da]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclosan (M)</td>
<td></td>
<td>24.99</td>
<td>288</td>
<td>Yes</td>
<td>Yes</td>
<td>288 (290, 292), 252 (254, 256), 218 (220)</td>
</tr>
<tr>
<td>2,4-Dichlorophenol (M1)</td>
<td></td>
<td>5.88</td>
<td>162</td>
<td>Yes</td>
<td>Yes</td>
<td>162 (164, 166), 126, 98, 63</td>
</tr>
<tr>
<td>Chlorocatechol (M2)</td>
<td></td>
<td>11.40</td>
<td>144</td>
<td>Yes</td>
<td>144 (146), 135, 81, 52</td>
<td></td>
</tr>
<tr>
<td>Mono-hydroxy-triclosan (M3)</td>
<td></td>
<td>28.45</td>
<td>304</td>
<td>Yes</td>
<td>304 (306, 308), 254 (256, 258)</td>
<td></td>
</tr>
</tbody>
</table>
Mono-hydroxy-derivatives of triclosan (M3) were detected at 303 and 305 Da (equivalent to the two main isotope signal for the (M-H)/C0 ion) at 27.56 min retention time. The product ion scan of 303 Da and 305 Da provided abundant fragmentation for this compound (Fig. 2). The identification was confirmed by the detection of the fragment ion peak at 161 corresponding to [C6H3OCl2]/C0. The two chlorine atoms are being verified by the chlorine isotope distribution in Fig. 2C. It can thus be hypothesized that the oxidation takes place in the triclosan ring with less chlorination.

Further analysis of Fig. 2B and C shows that fragments 125 Da and 113 Da are attributed to [C6H2OCl]/C0 and [C5H2OCl]/C0 stemming from cleavage of HCl and CHCl from 161 respectively. It can thus be hypothesized that the oxidation takes place in the triclosan ring with less chlorination.

The molecular ion peak of di-hydroxy-triclosan (M4) was detected with the retention time at 17.65 min (Fig. 1). The product ion spectrum of M4 showed major fragment ion peaks at 125 Da and 113 Da, indicating that the double chlorinated ring is again still intact and not oxidized (Fig. S1). Similar as the fragmentation spectrum of M3, the transformation product identification was further confirmed by an investigation on the chlorine isotope peaks.

3.2. Structural suggestions and verifications

After triclosan was reacted with ozone, some intermediates were identified by using GC-MS and HPLC-MS/MS. On the basis of their GC-MS spectra and HPLC-MS/MS fragmentation, several ozonation products for triclosan are proposed (Table 2 and 3). Triclosan can be oxidized by ozone resulting in OH addition forming mono-hydroxy (M1) and di-hydroxy-triclosan (M2) and finally breaking of the ether bond resulting in 2,4-dichlorophenol (M1), 4-chlorocatechol (M2a) and 4-chlororesorcinol (M2b).

The 2,4-dichlorophenol (M1) is a well known product of triclosan which has been detected by several investigators within biodegradation experiments (Kim et al., 2010), as an oxidative transformation product from reactions with manganese oxides (Zhang and Huang, 2003), as well as a photochemical degradation product in both natural and buffered deionized water (Latch et al., 2005). Kim et al. (2010) has found the chlorocatechol (M2), mono-hydroxy-triclosan (M3) and di-hydroxy-triclosan (M4) as biodegradation products of triclosan from bacteria. Additionally, Zhang and Huang (2003) have detected that mono-hydroxy-triclosan (M3) could be one of the oxidation products of triclosan by manganese oxides. Except the 2,4-dichlorophenol (M1), none of the other transformation products have been published as ozonation by-products of triclosan, to the best of our knowledge.

3.3. Ozonation of triclosan

The triclosan chromatograms of the three samples from the experiment are shown in Fig. 3. Complete ozonation of triclosan (but not its transformation products) was detected in the sample with molar ratio of triclosan:ozone = 1.5. Ozonation was substantial in the sample with a molar ratio of...
2,4-dichlorophenol was detected by GC-MS and HPLC-MS in all the three samples. Levels of 2,4-dichlorophenol in the sample with high ozone amount (molar ratio of triclosan:ozone = 1:3) were, however, lower than the other two samples with lower ozone amount, which indicate that 2,4-dichlorophenol is an intermediate product and can be

<table>
<thead>
<tr>
<th>Compound Structure</th>
<th>Retention time [min]</th>
<th>MW [Da]</th>
<th>RT + MS complied standard</th>
<th>RT + MS complied theory</th>
<th>Product ions scan fragments [Da]</th>
</tr>
</thead>
<tbody>
<tr>
<td>triclosan (M)</td>
<td>30.76</td>
<td>288</td>
<td>Yes</td>
<td>Yes</td>
<td>267, 252, 251</td>
</tr>
<tr>
<td>2,4-Dichlorophenol (M1)</td>
<td>24.76</td>
<td>162</td>
<td>Yes</td>
<td>Yes</td>
<td>261, 125, 89, 61, 35</td>
</tr>
<tr>
<td>4-Chlorocatechol (M2a)</td>
<td>13.31</td>
<td>144</td>
<td>Yes</td>
<td>Yes</td>
<td>143, 107, 79, 51, 35</td>
</tr>
<tr>
<td>4-Chlororesorcinol (M2b)</td>
<td>19.19</td>
<td>144</td>
<td>Yes</td>
<td>Yes</td>
<td>143, 107, 79, 51, 35</td>
</tr>
<tr>
<td>Mono-hydroxy-triclosan (M3)</td>
<td>27.56</td>
<td>304</td>
<td>Yes</td>
<td></td>
<td>303, 161, 125, 113, 85, 35</td>
</tr>
<tr>
<td>Di-hydroxy-triclosan (M4)</td>
<td>17.65</td>
<td>320</td>
<td>Yes</td>
<td></td>
<td>319, 161, 125, 35</td>
</tr>
</tbody>
</table>
further oxidized. Chromatograms of 2,4-dichlorophenol and triclosan during ozonation showing the somewhat longer presence of 2,4-dichlorophenol are shown in Fig. 3. The conversion yields of triclosan to 2,4-dichlorophenol depend on the amount of ozone. Now, these compounds are available they can be studied in biodegradation processes as well. More information can be gained from Fig. S2 in which the signal height obtained by HPLC-ESI (−) MS of all identified transformation products is plotted against the relative ozone concentration.

3.4. Toxicity of triclosan transformation products in comparison to triclosan

Cytotoxic and genotoxic effects of triclosan and its oxidation by-product 2,4-dichlorophenol were analyzed using the MTT test and the alkaline comet assay. These two tests are well-established toxicity tests and have been used in the testing of chemicals for several decades and they have been proven to be rapid and sensitive methods. The MTT tests give a quantitative measure on the amount of...
viable and dead cells thus the cytotoxicity of the tested substances resulting in an idea about the general toxicity (Mosmann, 1983). DNA damage was measured by the alkaline comet assay which allows the detection of single and double strand breaks as well as alkali labile sites (Singh et al., 1988; Tice et al., 2000). In addition both tests have been previously adapted for the use of CHO (Chinese Hamster Ovary) cells. This is a cell line which has been derived from the ovaries of the Chinese hamster in 1957 and widely used in toxicity testing (Puck et al., 1958).

Fig. 3 – Chromatogram and MS spectra of triclosan and its ozonation product – 2,4-dichlorophenol detected by GC-MS in electron impact ionization. To simplify the graph, the signals for 162 and 288 Da were added to gain one chromatogram for both 2,4-dichlorophenol (162 Da) and triclosan (288 Da). Sample 1, triclosan:ozone = 1:1. Sample 2, triclosan:ozone = 1:3. Sample 3, triclosan:ozone = 1:5.

Fig. 4 – Genotoxic effects of triclosan and 2,4-dichlorophenol on CHO-9 cells after 24 h of exposure investigated using the alkaline comet assay. Asterisks display the significance in DNA damage increase (p < 0.05 = * significant; p < 0.01 = ** very significant; p < 0.001 = *** extremely significant).
Both substances were tested at concentrations between 0 and 100 μg L⁻¹. The results of the MTT test show that neither triclosan nor 2,4-dichlorophenol has any cytotoxic effect on CHO-9 (Chinese Hamster Ovary) cells after a 24 h exposure at the used concentrations (data not shown). For each concentration the viability lies above 90% compared to the negative control. In addition no difference can be seen comparing both substances and their effects on cell viability.

However the results of the alkaline comet assay with triclosan show tail moments increasing with concentrations. Compared to triclosan and the negative control, 2,4-dichlorophenol is less genotoxic (Fig. 4). This indicates that ozonation is a useful tool in removing the genotoxic compound triclosan from wastewater. However, it should be taken into account that 2,4-dichlorophenol is prioritized under the EU surface water directive 76/464/EEC (European Commission, 1976) (Umweltbundesamt, 2005) and is classified to be “harmful to aquatic organisms” and "may cause long-term adverse effects in the aquatic environment”.

4. Conclusion

Contamination of surface water and ground water with triclosan is an emerging issue in environmental science and engineering. The outcomes of this study are:

- Removal of triclosan from water can be achieved by using ozonation.
- The treatment process can eliminate triclosan completely and convert it into the products: 2,4-dichlorophenol, chlorocatechol, mono-hydroxy-triclosan and di-hydroxy-triclosan. Increasing the ozone concentrations in the reactions leads to decreased concentration of triclosan as well as its oxidation by-products.
- 2,4-dichlorophenol shows lower genotoxic effects than triclosan at the tested concentrations, but this compound is classified to be toxic to aquatic organisms. Other transformation products cannot be assessed up to now.
- Formation and occurrence of the identified transformation products should be investigated at full scale applications.
- Reactor design should take the formation of oxidation by-products into account and possibly use higher ozone doses or retention times to remove by-products.

Acknowledgment

The authors would like to thank for financial support from the Danish Research Council FTP for the project In situ characterization of microbial degraders of Triclosan and methyl-triclosan from wastewater treatment plants and Aalborg University as well as the German Federal Ministry of Economics and Technology within the agenda for the promotion of industrial cooperative research and development (IGF) based on a decision of the German Bundesverwaltung. The access was opened by member organization environmental technology and organized by the AIF, Arbeitsgemeinschaft industrieller Forschungsvereinigungen, Cologne (IGF-Project No. 15862 N).

Appendix. Supplementary material

Supplementary data related to this article can be found online at doi:10.1016/j.watres.2012.01.039.

References

Bester, K., 2005. Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Archives of Environmental Contamination and Toxicology 49 (1), 9–17.

Research paper 7:

Identification of triclosan-degrading bacteria using stable isotope probing, fluorescence *in situ* hybridization and microautoradiography

Ihab Bishara Lolas,1 Xijuan Chen,1,2 Kai Bester2 and Jeppe Lund Nielsen1

1Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
2Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark

Triclosan is considered a ubiquitous pollutant and can be detected in a wide range of environmental samples. Triclosan removal by wastewater treatment plants has been largely attributed to biodegradation processes; however, very little is known about the micro-organisms involved. In this study, DNA-based stable isotope probing (DNA-SIP) combined with microautoradiography-fluorescence *in situ* hybridization (MAR-FISH) was applied to identify active triclosan degraders in an enrichment culture inoculated with activated sludge. Clone library sequences of 16S rRNA genes derived from the heavy DNA fractions of enrichment culture incubated with 13C-labelled triclosan showed a predominant enrichment of a single bacterial clade most closely related to the betaproteobacterial genus *Methylobacillus*. To verify that members of the genus *Methylobacillus* were actively utilizing triclosan, a specific probe targeting the *Methylobacillus* group was designed and applied to the enrichment culture incubated with 14C-labelled triclosan for MAR-FISH. The MAR-FISH results confirmed a positive uptake of carbon from 14C-labelled triclosan by *Methylobacillus*. The high representation of *Methylobacillus* in the 13C-labelled DNA clone library and its observed utilization of 14C-labelled triclosan by MAR-FISH reveal that these micro-organisms are the primary consumers of triclosan in the enrichment culture. The results from this study show that the combination of SIP and MAR-FISH can shed light on the networks of uncultured micro-organisms involved in degradation of organic micro-pollutants.

INTRODUCTION

Triclosan ([5-chloro-2-(2,4-dichlorophenoxy)phenol]) is a synthetic antibacterial compound that inhibits the NADH-dependent enoyl-[acyl-carrier protein] reductase, an essential enzyme involved in the biosynthesis of fatty acids (Heath et al., 1999; McMurry et al., 1998; Regis et al., 1979). As an effective antimicrobial agent, triclosan has been used in a wide range of personal care products, such as toothpaste and soaps, and in consumer products, including textile and plastics (DeSalva et al., 1989; Jones et al., 2000; Schweizer, 2001). Due to its extensive use and persistence, triclosan and some of its derivatives can be detected in different environmental matrices such as wastewaters, surface waters and sediments, and in biological samples, including those from fish, algae, human plasma, urine and breast milk (Balmer et al., 2004; Hovander et al., 2002; Miller et al., 2008; Sánchez-Brunete et al., 2010; Sandorhöf-Englund et al., 2006; Wilson et al., 2003; Ye et al., 2008).

Biodegradation of triclosan has been shown by mixed bacterial cultures from activated sludge (Gangadharan Puthiya Veetil et al., 2012; Hay et al., 2001; Sasinakis et al., 2010) and in wastewater treatment plants (WWTPs) (Bester, 2003; Chen et al., 2011; Singer et al., 2002). Due to insufficient removal during wastewater treatment, triclosan has been found in WWTP effluents in concentrations ranging from 1 to 10 μg l⁻¹ (Adolfsson-Erici et al., 2002; Bester, 2003, 2005; Lindstrom et al., 2002; Singer et al., 2002). Although mass balance assessments have shown that biological treatment contributes to the major removal of triclosan in WWTPs (Bester, 2003; Heidel & Halden, 2007; Singer et al., 2002), little is known about the
actual mechanisms or the micro-organisms involved in the degradation process. So far, two wastewater isolates, Sphingomonas putida and Alcaligenes xylosoxidans, have a high resistance to triclosan and can utilize it as their sole carbon source, and the nitrifying Nitrosovornonas europaeus has also been shown to biodegrade triclosan (Roh et al., 2009). Recently, several triclosan-degrading strains belonging to the genus Pseudomonas were isolated from aerobic and anaerobic enrichment cultures of activated sludge (Gangadharan Pathitha Veevil et al., 2012). Biodegradation of triclosan has also been reported in fungi (Hundt et al., 2000). However, knowledge based on culture-independent approaches of the identity and ecophysiology of triclosan-degrading bacteria in complex microbial systems is still limited.

Stable-isotope probing (SIP) allows for in situ detection of bacterial communities capable of metabolizing a specific carbon source and thus links function to identity without the need to culture the bacteria involved (Radajevski et al., 2000). SIP approaches have been used to identify various types of environmental pollutant-degrading bacteria, e.g. those able to degrade nonylphenols (Zemb et al., 2012), 2 an activated sludge sample was spiked with 2 mg triclosan l⁻¹ and incubated in the dark under aerobic conditions at 22–25 °C on a rotary table (150 r.p.m.). Following the initial incubation and every 9 days thereafter, the enrichment culture was transferred [10% (v/v)] to fresh NMS medium containing 2 mg triclosan l⁻¹. The enriched culture had a maximum cell density of 6 x 10⁶ cells ml⁻¹ and was maintained for 4 months before conducting the SIP and MAR incubations.

Analytical methods

Liquid-liquid extraction. Samples (5 ml) from the experiments were extracted by addition of 2 ml toluene and 100 μl internal standard solution (1000 ng musk xylene D₂₅, 13C₃) and were vigorously stirred for 5 min. The organic phase was extracted and the residual water was removed by freezing the samples overnight at −20 °C. These organic extracts were then concentrated to 1 ml with a nitrogen flow condenser at 55 °C.

Stable-isotope probing (SIP). Stable-isotope probing (SIP) allows for in situ detection of bacterial communities capable of metabolizing a specific carbon source and thus links function to identity without the need to culture the bacteria involved (Radajevski et al., 2000). SIP approaches have been used to identify various types of environmental pollutant-degrading bacteria, e.g. those able to degrade nonylphenols (Zemb et al., 2012). SIP approaches have been used to identify various types of environmental pollutant-degrading bacteria, e.g. those able to degrade nonylphenols (Zemb et al., 2012).

Identification of triclosan degraders

METHODS

Reagents and media. Triclosan (Igusam) was purchased from Sigma-Aldrich with a purity of >97%. [¹³C] labelled triclosan (isotope purity >90%) was purchased from Wellington Laboratories and was dissolved in methanol. [Dichloromethan/4:¹³C] labelled triclosan (specific activity 3.43 MBq mg⁻¹) was donated by Ciba. Stock solutions of both radiolabelled and unlabelled triclosan were prepared in acetone. As a standard procedure, substrate solutions were allowed to dry at room temperature prior to the addition of specified media or culture. For all experiments, nitrate mineral salts medium (NMS) was used as carbon-free medium. DNA precipitation and DNA quantification were set up as described previously (Neufeld et al., 2007), Briefly, 5 μg DNA from each sample (two control samples and two labelled samples) was added to the gradient buffer and mixed with CaCl₂ to a final density of 1.725 g ml⁻¹. These solutions were added to 5.1 ml polyallomer Quik-seal centrifuge tubes (Beckman Coulter) and ultracentrifuged at 133 000 g for 5 min. The organic phase was extracted and the residual water was removed by freezing the samples overnight at −20 °C. These organic extracts were then concentrated to 1 ml with a nitrogen flow condenser at 55 °C.

Identification of triclosan degraders

RESULTS

Triclosan extracts were finally analysed by gas chromatography with mass spectrometric detection (GC-MS, Thermo-Trace-MS and Trace GC) equipped with a splitless injector and A2005 autosampler. Samples (1 ml) were injected into the injector in splitless (1.5 min) mode held at 240 °C. The GC separation was performed with an Rxi-5Sil MS column (Restek): length: 50 m; id: 0.18 mm; film, 0.18 μm; and a temperature programme of 90 °C (hold 1 min) ramped at 50 °C min⁻¹ to 155 °C and then at 10 °C min⁻¹ to 220 °C. Finally, the baking temperature was reached by ramping the column at 40 °C min⁻¹ to 260 °C which was held for 6 min. Helium (3.0) was used as carrier gas with a flow rate of 1.3 ml min⁻¹. The transfer line of the mass spectrometer (Trace MS, Thermo Finnigan) was held at 250 °C. The ion source was operated at 160 °C. The mass spectrometer was operated in selected ion mode (SIM) utilizing 31–61 ms dwell time. The detector of the mass spectrometer was operated at 450 V. The recovery rate of triclosan was 88 ± 1% (av) and limit of quantification was 3 ng g⁻¹, as reported by Baxter (2003).

SIP. A total of 5 ml (approx. 100 mg dry matter) of the enriched culture was transferred to 60 ml serum bottles and incubated with 2 mg [¹³C] labelled triclosan l⁻¹ for 3 days. Parallel incubations were also prepared with unlabelled substrate and used as controls for verification of DNA-SIP labelling and triclosan degradation. The bottles were ramp-sealed with rubber stoppers and incubated in the dark at 24 °C on a rotary table (150 r.p.m.) for 3 days. Subsequently, total DNA was extracted using the FastDNA SPIN kit for Soil (MP Biomedicals) according to the manufacturer’s instructions. The DNA concentration was measured on a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific). All incubations were carried out as biological duplicates.

Isolation and fingerprinting of [¹³C] labelled DNA. Caesium chloride (CsCl) density fractionation, DNA precipitation and DNA quantification were set up as described previously (Neufeld et al., 2007), Briefly, 5 μg DNA from each sample (two control samples and two [¹³C] labelled samples) was added to the gradient buffer and mixed with CaCl₂ to a final density of 1.725 g ml⁻¹. These solutions were added to 5.1 ml polyallomer Quik-seal centrifuge tubes (Beckman Coulter) and ultracentrifuged at 133 000 g for 72 h at 20 °C in a Sorvall T25-641 swinging-out rotor (Kendro). Immediately after centrifugation, the density gradients were fractionated into 12 volumes of approximately 400 μl. The buoyant density of each fraction was determined by measuring 5 μl from each sample on a refractometer (AR200, Reichert). DNA from each fraction was precipitated with polyethylene glycol and glycogen as described elsewhere (Neufeld et al., 2007), and followed by resuspension in
nucleus-free water. DNA was quantified using a NanoDrop 2000 spectrophotometer.

The shift in community between the control and the labelled fraction was visualized by molecular profiling using denaturing gradient gel electrophoresis (DGGE) and PCR. DGGE was performed as described in detail elsewhere (Kristiansen et al., 2011a). From DGGE results, distinct DNA bands from the labelled heavy fractions (buoyant density 1.83 and 1.79 g ml\(^{-1}\)) were chosen for subsequent sequencing (Fig. 1), available with the online version of this paper). Furthermore, the \(^{14}C\) and \(^{15}C\)-labelled DNA fractions were used as template for PCR with the 16S rRNA gene-targeted primers 26F/1492R (approx. 1450 bp product) (Lane, 1991). PCR conditions are described elsewhere (Kristiansen et al., 2011a). A 16S rRNA clone library was prepared from the high-density fractions (1.76-1.80 g ml\(^{-1}\)) of the SIP incubation with the \(^{14}C\)-labelled triclosan. The clone library preparation and the phylogenetic analysis were performed as described by Kristiansen et al. (2011a) except that the alignment and phylogenetic tree construction were done using MEGA 5 (Tamura et al., 2011). Screening of the clone sequences with Bellerophont v3 (DeSantis et al., 2006) did not identify any putative chimeras. Sequences represented in the phylogenetic tree were named triclosan-degrading culture clones and deposited in the GenBank database under accession numbers JX099503–JX099536.

FISH probe design. The 16S rRNA gene sequences from the clone library were used to design an oligonucleotide probe (Meth1138*

(Table 1) using the probe design tool in the ARB software package (Ludwig et al., 2000). Optimum hybridization stringency for the probe was determined by performing formamide dissociation series on biomass from the enrichment culture and activated sludge from Aalborg West WWTP with 10 % formamide (v/v) increments across a range of 0–60 % (v/v). Prior to FISH, samples were homogenized and fixed with 4 % (w/v) paraformaldehyde, as described previously (Nielsen, 2009). The group-specific probe Meth1138 was labelled with sulfoindocyanine dyes (Cy3). FISH analyses were performed as described previously (Nielsen & Nielsen, 2005). Briefly, 5 ml of the enriched culture was transferred to 9 ml serum bottles and incubated with 10 \(\mu\)g \(^{14}C\)-labelled triclosan (3.7 \(\times\) 10\(^6\) Bq) and unlabelled triclosan to a final concentration of 2 mg l\(^{-1}\) under anaerobic conditions for 1 day on a rotary table (labelled and unlabelled triclosan was added at time 0). As a control for chemohraphy, a sample from the enriched culture was pasteurized at 70°C for 10 min prior to MAR incubation and run in parallel. MAR incubations were terminated by fixing samples with 4% (w/v) paraformaldehyde. The samples were then washed, homogenized and immobilized on gelatin-coated coverslips as described elsewhere (Nielsen & Nielsen, 2005). Finally, the samples were subjected to FISH. After the FISH procedure, the samples were coated with liquid film emulsion (Kodak) and exposed in the dark for 3-6 days before being developed and microscopically examined. Production of \(^{14}C\)-labelled CO\(_2\) was monitored in MAR-incubated culture by measuring the percentage accumulation of precipitated radioactivity using a liquid scintillation counter (Packard 1600 TR; Packard) as follows. Samples (1 ml) from the headspace gas were withdrawn using a syringe and mixed with 1 ml 0.1 M NaOH solution in a gas-tight sealed serum bottle. At the same time, 0.1 ml aliquots were withdrawn from the culture and directly transferred to 3 ml scintillation liquid (Ultima Gold XR; Packard) to measure the total radioactivity of the culture. All incubations were carried out as biological duplicates.

RESULTS

Biodegradation of triclosan in enrichment culture

After spiked the enrichment culture with 2 mg triclosan l\(^{-1}\), the concentration of triclosan was reduced below the limit of quantification (3 ng l\(^{-1}\)) within 90 h, whereas the triclosan concentration remained nearly constant in a pasteurized control spiked with 1 mg triclosan l\(^{-1}\) (Fig. 1). This indicates that the removal of triclosan was predominantly due to biological activity, which agrees with the literature (Bester, 2005; Singlet et al., 2002). Degradation of 2 mg triclosan l\(^{-1}\) followed first-order kinetics with a removal rate and half-life of 0.0431 h\(^{-1}\) and 16 h, respectively. This was approximately five times faster than

<table>
<thead>
<tr>
<th>Table 1. Oligonucleotides probes for FISH analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe</td>
</tr>
<tr>
<td>EUB338</td>
</tr>
<tr>
<td>EUB338HII</td>
</tr>
<tr>
<td>EUB38III</td>
</tr>
<tr>
<td>Beta42a*</td>
</tr>
<tr>
<td>Gam42a*</td>
</tr>
<tr>
<td>Meth1138*</td>
</tr>
<tr>
<td>Meth1138-comp.</td>
</tr>
</tbody>
</table>

*Used in equimolar concentrations with competitor.
that calculated from degradation analyses where the same concentration of triclosan was spiked directly into activated sludge from the Aalborg West WWTP (Chen et al., 2011). When radiolabelled triclosan was spiked into the enrichment culture, the subsequent liquid scintillation counts showed that this microbial community is able to mineralize triclosan, with approximately 13% of the added radioactivity detected in the headspace after 3 days of incubation (Fig. 1). The linear progression of 14C-labelled CO2 in the headspace indicates that triclosan degradation started immediately after its addition without a lag phase (Fig. 1). Meanwhile, no further accumulation of 14C-labelled CO2 was observed when the triclosan concentration was reduced below the detection limit.

Detection and phylogenetic analysis of 13C-labelled bacterial 16S rRNA gene sequence Following incubation with 13C-labelled triclosan, total DNA was extracted and centrifuged in a CsCl density gradient to separate labelled from non-labelled DNA. This resulted in a linear isopycnic gradient from 1.83 to 1.57 g ml\(^{-1}\) (Fig. 2). Although the buoyant densities in our SIP fractionation were relatively broad, a clear shift towards a heavier density of the quantified DNA was observed from both duplicate samples incubated with unlabelled triclosan relative to the 12C-labelled control. This shift was also apparent from the band intensity of the PCR product after 25 cycles of amplification of the 16S rRNA genes (Fig. 2). The obtained sequences had less than 95% identity to the other previously described Methylobacillus species. Three clone sequences were related to the genus Stenotrophomonas within the Gammaproteobacteria with strong bootstrap support and less than 95% identity to other Stenotrophomonas sequences.

Identification of triclosan-utilizing bacteria To verify that members of the genus Methylobacillus were utilizing triclosan in the enrichment culture, a specific FISH probe (Meth1138) targeting most members of the genus was designed. The hybridization stringency of the probe was optimized on biomass from the culture and from activated sludge samples and determined to be 25% (v/v) formamide. The probe was used to quantify the relative abundance of Methylobacillus in the enriched culture as well as in activated sludge and was calculated to range between 2 and 4% and 0.5 and 1% of the total detected cells, respectively. No further enrichment was detected during SIP or MAR incubations. Dense silver grain patches covering the Meth1138-hybridized cells indicated an active utilization...
of 14C-labelled triclosan by *Methylobacillus* (Fig. 4). A low background in the MAR visualizations and lack of MAR-positive cells in the pasteurized control indicated a low absorbance and chemography of 14C-labelled triclosan to the sample. In the enrichment culture, approximately 25% of the *Meth1138*-positive cells were MAR-positive, but other betaproteobacterial cells (positive with the BET42a probe) were also MAR-positive (Fig. 4). These cells were found to constitute 2–3% of the total number of cells detected by EUBmix and gave similar silver grain density to the MAR-positive *Methylobacillus*.

The oligonucleotide probe was applied to assess the abundance of FISH-detectable *Methylobacillus* bacteria in seven Danish full-scale wastewater treatment plants. With a detection limit of 0.25% of the biovolume, estimated by the use of nonsense probe NONEUB (Wallner et al., 1993), the survey revealed a highly variable presence of bacteria affiliated with *Methylobacillus*; some plants showed a complete absence or around the limit of quantification ($P<0.1$; Aalborg East, Ega, Hjørring, Skive WWTPs) while others showed relatively high abundance (0.5–2%, $P<0.05$, Bjergmarken, Ebyrnelle, Aalborg West WWTPs). The probe hybridized with small, rod-shaped cells (Fig. 4) that had similar morphology in samples from the enrichment culture and all the activated sludge WWTPs (Fig. 4).

MAR-FISH was also attempted with biomass from a full-scale plant to confirm that these organisms are involved in triclosan removal in these systems. However, due to the presence of very few MAR-positive cells (enumerated to be around 2% of the total number of cells detected by EUBmix, corresponding to approximately 8×10^6 cells ml$^{-1}$) combined with low fluorescence intensities we were not able to assess with confidence the MAR-FISH signals. Design of specific FISH probes targeting the three *Stenotrophomonas* sequences identified by SIP failed to detect target cells and previously published probes for this genus had one mismatch to the sequences obtained from the clone library. However, due to the relatively low abundance of Gammaproteobacteria in the enrichment culture ($<1\%$ positive with the GAM42a probe compared with ~95% of Betaproteobacteria (BET42a) relative to the total FISH positive cells detected by EUBmix) and the observation that all MAR-positive cells were also Betaproteobacteria-positive (Fig. 4), no further attempts were taken to verify if members of the *Stenotrophomonas* were taking up 14C-labelled triclosan.

Fig. 3. Phylogenetic affiliation of the 16S rRNA gene sequences obtained from the 15C-enriched SIP fractions. GenBank accession nos or the number of clone sequences obtained are indicated in parentheses. The tree was constructed using the maximum-likelihood algorithm with branching confidence values from 1000 replicates. Bootstrap values $>75\%$ and $>90\%$ are indicated by empty and filled circles, respectively. Bar, 5% sequence divergence; the outgroup was made from 10 randomly chosen Chloroflexi gene sequences.
DISCUSSION

Although more than 60% of total removal of triclosan is attributed to the biodegradation processes in activated sludge treatment (Bester 2003, 2005) very little is known about the micro-organisms involved. Previous studies have shown the ability of a few isolates to degrade triclosan (Gangadharan Puthiya Veetil et al., 2012; Hay et al., 2001; Kim et al., 2011; Meade et al., 2001). However, as these studies rely on the use of culture-dependent methods and do not necessarily reflect the identity of the active members involved in the biodegradation of triclosan in situ, the focus of this study was to apply SIP to identify bacteria capable of utilizing triclosan in an enrichment culture. Attempts to apply the SIP approach directly on activated sludge were not successful, most likely because of the low numbers of bacteria involved in the degradation of triclosan as observed in the MAR-FISH results. Apparently, with the amount of 13C-labelled triclosan added and the sequencing approach used, we were unable to reach sufficient density shift for the labelled DNA during SIP. So, in order to identify triclosan degraders, an enrichment step was introduced. This approach is biased to enrich for triclosan degraders with a low affinity for the substrate, and discriminates against cells with a high substrate affinity.

The enrichment culture, originally started from activated sludge, was fed on regular additions of triclosan and was able to degrade 2 mg triclosan L^{-1} with a half-life of 16 h compared with 90 h in the original activated sludge sample. The relatively stable and high removal rate of triclosan and consecutive development of 14C-labelled CO_2 combined with a lack of lag phase in the degradation experiments suggest that the enriched bacterial community has readily adapted to triclosan as a carbon source. The consumption of 13C-labelled triclosan resulted in a sufficient amount of heavy-labelled DNA, and a shift in the average density of total DNA compared with the unlabelled (12C) control. Generally, to ensure sufficient DNA labelling in SIP experiments, a few doubling times with the labelled substrate is required. This potentially raises concern regarding cross-feeding of labelled carbon. However, we applied a relatively short incubation period and low concentration of the applied 13C-labelled triclosan to minimize the risk of cross-feeding. The predominant enrichment of a single bacterial clade, the lack of by-products identified, and the confirmation by MAR-FISH with reduced incubation time and tracer, support that the identified Methylobacillus are the primary consumers of triclosan in the enrichment culture. The methodological approach of applying SIP with MAR-FISH is a powerful combination that validates the SIP findings and ensures correct interpretation of even organisms with low abundance. The MAR approach requires less uptake of tracer compared with SIP, and is therefore more sensitive and can be used to test uptake of substrate in natural systems under in situ conditions. However, we were not able to conclusively verify that Methylobacillus was the main triclosan consumer using in situ concentrations in the indigenous activated sludge sample due to very low numbers of MAR-positive triclosan degraders.

http://mic.sgmjournals.org 2801
The finding of a few *Stenotrophomonas*-related clones in the 13C-labelled DNA clone library could indicate a broader diversity of triclosan degraders or the presence of multiple degradation steps catalysed by different micro-organisms. Although members of *Stenotrophomonas* have previously been shown to be involved in the degradation of environmental pollutants with aromatic structures such as *p*-nitrophenol (Liu et al., 2007), nonylphenol (Soares et al., 2003) and benzene (Lee et al., 2002), their involvement in degradation of triclosan was not confirmed by the MAR-FISH approach. Another betaproteobacterial group was found to be present in similar numbers to *Methylobacillus* and with similar triclosan degradation activity; however, these cells were not identified by the SIP approach. This could be due to insufficient density shift in the SIP fractionation.

Other studies have shown that less than 1% of the triclosan added to activated sludge is actually transformed into triclosan-methyl, and that the increase of triclosan-methyl corresponded to the decrease of the parent compound (Chen et al., 2011). We attempted to find and identify triclosan degradation by-products from the enrichment culture by GC-MS and revealed the presence of 2,4-dichlorophenol but this was below the limit of quantification. The lack of accumulated by-products and development of labelled CO2 in the head space during incubation with 14C-triclosan indicates that the added triclosan was fully mineralized. Alternatively, the findings could suggest the presence of a more metabolically diverse community of triclosan degraders in activated sludge, but these would typically be present in small numbers and therefore difficult to identify.

Methylobacillus belongs to methylotrophs, which is a phenotypically defined group capable of using one-carbon compounds as the sole source of energy and carbon (Hanson & Hanson, 1996). However, it has been shown that several methylotrophs that are within the genus *Methylobacillus* can degrade organic compounds through co-metabolism, such as the pesticide carbonfuran and choline (Hanson & Hanson, 1996), or through direct metabolism, such as microcystin (Hu et al., 2009). Other methylotrophs are known for their ability to participate in the co-metabolic degradation of various environmental pollutants, including trichloroethylene, phenol and different aromatic compounds (Chongcharoen et al., 2005; Koh et al., 1993; Tsuji et al., 1996). Metabolic pathway analyses have shown that *Methylobacillus* contains unique clusters of genes encoding the degradation of chlorocatechol, a major intermediate product in the biodegradation of chloraromatic compounds (Caspi et al., 2012; Spokes & Walker, 1974). Little information is available regarding the biodegradation products of triclosan, although catechol and 3,5-dichlorocatechol were detected when triclosan was degraded by pure cultures of *Pseudomonas*-like strains (Gangadharan Puthiya Veetil et al., 2012) and *Sphingomonas* sp. PII-07 incubated with diphenyl ether (Kim et al., 2011). This information supports the notion that members of the genus *Methylobacillus* may play a role in triclosan degradation in the enriched culture and in WWTPs. To our knowledge, organisms within this group have not previously been linked to triclosan degradation. The FISH surveys in the seven Danish WWTPs show that *Methylobacillus* are indeed present in activated sludge although they are more abundant than can be ascribed to degradation of micro-pollutants such as triclosan, and the abundance thus indicates that they are involved not only in degrading aromatic micro-pollutants but likely also in other processes as well.

In conclusion, SIP combined with MAR-FISH was used here to identify the active community responsible for the degradation of triclosan within an enrichment culture originating from activated sludge. The findings show the ability of members of the genus *Methylobacillus* to utilize triclosan. Identifying the specific organisms involved in triclosan degradation provides valuable information that may lead to possible strategies to enhance micro-pollutant removal.

ACKNOWLEDGEMENTS

This study was financially supported by the Danish Research Council (FTP) through grant no. 09-06504. We thank Simon McIlroy (Aalborg University) for helpful comments on the manuscript and Ciba for providing the 13C-labelled triclosan.

REFERENCES

Identification of triclosan degraders

http://mic.sgmjournals.org

Edited by: E. L. Madsen
Research paper 8:

Chen XJ., Wimmer R., Ternes T., Schlüsener M., Nielsen JL. and Bester K.
Biodegradation of triclosan and Formation metabolites in activated sludge under aerobic conditions. Manuscript in preparation
BIODEGRADATION OF TRICLOSAN AND FORMATION
OF METABOLITES IN ACTIVATED SLUDGE UNDER
AEROBIC CONDITIONS

Xijuan Chen¹, Jeppe Lund Nielsen¹, Reinhard Wimmer³, Thomas Ternes², Michael
Schluesener³, Kai Bester⁷

1) Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg
University, Sohngaardsholmsvej 49, 9000 Aalborg, Denmark

2) Federal Institute of Hydrology (BfG), Koblenz, Germany

3) National Environmental Research Institute, Aarhus University, Frederiksborgsvej 399,
4000 Roskilde, Denmark

*Corresponding author

e-mail: kb@dmu.dk

Tel +45 46301243
Abstract

Aerobic degradation experiments of Triclosan were performed in activated sludge to identify possible degradation pathways for this compound. An almost complete removal of Triclosan was achieved within 7 days, with formation of biodegradation products such as 2,4-dichlorophenol, 4-chlorocatechol, Monohydroxy-Triclosan and Dihydroxy-Triclosan in the liquid phase and a hitherto unknown transformation product Triclosan-O-Sulfate was identified in the sludge. Based on the analysis of biodegradation products, three main lines of reactions are identified: 1) chemical scission of ether bond to form phenols and catechols, 2) introduction of OH group to the aromatic ring, and 3) adding methyl or sulfate groups to the original hydroxyl group. The half life of the metabolites indicate that they may be emitted from waste water treatment plants.
Introduction

Triclosan (2,4,4’-trichloro-2’-hydroxydiphenyl ether, CAS: 3380-34-5) was first introduced in the health care industry in 1972 and later as an additive to toothpaste in Europe (Jones et al., 2000). Due to the bactericidal property and the chemical stability, Triclosan became popular as an antimicrobial substance in a wide range of applications and the demand of it has been growing rapidly in last 40 years (Fiss et al. 2007). The consumption within the EC reached approximately 450 tons (as 100% active) in 2006 (SCCP/1192/08, 2009).

Triclosan can inhibit bacteria by blocking lipid biosynthesis, which is necessary for building cell membranes components (Schweizer, 2001). Considering the toxicological profile and its widespread detection in the surrounding environment, there is a growing concern about the potential impact of Triclosan on human and ecosystem health, such as skin irritation, allergy susceptibility, and also eco-toxicity to the aquatic and terrestrial environment (Wilson et al., 2003; Coogan et al., 2007; Franz et al., 2008). Therefore, there is an increasing attention on the fate of Triclosan in the environment.

The widespread use of Triclosan and incomplete removal in wastewater treatment plants (WWTPs) indicates that Triclosan may enter the environment via the sludge or via WWTPs effluent. Previous studies described Triclosan as one of the most commonly encountered substances in aqueous and terrestrial ecosystems (Lindström et al., 2002; Ying and Kookana, 2007; Kumar et al., 2010). In addition, it has been detected in fish, soil, and sediments as it has high bioaccumulation properties (Coogan et al., 2007; Xie et al., 2008; Lozano et al., 2010; Fernandes et al. 2011).
As Triclosan is used widely and disposed mostly "down-to-the-drain", it has been
detected in numerous municipal wastewater influent samples at concentrations of
several µg/L (Bester, 2005; Wu et al., 2007; Kumar et al., 2010; Nakada et al., 2010). In
conventional activated sludge WWTPs about 90% removal of Triclosan was detected
(Singer et al. 2002; Bester 2003; 2005). In fact, both biodegradation and
physical/chemical sorption to activated sludge may explain the removal fate of Triclosan
in WWTPs. About 30-50% of the Triclosan can be recovered from sludge as Triclosan is
relatively lipophilic with log K_{ow} of 4.2-4.8 and log K_{oc} of 4.3 (Singer et al., 2002; Bester,
2003, 2005; Coogan et al., 2007; Heidler and Halden, 2007; Ying et al. 2007). On the
other hand, only about 5% is detected in the discharge of the WWTPs (Singer et al.,
2002, Bester, 2003, 2005), which indicate that the majority of the removal is due to
biodegradation processes (Singer et al., 2002; Bester, 2003; Heidler and Halden, 2007).
In sludge biodegradation Triclosan-Methyl has been detected and is contributing up to 5%
of the mass balance (McAvoi et al., 2002; Lindstöm et al., 2002; Bester, 2003, 2005).
Previous research (Chen et al.,2011) demonstrated this methylation to occur under
aerobic conditions. Additionally, 2,4-dichlorophenol is a well known degradation product
of Triclosan which has been detected by several investigators within sludge
biodegradation experiments (Kim et al., 2010, Lee et al., 2012). Chlorocatechol,
Monohydroxy-Triclosan and Dihydroxy-Triclosan have also been proposed as
biodegradation products of Triclosan by bacteria (Kim et al.,2010; Veetil et al.,2010; Lee
et al., 2012), however structural confirmation by true standards or NMR was not
achieved in those studies. Triclosan-O-Sulfate has been described as transformation
product of Triclosan in rat liver (Wu et al., 2010) and carrot (Macherius et al., 2012), however confirmation with NMR or true standards are missing.

Triclosan is toxic, lasts for a long time in the environment, and may travel long distances from their sources of usage, release and emission. As some of the intermediate products of Triclosan transformation are missing, studies of chemical and biological conversions of Triclosan are important for risk assessments of ecosystems and human health. The aim of this work is to investigate the biodegradation of Triclosan by activated sludge under aerobic conditions, in order to achieve a better knowledge of the metabolites generated as well as their biodegradation rates.

Materials and methods

Activated sludge sampling

Activated sludge samples were collected from Bjergmarken WWTP (Roskilde, Denmark), which processes 6×10^6 m3 wastewater (125,000 population equivalents, PE) annually. About 80% of the received wastewater is domestic. This WWTP includes primary sedimentation basins, activated sludge treatment basins and a final clarifier before the water is released to the nearby fjord. It operates biological phosphorus removal and alternating nitrification/denitrification, and produces about 1200 tones dry sludge annually. The suspended solids (SS) content of the activated sludge was 4 g L$^{-1}$ and its volatile solids content was 2.5 g L$^{-1}$ during the sampling period.

Degradation experiments
Biodegradation experiments were carried out in 5 L glass bioreactor with starting concentrations of 5 mg L⁻¹ Triclosan, which is somewhat higher than found in real WWTPs. The high concentration was chosen to be able to identify the Triclosan metabolites in sludge. During the experiments, the reactor was maintained at 17 ± 2 °C and the pH value remained constant (6.9 ± 0.5) during the experiment. The incubation conditions were maintained under aerobic conditions by supplying air through a diffuser stone with a flow rate of 1.3 L h⁻¹. The reactor was stirred by means of teflonized magnetic stir bars to keep the sludge homogeneous. No additional carbon source was added to the system, thus it was run as static reactors. Sludge samples were taken every day from the reactor. Detailed experiment procedures were described previously (Chen et al., 2011).

Extraction and instrumental analysis

Direct injection of aqueous samples

To determine the concentration of Triclosan and possible metabolites, 1 mL sludge samples were taken from the reactor and centrifuged (10,000 x g for 10 min at room temperature) by Microcentrifuge 157 (Ole Dich Instrumentmakers, Hvidovre, Denmark) to remove the particles and the supernatants were injected directly into HPLC-MS/MS.

Solid phase extraction

To obtain better signals of metabolites, 30 mL sludge samples were taken every day from the reactor. Samples were centrifuged (10,000 x g for 10 min at room temperature) to separate the liquid and solid phase. The liquid phase (supernatant from centrifuge) were extracted by means of solid phase extraction (SPE) with SDB2 column (Mallinckrodt Baker, Deventer, The Netherlands) with 12 mL methanol, whereas the solid
phase (pellets from centrifuge) were re-extracted by methanol and centrifuged to remove the particles. All methanolic extracts were then concentrated to 1 mL with a nitrogen flow condenser at 55 °C.

Instrumental analysis

The samples were analyzed by liquid chromatography with tandem mass spectrometric detection (HPLC-MS/MS). The separation was performed using a Phenomenex synergi 4u polar-RP column (150×2 mm I.D., particle size 4 μm). The flow rate was 0.25 mL min⁻¹. Considering the characteristics of electrospray ionization and the chemical properties of Triclosan and potential metabolites, preliminary experiments were performed to test which conditions (neutral, acidic, alkaline) provide the optimum response for the mobile phase in presence of methanol and water. The results showed that Triclosan and metabolites achieved better separation and ionization efficiency when analyzed in a mobile phase consisting of methanol and water containing 0.2% formic acid. Therefore, the LC gradient was established by mixing two mobile phases: phase A, HPLC water (0.2% formic acid) and phase B, Methanol (0.2% formic acid). The chromatographic separation was achieved with the following gradient: 0-2 min 100% A, changing to 100% B in 11 min, keep constant for 4min with 100% B and return to initial conditions in 0.5min. The injection volume was 100 μL for the water samples and 10 μL for the extracted sludge samples.

The LC system consisted of a Dionex UltiMate 3000 autosampler (WPS-3000T SL), a Dionex UltiMate 3000 pump (HPG-3600 M), a Dionex UltiMate 3000 column compartment hold (TCC-3000 RS) on 20 °C (all from Dionex, Sunnyvale, California, United States). After LC separation, the analytes were determined by an AB-Sciex
(California, United States) API 4000 triple quadruple mass spectrometer using electrospray ionization in negative mode. Nitrogen was used as a drying (at 400°C) nebulising and collision gas. One scan per second was recorded. The compounds were characterized by scans with the first quadrupole, as well as daughter spectra, while they were quantified using multireaction monitoring (MRM).

High resolution mass spectrum (HRMS/MS) was used for further sample analysis. The detection was performed using a LTQ-Orbitrap-MS (LTQ Orbitrap Velos, Thermo Scientific, Bremen, Germany) by direct injection using a syringe pump (flow rate: 8 μL min⁻¹) with ESI operated in negative ionization mode.

Similar oxidation products as described for ozonisation of Triclosan (Chen et al., 2012) was examined in this study. For further structure confirmation Triclosan oxidation products were produced by reacting 24 mg of Triclosan with aqueous ozone and about 1 mg of hydroxy- Triclosan (OH-Triclosan) and dihydroxy- Triclosan ((OH)²-Triclosan) were isolated as described elsewhere (Chen et al., 2012). Purified Triclosan oxidation products were analysed by Nuclear Magnetic Resonance (NMR). The dried fractions from the HPLC separation were redissolved in 40 μL methanol-d₄ which contained 0.03% (v:v) of tetramethylsilane (TMS). Spectra were recorded at 298.1K on a BRUKER AVIII-600MHz NMR spectrometer equipped with a 1.7mm TXI (H/C/N) probe. ¹H-NMR, ¹³C-NMR, [²H,³H]-2QF-COSY, [¹³C,¹H]-HSQC and [¹³C,¹H]-HMBC spectra were recorded.

Materials

For analytical purposes Triclosan, was purchased from Ehrenstorfer (Augsburg, Germany) with purity being ≥99% according to the supplier. For transformation studies
Triclosan (Irgasan) obtained from Sigma-Aldrich (Steinheim, Germany) was used. 2,4-dichlorophenol and 4-chlorocatechol were also purchased from Sigma-Aldrich. Methanol was used in residue grade quality and purchased from Merck, Darmstadt, Germany. Methanol-d4 containing 0.1% tetramethylsilane (TMS) was purchased from Cambridge Isotope Laboratories, Andover, MA (USA). Triclosan-O-Sulfate was synthesized by Toronto Research Chemicals (Toronto, Canada).

Results and discussions

Figure 1 shows Triclosan and Triclosan-metabolite concentrations during a degradation experiment of 220 hours. Nearly all Triclosan was degraded within 150 hours, after which the Triclosan concentrations remained almost constant at less than 0.01 mg L⁻¹ to the end of the experiment (220 h).

While Triclosan was detected at retention time (RT) of 15.88 min, the following metabolites were detected in the aqueous phase:

- **Monoaromatic compounds** at RT 12.79 min and 14.02 min were identified and verified with true standards as 4-chlorocatechol and 2,4-dichlorophenol, respectively.

- **Monohydroxy-Triclosan** (OH-Triclosan). Several isomers were identified indicating presence of an unselective oxidation of the aromatic ring system (Fig.2 and S1). However, the isomer at RT 14.88 min was identified as one that could be synthesized and isolated (S1). Submitting the synthesized oxidation products with the same retention time as the biogenerated one to NMR measurements, revealed the identity of
the main Monohydroxy-Triclosan to be 5-OH-Triclosan (Compare to Chen et al., 2012) (Table 1).

Dihydroxy-Triclosan ((OH)₂-Triclosan). Several isomers were identified at RT 15.55 min (Fig.2).

Triclosan-O-Sulfate was detected in the extracted pellet of the centrifuged sludge. Fig.3 shows the chromatogram and the spectrum of this compound. The most abundant ions are m/z 367, 369 and 371, corresponding to a molecule containing three chlorine atoms (M-1). To obtain more information of the unknown product, high resolution of mass spectrum was used. S3 (a) shows the mass [M-H] of the unknown compound analysed by HRMS with 366.9002, from which the product ion was detected at 286.9434 shown in S3 (b). After comparison with the theoretical masses, the unknown compound could be identified as Triclosan-O-Sulfate (C₁₂H₁₂Cl₂O₆S), which has theoretical mass at m/z of 366.8996. The product ion could be confirmed to be Triclosan with theoretical mass of 286.9434 after a cleavage of O₃S (theoretical mass 79.9563). For further confirmation, Triclosan-O-Sulfate was purchased from Toronto Research Chemicals (Toronto, Ontario, Canada), which produced a peak with the same retention time and mass spectrum as the metabolite detected in the sample.

Figure 4 shows the proposed degradation products resulting from the biodegradation of Triclosan in activated sludge systems. The breaking of the ether bond seems to be the preferred pathway, thus the major degradation product obtained after the degradation of Triclosan was the compounds yielding an [M-H]⁺ ion at 161, which shows the maximum intensity in the chromatogram. Following the same degradation pathway, other degradation product at m/z 143 could also be detected.
Another degradation pathway observed was the substitution of the aromatic hydrogen atom(s) by hydroxyl group(s), leading to the structures proposed for m/z 303 and 319. Similarly, the degradation product Triclosan-Methyl could be the result of the replacement of the hydrogen atom by methyl group, which has been described elsewhere (Chen et al., 2011). Furthermore, the replacement of the hydrogen group by sulfate has been detected leading to the formation of Triclosan-O-Sulfate.

Quantitative analysis was also carried out to quantify the metabolites. As shown in Figure 1, the concentration of 2,4-dichlorophenol started from 50 ng/mL, reached 320 ng/mL after 48 hours, and then decreased to about 50 ng/mL. The increase in concentration of 2,4-dichlorophenol indicated the biotransformation of 2,4-dichlorophenol from Triclosan, the decrease concentration after 48 hours suggested that 2,4-dichlorophenol is not the final product and it will be further degraded. It could be assumed that about 7% of Triclosan was transformed into 2,4-dichlorophenol in the reactors within 50 hours. Similarly, concentration of Triclosan-O-Sulfate increased from 0 to 256 ng/mL, corresponding to 7% of transformation from Triclosan within 120 hours. The concentration of 4-chlorocatechol could not be quantified as the signal was below the limit of quantification. Concentrations of Monohydroxy-Triclosan and Dihydroxy-Triclosan, could not be determined as the standards are not commercially available. However, the peak area of those compounds showed the same tendency as 2,4-dichlorophenol as shown in Figure 7, which suggested that they are originated from Triclosan and they are intermediate products which are also biodegradable in activated sludge system.

Conclusion
Considering the biodegradation products, it was tentatively concluded that for relatively high concentrations of Triclosan, direct biodegradation consisted of at least four parts: 1) the C-O bond cleavage producing 2,4-dichlorophenol and 4-chlorocatechol. 2) substitution of the aromatic hydrogen atom(s) by hydroxyl group(s) producing OH-Triclosan and (OH)$_2$-Triclosan. 3) replacement of the 2-OH-hydrogen atom by methyl group forming Triclosan-methyl. 4) replacement of the hydrogen atom by sulfate group leading to the formation of Triclosan-O-Sulfate.

At the experiment conditions, 1% of Triclosan has been transformed into Triclosan-methyl, 7% has been transformed into 2,4-dichlorophenol and 7% has been transformed into Triclosan-O-Sulfate. All the transformation products detected in the experiment were intermediate products which are also biodegradable in activated sludge system. However, considering the kinetics obtained in these experiments it must be concluded these compounds are most probably emitted via the WWTP effluents into surface waters as WWTPs usually operate with hydraulic residence times of about 20 hours.

Acknowledgement

The authors would like to thank for financial support from the Danish Research Council FTP for the project In situ characterization of microbial degraders of Triclosan and Methyl-Triclosan from wastewater treatment plants. The authors also wish also to thank operators at Bjergmarken WWTP. The NMR laboratory at Aalborg University is supported by the Obel Foundation.
Literature

Scientific Committee on Consumer Products (SCCP) (2009) Opinion on triclosan. SCCP/1192/08

Tables and Figures

Table 1. Triclosan structure and chemical shifts (δ [ppm], at 298.1K in methanol-d4, referenced against internal TMS) detected in NMR analysis.

<table>
<thead>
<tr>
<th>Triclosan structure</th>
<th>Triclosan</th>
<th>5-OH-Triclosan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atom</td>
<td>H</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>142.58</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>150.13</td>
</tr>
<tr>
<td>3</td>
<td>6.95</td>
<td>117.51</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>130.48</td>
</tr>
<tr>
<td>5</td>
<td>6.82</td>
<td>120.06</td>
</tr>
<tr>
<td>6</td>
<td>6.82</td>
<td>121.69</td>
</tr>
<tr>
<td>1'</td>
<td>-</td>
<td>152.79</td>
</tr>
<tr>
<td>2'</td>
<td>-</td>
<td>125.04</td>
</tr>
<tr>
<td>3</td>
<td>7.49</td>
<td>130.48</td>
</tr>
<tr>
<td>4'</td>
<td>-</td>
<td>128.29</td>
</tr>
<tr>
<td>5</td>
<td>7.21</td>
<td>128.24</td>
</tr>
<tr>
<td>6</td>
<td>6.76</td>
<td>119.05</td>
</tr>
</tbody>
</table>

* ambiguous assignment (position 1 and 2 cannot be clearly assigned separately)
Figure 1. Concentration of Triclosan and formation of the metabolites 2,4-dichlorophenol and Triclosan-O-Sulfate in reactor during sampling period. Concentration of Triclosan and 2,4-dichlorophenol were measured in the aqueous phase, whereas concentration of Triclosan-O-Sulfate was measured in sludge phase. Triclosan concentrations refer to the left y-axis, the transformation products are displayed with reference to the right y-axis.
Figure 2. Chromatogram of a sludge incubation (liquid phase) detected by means of HPLC-MS/MS with transformation products identified.
Figure 3. HPLC-MS/MS analysis of the transformation product identified in the solid phase. The full chromatogram of the sample (a) and the background-subtracted mass spectrum of Triclosan-O-Sulfate (b).
Figure 4. Proposed biodegradation pathway of Triclosan.
Supplementary Material for

BIODEGRADATION OF TRICLOSAN AND FORMATION

METABOLITES IN ACTIVATED SLUDGE UNDER

AEROBIC CONDITIONS

Xijuan Chen¹, Jeppe Lund Nielsen¹, Reinhard Wimmer¹, Thomas Ternes², Michael
Schluesener³, Kai Bester³*

1) Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg
University, Sohngaardsholmstræde 49, 9000 Aalborg, Denmark

2) Federal Institute of Hydrology (BfG), Koblenz, Germany

3) National Environmental Research Institute, Aarhus University, Frederiksborgsvej 399,
4000 Roskilde, Denmark
Supplementary material S1. Pattern of different monohydroxy-Triclosan derivatives from incubation with sludge in comparison with sample from Triclosan ozonisation (Chen et al., 2012).
Supplementary material S2. Development of relative concentrations of monohydroxy- and dihydroxy-Triclosan during the experiment period.
Supplementary material S3. HRMS/MS analysis of the Triclosan-O-Sulfate in the solid phase. High resolution mass spectrum of the unknown peak (a) and the daughter mass spectrum of mass 366.9002 (b), triclosan (mass 286.9434) was formed after a cleavage of 79.95676 (O₃S).
Mandatory page

Thesis title: Triclosan removal in wastewater treatment processes

Name of PhD student: Xijuan Chen

Supervisors: Jeppe Lund Nielsen, Kai Bester

List of published papers:

- **Paper 1:** Chen XJ., Pauly U., Rehfus S. and Bester K. Personal care compounds in a reed bed sludge treatment system, Chemosphere 76 (2009) 1094–1101

- **Paper 3:** Chen XJ. and Bester K. Determination of organic micro-pollutants such as personal care products, plasticizer and flame retardants in sludge, Anal Bioanal Chem (2009) 395:1877–1884

- **Paper 4:** Bester K., Chen XJ., Pauly U. and Rehfus S. Abbau von organischen Schadstoffen bei der Kläslammbehandlung in Pflanzenbeeten, Korrespondenz Abwasser, Abfall 58 (2011) 1050-1157

- **Paper 5:** Chen XJ., Nielsen JL., Furgal K., Liu YL., Lolas IB. and Bester K. Elimination of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions, Chemosphere 84 (2011) 452–456

- **Paper 6:** Chen XJ., Richard J., Dopp E., Türk J., Liu YL. and Bester K.

This thesis has been submitted for assessment in partial fulfillment of the PhD degree. The thesis is based on the submitted and published scientific papers which are listed above. Parts of the papers are used directly or indirectly in the extended summary of the thesis. As part of the assessment, co-author statements have been made available to the assessment committee and are also available at the Faculty of Engineering and Science, Aalborg University.