Capsaicin-sensitive cutaneous primary afferents convey electrically induced itch in humans

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Specially designed transcutaneous electrical stimulation paradigms can be used to provoke experimental itch. However, it is unclear which primary afferent fibers are activated and whether they represent pathophysiologically relevant, C-fiber mediated itch. Since low-threshold mechano-receptors have recently been implicated in pruriception we aimed to characterize the peripheral primary afferent subpopulation conveying electrically evoked itch in humans (50 Hz stimulation, 100 μs square pulses, stimulus-response function to graded stimulus intensity). In 10 healthy male volunteers a placebo-controlled, 24-h 8% topical capsaicin-induced defunctionalization of capsaicin-sensitive (transient receptor potential V1-positive, ‘TRPV1’ +) cutaneous fibers was performed. Histaminergic itch (1% solution introduced by a prick test lancet) was provoked as a positive control condition. Capsaicin pretreatment induced profound loss of warmth and heat pain sensitivity (pain threshold and supra-threshold ratings) as assessed by quantitative sensory testing, indicative of efficient TRPV1-fiber defunctionalization (all outcomes: P < 0.0001). The topical capsaicin robustly, and with similar efficaciousness, inhibited itch intensity evoked by electrical stimulation and histamine (−89 ± 4.1% and −78 ± 4.9%, respectively, both: P < 0.0001 compared to the placebo patch area). The predominant primary afferent substrate for electrically evoked itch in humans, using the presently applied stimulation paradigm, is concluded to be capsaicin-sensitive polymodal C-fibers.

Close

Details

Specially designed transcutaneous electrical stimulation paradigms can be used to provoke experimental itch. However, it is unclear which primary afferent fibers are activated and whether they represent pathophysiologically relevant, C-fiber mediated itch. Since low-threshold mechano-receptors have recently been implicated in pruriception we aimed to characterize the peripheral primary afferent subpopulation conveying electrically evoked itch in humans (50 Hz stimulation, 100 μs square pulses, stimulus-response function to graded stimulus intensity). In 10 healthy male volunteers a placebo-controlled, 24-h 8% topical capsaicin-induced defunctionalization of capsaicin-sensitive (transient receptor potential V1-positive, ‘TRPV1’ +) cutaneous fibers was performed. Histaminergic itch (1% solution introduced by a prick test lancet) was provoked as a positive control condition. Capsaicin pretreatment induced profound loss of warmth and heat pain sensitivity (pain threshold and supra-threshold ratings) as assessed by quantitative sensory testing, indicative of efficient TRPV1-fiber defunctionalization (all outcomes: P < 0.0001). The topical capsaicin robustly, and with similar efficaciousness, inhibited itch intensity evoked by electrical stimulation and histamine (−89 ± 4.1% and −78 ± 4.9%, respectively, both: P < 0.0001 compared to the placebo patch area). The predominant primary afferent substrate for electrically evoked itch in humans, using the presently applied stimulation paradigm, is concluded to be capsaicin-sensitive polymodal C-fibers.

Original languageEnglish
JournalNeuroscience Letters
Volume666
Pages (from-to)186-189
Number of pages4
ISSN0304-3940
DOI
Publication statusPublished - 14 Feb 2018
Publication categoryResearch
Peer-reviewedYes

    Research areas

  • C-Fibers, Capsaicin, Histamine, Itch, Nociceptors, Pruriceptors, TPRV1
ID: 268337374