A fully general and adaptive inverse analysis method for cementitious materials

Michael S. Jepsen, Lars Damkilde, Ingemar Lövgren

Research output: Contribution to journalJournal articleResearchpeer-review

12 Citations (Scopus)

Abstract

The paper presents an adaptive method for inverse determination of the tensile σ - w relationship, direct tensile strength and Young’s modulus of cementitious materials. The method facilitates an inverse analysis with a multi-linear σ - w function. Usually, simple bi- or tri-linear functions are applied when modeling the fracture mechanisms in cementitious materials, but the vast development of pseudo-strain hardening, fiber reinforced cementitious materials require inverse methods, capable of treating multi-linear σ - w functions. The proposed method is fully general in the sense that it relies on least square fitting between test data obtained from various kinds of test setup, three-point bending or wedge splitting test, and simulated data obtained by either FEA or analytical models. In the current paper adaptive inverse analysis is conducted on test data obtained from three-point bending of notched specimens and simulated data from a nonlinear hinge model. The paper shows that the results obtained by means of the proposed method is independent on the initial shape of the σ - w function and the initial guess of the tensile strength. The method provides very accurate fits, and the increased number of variables describing the σ - w relationship constitutes the basis for obtaining detailed information of crack propagation in any cementitious material.
Original languageEnglish
JournalMaterials and Structures
Volume49
Pages (from-to)4335–4348
Number of pages14
ISSN1359-5997
DOIs
Publication statusPublished - 2016

Keywords

  • Inverse analysis
  • Adaptive method
  • Multi-line σ - w
  • Least square fitting
  • Search direction

Fingerprint

Dive into the research topics of 'A fully general and adaptive inverse analysis method for cementitious materials'. Together they form a unique fingerprint.

Cite this