Biomechanical investigation of a passive upper-extremity exoskeleton for manual material handling – a computational parameter study and modelling approach

Bo Eitel Seiferheld, Jeppe Frost, Mathias Krog, Sebastian Laigaard Skals, Michael Skipper Andersen*

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

238 Downloads (Pure)

Abstract

Passive upper-extremity exoskeletons may decrease the risk of developing work-related musculoskeletal disorders. This study examined how shoulder muscle forces and biomechanical loads in the glenohumeral and L4-L5 joint changed as different support torque (1.1-11.2 Nm) and angle settings (60-120°) of an exoskeleton were simulated during an overhead manual material handling task. Full-body kinematics of 15 grocery workers, who lifted a bread case (7.9 kg) onto shopping shelfs (145.5 cm), were captured on site. The kinematic data were used to drive a detailed human-exoskeleton model based on inverse dynamics. Generally, simulations with maximum torque combined with a peak angle setting between 75-105° reduced L4-L5 compression and anteroposterior shear forces, glenohumeral contact forces and shoulder flexor muscle forces. The exoskeleton therefore, seemed effective for reducing physical exposure during overhead handling. However, maximum torque with the lowest angle setting, 60°, increased musculoskeletal loading, suggesting that not adjusting the exoskeleton properly could be detrimental.
OriginalsprogEngelsk
TidsskriftInternational Journal of Human Factors Modelling and Simulation
Vol/bind7
Udgave nummer3/4
Sider (fra-til)275-300
Antal sider25
ISSN1742-5549
DOI
StatusUdgivet - 7 jul. 2022

Fingeraftryk

Dyk ned i forskningsemnerne om 'Biomechanical investigation of a passive upper-extremity exoskeleton for manual material handling – a computational parameter study and modelling approach'. Sammen danner de et unikt fingeraftryk.

Citationsformater