Complete nitrification by a single microorganism

Maartje A. H. J. van Kessel, Daan R. Speth, Mads Albertsen, Per Halkjær Nielsen, Huub J. M. Op den Camp, Boran Kartal, Mike S. M. Jetten, Sebastian Lücker

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

1235 Citationer (Scopus)

Abstract

Nitrification is a two-step process where ammonia is first oxidized to nitrite by ammonia-oxidizing bacteria and/or archaea, and subsequently to nitrate by nitrite-oxidizing bacteria. Already described by Winogradsky in 18901, this division of labour between the two functional groups is a generally accepted characteristic of the biogeochemical nitrogen cycle2. Complete oxidation of ammonia to nitrate in one organism (complete ammonia oxidation; comammox) is energetically feasible, and it was postulated that this process could occur under conditions selecting for species with lower growth rates but higher growth yields than canonical ammonia-oxidizing microorganisms3. Still, organisms catalysing this process have not yet been discovered. Here we report the enrichment and initial characterization of two Nitrospira species that encode all the enzymes necessary for ammonia oxidation via nitrite to nitrate in their genomes, and indeed completely oxidize ammonium to nitrate to conserve energy. Their ammonia monooxygenase (AMO) enzymes are phylogenetically distinct from currently identified AMOs, rendering recent acquisition by horizontal gene transfer from known ammonia-oxidizing microorganisms unlikely. We also found highly similar amoA sequences (encoding the AMO subunit A) in public sequence databases, which were apparently misclassified as methane monooxygenases. This recognition of a novel amoA sequence group will lead to an improved understanding of the environmental abundance and distribution of ammonia-oxidizing microorganisms. Furthermore, the discovery of the long-sought-after comammox process will change our perception of the nitrogen cycle.
OriginalsprogEngelsk
TidsskriftNature
Vol/bind528
Udgave nummer7583
Sider (fra-til)555-559
Antal sider5
ISSN0028-0836
DOI
StatusUdgivet - 26 nov. 2015

Fingeraftryk

Dyk ned i forskningsemnerne om 'Complete nitrification by a single microorganism'. Sammen danner de et unikt fingeraftryk.

Citationsformater