A multiphysics model of the compactly-assembled industrial alkaline water electrolysis cell

Danji Huang, Binyu Xiong, Jiakun Fang*, Kewei Hu, Zhiyao Zhong, Yuheng Ying, Xiaomeng Ai, Zhe Chen

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

21 Citations (Scopus)

Abstract

Electrolysis occupies a dominant position in the long-term application of hydrogen energy, as it can use the power surplus directly from renewable energies to produce hydrogen. Alkaline water electrolysis (AWE) is a mature and reliable technology standing out from other types of electrolysis because of its simplicity and low cost. Several multiphysics processes inside the AWE cell, such as the electrochemical, thermal, and fluidic processes. Developing the multiphysics model to quantify the relationship between these physics fields is essential for cell design. This paper establishes a three-dimensional numerical model to consider the quantitative relationship between the electrochemical process and fluidic process inside the cell of industrial AWE. The model considers the structural design of industrial AWE equipment, revealing that the shunting current effect introduced by the structure design cannot be ignored in the model. The simulation results present that the multiphysics model considering the bubble effect can estimate the current–voltage (I-V) characteristic curve more accurately with a relative error smaller than 5%, especially at a current density higher than 2500 A/m2. The model established is supposed to advance the development of water electrolysis models and guide the electrolyzer design of industrial AWE cell.

Original languageEnglish
Article number118987
JournalApplied Energy
Volume314
ISSN0306-2619
DOIs
Publication statusPublished - 15 May 2022

Bibliographical note

Publisher Copyright:
© 2022 Elsevier Ltd

Keywords

  • Industrial alkaline water electrolyzer
  • Multiphysics modeling
  • Shunting current effect
  • Two-phase flow

Fingerprint

Dive into the research topics of 'A multiphysics model of the compactly-assembled industrial alkaline water electrolysis cell'. Together they form a unique fingerprint.

Cite this