Desulfomusa hansenii gen. nov., sp. nov., a novel marine propionate-degrading, sulfate-reducing bacterium isolated from Zostera marina roots

K. Finster*, T. R. Thomsen, N. B. Ramsing

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

17 Citations (Scopus)

Abstract

The physiology and phylogeny of a novel sulfate-reducing bacterium, isolated from surface-sterilized roots of the marine macrophyte Zostera marina, are presented. The strain, designated P1T, was enriched and isolated in defined oxygen-free, bicarbonate-buffered, iron-reduced seawater medium with propionate as sole carbon source and electron donor and sulfate as electron acceptor. Strain P1T had a rod-shaped, slightly curved cell morphology and was motile by means of a single polar flagellum. Cells generally aggregated in clumps throughout the growth phase. High CaCl2 (10 mM) and MgCl2 (50 mM) concentrations were required for optimum growth. In addition to propionate, strain P1T utilized fumarate, succinate, pyruvate, ethanol, butanol and alanine. Oxidation of propionate was incomplete and acetate was formed in stoichiometric amounts. Strain P1T thus resembles members of the sulfate-reducing genera Desulfobulbus and Desulforhopalus, which both oxidize propionate incompletely and form acetate in addition to CO2. However, sequence analysis of the small-subunit rDNA and the dissimilatory sulfite reductase gene revealed that strain P1T was unrelated to the incomplete oxidizers Desulfobulbus and Desulforhopalus and that it constitutes a novel lineage affiliated with the genera Desulfococcus, Desulfosarcina, Desulfonema and 'Desulfobotulus'. Members of this branch, with the exception of 'Desulfobotulus sapovorans', oxidize a variety of substrates completely to CO2. Strain P1T (= DSM 12642T = ATCC 700811T) is therefore proposed as Desulfomusa hansenii gen. nov., sp. nov. Strain P1T thus illustrates the difficulty of extrapolating rRNA similarities to physiology and/or ecological function.

Original languageEnglish
JournalInternational Journal of Systematic and Evolutionary Microbiology
Volume51
Issue number6
Pages (from-to)2055-2061
Number of pages7
ISSN1466-5026
DOIs
Publication statusPublished - 1 Jan 2001

Keywords

  • Desulfobulbus
  • Desulfomusa hansenii gen. nov.
  • Incomplete oxidation
  • Propionate
  • sp. nov

Fingerprint

Dive into the research topics of 'Desulfomusa hansenii gen. nov., sp. nov., a novel marine propionate-degrading, sulfate-reducing bacterium isolated from Zostera marina roots'. Together they form a unique fingerprint.

Cite this