Pig slurry organic matter transformation and methanogenesis at ambient storage temperatures

Frederik Rask Dalby*, Herald Wilson Ambrose, Jan Struckmann Poulsen, Jeppe Lund Nielsen, Anders Peter S. Adamsen

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Manure management is a significant source of global methane emissions, and there is an increased interest in understanding and predicting emissions. The hydrolysis rate of manure organic matter is critical for understanding and predicting methane emissions. We estimated hydrolysis rate constants of crude protein, fibers, and lipids and used the Arrhenius equation to describe its dependency on temperature. Simultaneously, measurements of methane emission, 13/12C isotope ratios, and methanogen community were conducted. This was achieved by incubating fresh pig manure without inoculum at 10°C, 15°C, 20°C, and 25°C for 85 days in a lab-scale setup. Hydrolysis of hemicellulose and cellulose increased more with temperature than crude protein, but still, hydrolysis rate of crude protein was highest at all temperatures. Results suggested that crude protein consisted of multiple substrate groups displaying large differences in degradability. Lipids and lignin were not hydrolyzed during incubations. Cumulative methane emissions were 7.13 ± 2.69, 24.6 ± 8.00, 66.7 ± 4.8, and 105.7 ± 7.14 gCH4 kgVS−1 at 10°C, 15°C, 20°C, and 25°C, respectively, and methanogenic community shifted from Methanosphaera toward Methanocorpusculum over time and more quickly at higher temperatures. This study provides important parameter estimates and dependencies on temperature, which is important in mechanistic methane emission models. Further work should focus on characterizing quickly degradable substrate pools in the manure organic matter as they might be the main carbon source of methane emission from manure management.

Original languageEnglish
JournalJournal of Environmental Quality
Volume52
Issue number6
Pages (from-to)1139-1151
Number of pages13
ISSN0047-2425
DOIs
Publication statusPublished - 1 Nov 2023

Bibliographical note

© 2023 The Authors. Journal of Environmental Quality published by Wiley Periodicals LLC on behalf of American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

Fingerprint

Dive into the research topics of 'Pig slurry organic matter transformation and methanogenesis at ambient storage temperatures'. Together they form a unique fingerprint.

Cite this