Abstrakt
In this work, we propose a demodulator aided by a neural network (NN) for massive multiple-input multiple-output (M-MIMO) systems. In particular, we consider the uplink (UL) phase of an M-MIMO system in which users transmit utilizing a quadrature amplitude modulation (QAM) and soft-estimates are obtained via the application of the zero-forcing (ZF) combiner. Based on the ZF soft-estimates, we propose suitable features that are used in the input layer of an NN, whose task is to learn how to output hard-estimates, that is, demodulate the ZF soft-estimates. We then adopt a supervised learning perspective by performing a regression analysis and training the NN with simulated data. The performance and complexity of our NN-aided demodulator is numerically compared to those of the hard-decisor (HD) scheme used as a benchmark for a 4-QAM. Through this comparison, we show that our NN-aided demodulator is 17.3% more computationally efficient with tolerable performance losses. We argue that demodulators assisted by NNs can be a promising alternative to cheaply demodulate high-order OAMs.
Originalsprog | Engelsk |
---|---|
Titel | 2021 IEEE URUCON, URUCON 2021 |
Antal sider | 6 |
Forlag | IEEE |
Publikationsdato | 2021 |
Sider | 166-171 |
Artikelnummer | 9647160 |
ISBN (Elektronisk) | 9781665424431 |
DOI | |
Status | Udgivet - 2021 |
Udgivet eksternt | Ja |
Begivenhed | 2021 IEEE URUCON, URUCON 2021 - Montevideo, Uruguay Varighed: 24 nov. 2021 → 26 nov. 2021 |
Konference
Konference | 2021 IEEE URUCON, URUCON 2021 |
---|---|
Land/Område | Uruguay |
By | Montevideo |
Periode | 24/11/2021 → 26/11/2021 |
Navn | 2021 IEEE URUCON, URUCON 2021 |
---|
Bibliografisk note
Publisher Copyright:© 2021 IEEE.