Towards Sustainable Construction: Life Cycle Assessment of Railway Bridges

    Publikation: Bog/antologi/afhandling/rapportRapportForskningpeer review

    Abstrakt

    Since last few decades, the increased pressure from the environmental issues of natural resource depletion, global warming and air pollution have posed a great challenge worldwide. Among all the industrial fields, bridge infrastructures and their belonged construction sector contribute to a wide range of energy and raw materials consumptions, which is responsible for the most significant pollutions. However, current bridges are mainly designed by the criterion of economic, technique, and safety standards, while their correlated environmental burdens have unfortunately rarely been considered. The life cycle assessment (LCA) method has been verified as a systematic tool, which enables the fully assessment and complete comparison for the environmental impact among different bridge options through a life cycle manner. The study presented in this thesis is focused on railway bridges, as the LCA implementation is under great expectations to set a new design criterion, to optimize the structural design towards the environmental sustainability, and to assist the decision-making among design proposals.

    This thesis consists of two parts: an extended summary and three appended papers. Part one gives an overview introduction that serves as a supplementary description for this research work. It outlines the background theory, current development status, the LCA implementation into the railway bridges, as well as the developed excel-based LCA tool. Part two, includes three appended papers which provides a more detailed theoretical review of the current literatures and knowledge associated with bridge LCA, by highlighting the great challenging issues. A systematic flowchart is presented both in Paper I and Paper II for how to model and assess the bridge life cycle, together by coping with the structural components and associated emissions. This flowchart is further illustrated on a case study of the Banafjäl Bridge in Sweden, which has been extensively analyzed by two LCA methods: CML 2001 method and streamlined quantitative approach. The obtained results can be contributed as an analytical reference for other similar bridges.

    Based on the theoretical review and analytical results from case studies, it has been found that the environmental profile of a bridge is dominated by the selected structural type, which affects the life cycle scenarios holistically and thus further influences the environmental performance. However, the environmental profile of the structure is though very case specific; one cannot draw a general conclusion for a certain type of bridge without performing the LCA study. The case study has found that the impact of material manufacture phase is mostly identified significant among the whole life cycle. The availability of the inventory data and project information are appeared as the major problem in the bridge LCA study. Moreover, lack of standardized guideline, criteria and input information is another key issue. A criterion is needed to illustrate what are the qualified limits of a bridge to fulfill the environmental requirements. Therefore, the development of LCA for railway bridges still needs further collaborative efforts from government, industry and research institutes.
    OriginalsprogEngelsk
    UdgivelsesstedStockholm
    ForlagArkitekturskolan KTH, Kungl. Tekniska Högskolan, KTH
    Antal sider51
    ISBN (Trykt)1103-4270
    ISBN (Elektronisk)1103-4270
    StatusUdgivet - 2012

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'Towards Sustainable Construction: Life Cycle Assessment of Railway Bridges'. Sammen danner de et unikt fingeraftryk.

    Citationsformater