A novel MRI-based three-dimensional model of stomach volume, surface area, and geometry in response to gastric filling and emptying

Davide Bertoli, Esben Bolvig Mark, Donghua Liao, Christina Brock, Jens Brøndum Frøkjær, Asbjørn Mohr Drewes*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

7 Citations (Scopus)
66 Downloads (Pure)


BACKGROUND: Gastric motility and accommodation have a critical role in maintaining normal gastrointestinal homeostasis. Different modalities can be adopted to quantify those processes, that is, scintigraphy to measure emptying time and intragastric Barostat for accommodation assessment. However, magnetic resonance imaging (MRI) can assess the same parameters noninvasively without ionizing radiation. Our study aimed to develop a detailed three-dimensional (3D) MRI model of the stomach to describe gastric volumes, surface areas, wall tension distribution, and interobserver agreement.

METHODS: Twelve healthy volunteers underwent an MRI protocol of six axial T2-weighted acquisitions. Each dataset was used to construct a 3D model of the stomach: First, the volumes of the whole stomach, gastric liquid, and air were segmented. After landmark placing, a raw 3D model was generated from segmentation data. Subsequently, irregularities were removed, and the model was divided into compartments. Finally, surface area and 3D geometry parameters (inverse curvatures) were extracted. The inverse curvatures were used as a proxy for wall tension distribution without measuring the intragastric pressure.

KEY RESULTS: The model was able to describe changes in volume and surface geometry for each compartment with a distinct pattern in response to filling and emptying. The surface tension was distributed nonhomogeneously between compartments and showed dynamical changes at various time points.

CONCLUSION & INFERENCES: The presented model offers a detailed tool for evaluating gastric volumes, surface geometry, and wall tension in response to filling and emptying and will provide insights into gastric emptying and accommodation in diseases such as diabetic gastroparesis.

Original languageEnglish
Article numbere14497
JournalNeurogastroenterology and Motility
Issue number2
Publication statusPublished - Feb 2023

Bibliographical note

© 2022 The Authors. Neurogastroenterology & Motility published by John Wiley & Sons Ltd.


  • abdomen
  • algorithms
  • gastric emptying
  • magnetic resonance imaging
  • reproducibility


Dive into the research topics of 'A novel MRI-based three-dimensional model of stomach volume, surface area, and geometry in response to gastric filling and emptying'. Together they form a unique fingerprint.

Cite this