Enabling LVRT Compliance of Electrolyzer Systems Using Energy Storage Technologies

Pankaj Saha, Weihao Zhao, Daniel-Ioan Stroe*, Florin Iov, Stig Munk-Nielsen

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

21 Downloads (Pure)

Abstract

This paper presents a comprehensive techno-economic analysis of different energy storage systems (ESSs) in providing low-voltage ride-through (LVRT) support for power electronics-based electrolyzer systems. A framework for analyzing the performance of a grid-integrated electrolyzer-ESS system is developed, taking into account realistic scenarios and accurate models. The system components consist of a 500 kW alkaline electrolyzer module integrated with a medium-voltage grid and three different commercially available ESSs based on Li-ion battery, Li-ion capacitor, and supercapacitor technology, respectively. The performance of these ESSs is extensively studied for three LVRT profiles, with a primary focus on the upcoming Danish grid code. In order to perform simulation studies, the system is implemented on the MATLAB®/Simulink®-PLECS® platform. The results demonstrate that all three energy storage technologies are capable of supporting the electrolyzer systems during low-voltage abnormalities in the distribution grid. The study also reveals that the supercapacitor-based technology seems to be more appropriate, from a techno-economic perspective, for fault ride-through (FRT) compliance.
Original languageEnglish
Article number527
JournalBatteries
Volume9
Issue number11
Number of pages13
ISSN2313-0105
DOIs
Publication statusPublished - Nov 2023

Keywords

  • power-to-X
  • electrolyzer
  • green hydrogen
  • grid code compliance
  • LVRT
  • energy storage

Fingerprint

Dive into the research topics of 'Enabling LVRT Compliance of Electrolyzer Systems Using Energy Storage Technologies'. Together they form a unique fingerprint.

Cite this