Abstract
Symbolic search, using Binary Decision Diagrams (BDDs) to represent sets of states, is a competitive approach to optimal planning. Yet heuristic search in this context remains challenging. The many advances on admissible planning heuristics are not directly applicable, as they evaluate one state at a time. Indeed, progress using heuristic functions in symbolic search has been limited and even very informed heuristics have been shown to be detrimental. Here we show how this connection can be made stronger for LP-based potential heuristics. Our key observation is that, for this family of heuristic functions, the change of heuristic value induced by each operator can be precomputed. This facilitates their smooth integration into symbolic search. Our experiments show that this can pay off significantly: we establish a new state of the art in optimal symbolic planning.
Original language | English |
---|---|
Title of host publication | Proceedings of the AAAI Conference on Artificial Intelligence, 36 |
Publisher | AAAI Press |
Publication date | Jun 2022 |
Pages | 9750-9757 |
ISBN (Electronic) | 978-1-57735-876-3 |
DOIs | |
Publication status | Published - Jun 2022 |
Event | 36th AAAI Conference on Artificial Intelligence 2022 - Duration: 22 Feb 2022 → 1 Mar 2022 https://aaai-2022.virtualchair.net/index.html |
Conference
Conference | 36th AAAI Conference on Artificial Intelligence 2022 |
---|---|
Period | 22/02/2022 → 01/03/2022 |
Internet address |
Series | Proceedings of the AAAI Conference on Artificial Intelligence |
---|---|
Number | 9 |
Volume | 36 |
ISSN | 2374-3468 |
Fingerprint
Dive into the research topics of 'Operator-Potential Heuristics for Symbolic Search'. Together they form a unique fingerprint.Prizes
-
AAAI 2022 Outstanding Paper Award: Honorable Mention
Fišer, D. (Recipient) & Torralba, A. (Recipient), Feb 2022
Prize: Conference prizes