Ignorability for categorical data

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

15 Citationer (Scopus)

Abstrakt

We study the problem of ignorability in likelihood-based inference from incomplete categorical data. Two versions of the coarsened at random assumption (car) are distinguished, their compatibility with the parameter distinctness assumption is investigated and several conditions for ignorability that do not require an extra parameter distinctness assumption are established.
OriginalsprogEngelsk
TidsskriftAnnals of Statistics
Vol/bind33
Udgave nummer4
Sider (fra-til)1964-1981
Antal sider17
ISSN0090-5364
DOI
StatusUdgivet - aug. 2005

Citationsformater