Predicting Lithium-ion Battery Resistance Degradation using a Log-Linear Model

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

1 Citationer (Scopus)
15 Downloads (Pure)

Abstrakt

The resistance is one of the parameters that describes the performance of Lithium-ion (Li-ion) batteries, as it offers information about the battery efficiency and its power capability. However, similar to other performance parameters of Li-ion batteries, the resistance is dependent on the operating
conditions and increases while the battery is aging. Traditionally, to capture these dependencies, Li-ion cells are aged at different conditions using synthetic mission profiles and periodically the aging tests are stopped in order to measure the resistance at standard conditions. Most of the times, even though accurate information about the resistance behavior is obtained, they do not reflect the behavior from real-life applications. Thus, in this work we propose a method for extracting, modelling, and predicting the resistance directly from the battery dynamic mission profile. While the extraction mainly relied on data manipulation and bookkeeping, the modelling and subsequent prediction of the resistance used a log-linear model.
OriginalsprogEngelsk
TitelProceedings of 2019 IEEE Energy Conversion Congress and Exposition (ECCE)
Antal sider8
ForlagIEEE Press
Publikationsdatosep. 2019
Sider1136-1143
Artikelnummer8912770
ISBN (Trykt)978-1-7281-0396-9
ISBN (Elektronisk)978-1-7281-0395-2
DOI
StatusUdgivet - sep. 2019
Begivenhed2019 IEEE Energy Conversion Congress and Exposition (ECCE) - Baltimore, USA
Varighed: 29 sep. 20193 okt. 2019

Konference

Konference2019 IEEE Energy Conversion Congress and Exposition (ECCE)
LandUSA
By Baltimore
Periode29/09/201903/10/2019
NavnIEEE Energy Conversion Congress and Exposition
ISSN2329-3721

Fingeraftryk Dyk ned i forskningsemnerne om 'Predicting Lithium-ion Battery Resistance Degradation using a Log-Linear Model'. Sammen danner de et unikt fingeraftryk.

Citationsformater