Learning Symbolic Timed Models from Concrete Timed Data

Simon Dierl, Falk Maria Howar, Sean Kauffman*, Martin Kristjansen, Kim Guldstrand Larsen, Florian Lorber, Malte Mauritz

*Kontaktforfatter

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

1 Citationer (Scopus)
9 Downloads (Pure)

Abstract

We present a technique for learning explainable timed automata from passive observations of a black-box function, such as an
artificial intelligence system. Our method accepts a single, long, timed
word with mixed input and output actions and learns a Mealy machine
with one timer. The primary advantage of our approach is that it constructs a symbolic observation tree from a concrete timed word. This
symbolic tree is then transformed into a human comprehensible automaton. We provide a prototype implementation and evaluate it by learning
the controllers of two systems: a brick-sorter conveyor belt trained with reinforcement learning and a real-world derived smart traffic light controller.
We compare different model generators using our symbolic observation
tree as their input and achieve the best results using k-tails. In our experiments, we learn smaller and simpler automata than existing passive
timed learners while maintaining accuracy.
OriginalsprogEngelsk
TitelNASA Formal Methods : 15th International Symposium, NFM 2023, Houston, TX, USA, May 16–18, 2023, Proceedings
RedaktørerKristin Yvonne Rozier, Swarat Chaudhuri
Antal sider18
ForlagSpringer Science+Business Media
Publikationsdato16 maj 2023
Sider104-121
ISBN (Trykt)978-3-031-33169-5
ISBN (Elektronisk)978-3-031-33170-1
DOI
StatusUdgivet - 16 maj 2023
Begivenhed15th International Symposium on NASA Formal Methods, NFM 2023 - Houston, USA
Varighed: 16 maj 202318 maj 2023

Konference

Konference15th International Symposium on NASA Formal Methods, NFM 2023
Land/OmrådeUSA
ByHouston
Periode16/05/202318/05/2023
NavnLecture Notes in Computer Science (LNCS)
Vol/bind13903 LNCS
ISSN0302-9743

Bibliografisk note

Funding Information:
This work was supported by the S40S Villum Investigator Grant (37819) from VILLUM FONDEN, the ERC Advanced Grant LASSO, DIREC, and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 495857894 (STING).

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Fingeraftryk

Dyk ned i forskningsemnerne om 'Learning Symbolic Timed Models from Concrete Timed Data'. Sammen danner de et unikt fingeraftryk.

Citationsformater