Orthonormal, Moment Preserving Boundary Wavelet Scaling Functions in Python

Josefine Holm, Thomas Arildsen, M Nielsen, Steffen Lønsmann Nielsen

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

1 Citationer (Scopus)


In this paper we derive an orthonormal basis of wavelet scaling functions for L2 ([0, 1]) motivated by the need for such a basis in the field of generalized sampling. A special property of this basis is that it includes carefully constructed boundary functions and it can be constructed with arbitrary smoothness. This construction makes assumptions about the signal outside the interval unnecessary. Furthermore, we provide a Python package implementing this wavelet decomposition. Wavelets defined on a bounded interval are widely used for signal analysis, compression, and for numerical solution of differential equations. We show that for many cases using the basis that we derive results in smaller error than the commonly used alternative.
TidsskriftSN Applied Sciences
Udgave nummer12
Antal sider9
StatusUdgivet - nov. 2020


Dyk ned i forskningsemnerne om 'Orthonormal, Moment Preserving Boundary Wavelet Scaling Functions in Python'. Sammen danner de et unikt fingeraftryk.
  • BoundaryWavelets

    Holm, J., Lønsmann Nielsen, S. & Arildsen, T., 12 feb. 2019

    Publikation: Bidrag der ikke har en tekstformSoftwareprogramForskning

    Åben adgang
    35 Downloads (Pure)